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Abstract— Device-cloud interfaces are a critical component
of IoT given their centrality of the cloud-side control over the
connected devices, which has attracted an increasing number
of attacks exploiting their access control. Regrettably, there
is a lack of techniques to facilitate the examination of such
a critical interface, primarily hindered by the challenges of
dynamic firmware analysis to reconstruct device-cloud messages
and generate testing cues.

This paper presents FIRMRES, a principled static approach
that automatically reconstructs device-cloud messages by mod-
eling message construction semantics in IoT firmware. At the
center of FIRMRES is a message field tree which is formed
of the backward data flows from message delivery callsites to
the potential sources of message fields. By walking through,
transforming, and contextual learning from this tree, device-cloud
messages are automatically reconstructed and a set of semantics
during “message construction” such as the message format,
the field semantics, and the order of the fields are inferred.
Facilitated with the messages reconstructed by FIRMRES, we
were able to manually examine the access control of device-cloud
interfaces. FIRMRES reconstructed 246 effective messages from
the firmware of 20 IoT devices, leading to the discovery of 13
previously-unknown vulnerabilities in their clouds.

I. INTRODUCTION

The device-cloud interface holds paramount significance

within the IoT ecosystem, serving as the linchpin for device

control. This interface conveys critical messages responsible

for device control, enabling devices to access cloud resources.

Regrettably, there has been a notable surge in attacks targeting

these interfaces in recent years [1], [10].
Device-to-cloud functionality primarily includes device reg-

istration, remote management, and data transmission. Device

registration typically refers to the process where a device

initiates registration and binds with the cloud, associating

legitimate devices with a user’s cloud account for remote

management. Remote management allows users to remotely

manage and control IoT devices through the cloud, including

making configurations, performing software upgrades, and

remotely restarting devices. Data transmission enables devices

to transmit various types of information like sensor data and

device status to the cloud platform, facilitating real-time view-

ing, data collection, and profiling for users. Generally, device-

to-cloud functionality is achieved by authenticating a device to

the cloud and establishing a binding relationship between the
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device and the user. After that, the cloud still needs to perform

stringent checks on the credentials provided by the device,

ensuring that it is not vulnerable to impersonation attacks.

However, many manufacturers do not strictly adhere to this

process. Attackers can exploit such broken access control to

communicate with the cloud, resulting in severe consequences

such as privacy breaches, data tampering, disruption of device

functionality, and device control.

However, uncovering potential threats in device-cloud inter-

faces of IoT still remains a labor-intensive and predominantly

manual process. The challenge primarily stems from the in-

herent difficulty in reconstructing the messages responsible for

cloud access from the device side (we call them “device-cloud

messages” in this paper). This complexity arises because, tra-

ditionally, the construction of device-cloud messages has relied

on dynamic analysis techniques. These techniques encompass

dynamic program instrumentation/hooking or real-time execu-

tion with the interception of communication traffic. However,

dynamic analysis for firmware images is hard. Creating a

unified emulation environment for dynamic firmware analysis

is a formidable hurdle in many cases. Diverse devices often

employ distinct architectures and hardware configurations,

making it challenging to build generic emulators to achieve

effective device simulation. Furthermore, devices frequently

interact with specific hardware peripherals and sensors, which

significantly amplifies the simulation’s complexity.

In this paper, we present FIRMRES, a new solution that au-

tomatically reconstructs device-cloud messages using a novel

static analysis technique. FIRMRES enables analysts to effi-

ciently assess the access control issues in device-cloud inter-

faces by forging device-cloud messages and impersonating real

devices. Specifically, given the fact that a bunch of executables

are presented in the firmware images, FIRMRES first leverages

a statistic-based approach to identify the specific device-cloud

executables by pinpointing request handlers that interact with

the cloud, with statistics of the branches that check the validity

of message fields. Then, it performs static taint analysis from

message delivery functions to the sources of message fields

and constructs a message field tree. This tree, composed of

data flows from taint sources to taint sinks, not only helps

identify message fields but also preserves the “message con-

struction” logics. Subsequently, FIRMRES generates “message

construction” code slices based on the paths of the tree and
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uses a deep learning model to recover the field semantics.

After that, the message field tree is simplified by removing the

nodes that are irrelevant to field concatenation. The remaining

nodes in the tree structure can be leveraged to recover the

order of the message fields and reconstruct the messages. In

the end, FIRMRES checks whether the forms of reconstructed

messages align with pre-defined primitive messages.

We evaluated FIRMRES on the firmware of 22 devices from

18 vendors. The devices belong to 7 different device types. The

evaluation shows that FIRMRES is effective in reconstructing

device-cloud messages and is demonstrated useful in assess-

ing the access control of device-cloud interfaces. FIRMRES

successfully identified the device-cloud executables in 20 of

the devices and reconstructed 246 valid messages. By probing

the cloud-side interfaces with the reconstructed messages, we

identified 14 vulnerabilities including 13 of them that were

previously unknown. These identified vulnerabilities could

lead to severe consequences such as uploading false logs,

illegally viewing cloud storage footage, triggering alarms, and

hijacking devices.

Contributions. The contributions of this paper are summa-

rized as follows:

• New Problem. To the best of our knowledge, this

work makes the first attempt to automatically reconstruct

device-cloud messages through static firmware analysis.

Facilitated with the reconstructed messages, systematic

assessment of access control issues in device-cloud inter-

faces of IoT is made possible.

• New Approach. We present a principled static ap-

proach and develop FIRMRES to reconstruct device-

cloud messages from firmware, without relying on dy-

namic firmware analysis. This involves a set of new

techniques that utilize the “message construction” logics

in the firmware to recover semantics and reconstruct

messages.

• Real-world Impact. The evaluation demonstrates that

FIRMRES is effective in reconstructing messages and

facilitating the assessment of the access control in

IoT device-cloud interfaces. The identified vulnerabilities

could lead to serious consequences. This tool is open

sourced1.

II. BACKGROUND

A. Device-Cloud Communication

As illustrated in Fig. 1, an IoT system typically includes

three parties: the cloud, the IoT device, and the user’s man-

agement console (mobile apps or web). The cloud manages

the remote communication between the device and the user,

acting as the center of the system. In device-cloud commu-

nication, the cloud forwards the commands issued by the

users and receives the sensor data uploaded by the device.

The mainstream application-layer protocols are MQTT and

HTTP. MQTT is a publish-subscribe messaging protocol that

1https://github.com/Nakuro1999/FirmRES
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Fig. 1. Remote Communications in IoT Systems

allows the sender to deliver messages to a class [8], based

upon the topic of the messages which can be subscribed by

a group of receivers. The core component of the cloud is

the MQTT broker, which hosts MQTT topics at the cloud

server endpoint with each topic structured like a file path

such as /sys/properties/report. Topics serve as the

intermediary in the transmission between message publishers

(Pubs) and message subscribers (Subs). Devices send and

receive messages based on topics. On the other hand, HTTP

is a request-response model protocol that is commonly used

in device-cloud communication. The cloud based on HTTP

receives the HTTP messages sent by the devices to collect the

sensor data. HTTP is stateless, meaning that each message

sent by the device is independent and not reliant on previous

messages.

B. Device-Cloud Access Control

As shown in Fig. 2, the device-cloud interaction has two

phases for the remote control of the devices: the binding phase

where the validity and the authenticity of the device are proved

to the cloud, and the business phase where the cloud confirms

that the device is bound to a user and allows the device to

access cloud resources. The message could contain a variety

of fields, but only a few are used for access control. In this

paper, we call the access control elements in the messages

“primitives”. They are Dev-Identifier, Dev-Secret, User-Cred,

Bind-Token, and Signature. The primitives and arguments are

derived from the reverse engineering of the existing designs

in the real world.

Binding Phase. The main purpose of the access control in this

phase is to verify the identity and authenticity of the device.

The identity refers to the fact that the device is produced by

the manufacturer. The authenticity concerns that the message

is sent from a specific real device rather than an attacker. The

device uses device identifiers (denoted by Dev-Identifier) such

as MAC addresses, serial numbers, device IDs, or product

IDs to prove its identity. The device secret (denoted by Dev-
Secret) which is also known as the secret key, the device

key, or the device certificate, is encoded by manufacturers to

prove its authenticity. The user credential denoted by User-
Cred represents the user’s login credential. Once receiving and

verifying Dev-Identifier, Dev-Secret and User-Cred, the cloud

responds with a binding token (denoted by Bind-Token), which
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Fig. 2. Two Phases of Device-Cloud Access Control

is used for accessing resources in the subsequent business

phase.

Business Phase. In this phase, the device accesses resources

by sending a business request that proves the device is already

bound with a specific user. This business request can be formed

in three different ways: 1 composition of Dev-Identifier and

Bind-Token. The binding token is also known as the access

token, the access key, or the session token; 2 composition of

Dev-Identifier and Signature. The Signature is also known as

the temporary key or the temporary secret, which is derived

from Dev-Secret (denoted by Signature =f(Dev-Secret)); 3

composition of Dev-Identifier, Dev-Secret and User-Cred. In

this case, the device directly sends the original forms of

primitives. The above are the forms of the business request

that are made of primitives for access control. Meta data like

the timestamp is not treated as primitives for access control.

III. MOTIVATION

A. A Running Example

Conducting security assessments for the communication in-

terface between the device and the cloud is often regarded

as a challenging aspect of the IoT ecosystem due to the

complexities involved in analyzing device firmware. This in-

terface struggles with broken authentication and authorization.

We show an example from CVE-2023-2586. Listing 1 is a

code snippet of the vulnerable program rms_connect of the

device model Teltonika RUT241. This program is in charge of

device-cloud interactions including device authentication and

requesting cloud resources.

The code snippet shows how a device-cloud authentication

message is constructed in the device firmware. In function

FUN_00402098, the program extracts the MAC address and

writes it into the message uVar1 for cloud communication

at lines 2-5. The serial number is written into the message

uVar1 at lines 6-9. Finally, at line 18, the program uses

the function SSL_write() to send the converted message

pcVar1 to the cloud. Listing 2 shows the message sent by

the device to register to the cloud.

1 undefined4 FUN_00402098(void){...
2 if (DAT_00416508 != 0) {
3 uVar2 = FUN_00404a20();
4 FUN_004047a4(uVar1,"mac",uVar2);
5 }// add MAC address to request message
6 if (DAT_00416504 != 0) {
7 uVar2 = FUN 00404a20();
8 FUN_004047a4(uVar1,"sn",uVar2);
9 }// add serial number to request message

10 ...
11 uVar2 = FUN_0O404638(uVar1); //

convert the format of the message
12 return uVar2;
13 }// Construct the message body of the binding request
14

15 int FUN_00402210(void){...
16 pcVar1 = (char *)FUN_FUN_00402098(); //get the

message of the binding request
17 sVar8 = strlen(pcVar1);
18 local_2360 = SSL_write(s,pcVar1,sVar8 + 1); //send the

message to the cloud
19 ...
20 }

Listing 1. Code Snippet from CVE-2023-2586

1 {
2 "version":2,
3 "mac":"00:1e:42:**:**:**", //Mac Address
4 "sn":"1123*", //Serial Number
5 "certs":0,
6 "model":"RUT24101****",
7 "fw_version":"RUT2M_R_00.07.01.3\n",
8 "is_facelift":false
9 }

Listing 2. A Message Sent by Device to Identify Itself to Cloud

Unfortunately, the device only sends its serial number and
the MAC address (i.e., Dev-Identifier) to the cloud to prove
its identity and requests the private key and the certificate for
subsequent MQTT communication. The message is shown in

Listing 2. By leaking the serial number and the MAC address,

attackers can register to the vendor’s cloud and obtain the

device certificate (i.e., Dev-Secret). Subsequently, they can

use the acquired certificate to establish a connection with the

vendor’s MQTT broker, by forging device-cloud messages,

enabling the attackers to communicate on behalf of the device

and impersonate it. Such device authentication is not secure

since the serial number and MAC address are simply weak

identifiers. Once they are leaked, for example, through brute-

forcing or device ownership transfer, the attackers can gain

remote and complete control over the running devices through

the cloud.

B. Threat Model, Research Goal, and Challenges

Threat Model. In this paper, the attackers aim to use device

identifiers or hard-coded primitives to impersonate messages

sent from victim’s devices (acting as malicious registered

devices). This could result in serious consequences to the

victim’s cloud resources such as uploading false logs, illegally

viewing cloud storage footage, triggering false alarms, and

even hijacking devices. We assume that the attacker can obtain

the device identifiers, due to the weak protection in real life:

• Device discovery. When the devices are exposed on the In-

ternet, attackers can scan their IPs and collect device infor-

mation. For example, the attacker can discover the devices’
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MAC address and serial numbers by using Shodan.io [9]

to query SNMP services of Internet-exposed devices and

querying the relevant OIDs [6].

• Inference of the device ID. Attackers may infer, bruteforce,

or enumerate the device ID according to the regulation of

ID sequence arrangement. For example, the ID randomness

of some devices is not enough, which is easily guessed; the

MAC addresses contain a vendor-specific field, which can

be inferred by enumeration.

• Off-site physical interaction of the device. Device infor-

mation can be leaked through device ownership transfer,

including device reuse, reselling, stealing, and so on. For

example, the attacker could purchase a device from Ama-

zon, record its information, then sell it out or return it.

Research Goal. Given the stealthiness and severe conse-

quences of IoT device-cloud interfaces using weak credentials

for access control, it is imperative to discover them automat-

ically and assess their impact in the real world. As such, the
goal of this research is to automatically expose the device-
cloud messages, and systematically assess the device-cloud
interfaces through a follow-up manual analysis. Particularly,

we focus on device-cloud access control issues that are caused

by insufficient checks of the primitives in the cloud, including:

• Missing primitives in device-cloud messages. This allows

attackers to impersonate the device to communicate with the

cloud. Attackers could bind the device or access sensitive

information of the victim.

• Hard-coded Dev-Secret in firmware. As long as the Dev-
Secret is hardcoded and leaked, attackers can also imper-

sonate the device to communicate with the cloud.

Challenges. Unfortunately, we found that there is no existing

solution to generate device-cloud messages and test the device-

cloud interfaces. Traditionally, the firmware needs to be ex-

ecuted or emulated to generate device-cloud messages. Then

analysts can capture the message through dynamic instrumen-

tation or in unencrypted network traffic. Regrettably, the dy-

namic firmware analysis still remains an open challenge [33].

It is difficult to perform full and transparent instrumentation

of firmware on physical devices. On the other hand, firmware

re-hosting requires the missing NVRAM parameters to be

presented or systematic modeling of peripherals, in order

to support the smooth execution of firmware images, which

remains an unsolved problem yet.

IV. APPROACH

Given the difficulty and infeasibility in dynamic firmware anal-

ysis, we choose to reconstruct device-cloud messages based

on static firmware analysis, for the purpose of facilitating the

examination of device-cloud interfaces.

The workflow of FIRMRES is shown in Fig. 3. The inputs

are the firmware images of IoT devices. The firmware analysis

module is automated and outputs testing cues and alarms

of incorrect device-cloud messages. Particularly, FIRMRES

first identifies the program that interacts with the cloud by

calculating the feature scores of all binary programs. Then, it

performs a static taint analysis on the identified executable

to identify the fields of device-cloud messages. After that,

FIRMRES generates code slices based on taint propagation

paths. The semantics of the message fields are recovered using

a deep learning model which is fed with those code slices with

rich semantics. Next, FIRMRES concatenates the fields into

messages by grouping the fields and inferring the message for-

mat. Finally, an automated message form check is performed

on the message with the recovered semantics to check the

primitives issues. With FIRMRES’s help in preparing device-

cloud messages, we are finally able to conduct a systematic

assessment with manual efforts on the access control issues of

device-cloud interfaces.

A. Pinpointing Device-Cloud Executables

The device-cloud executables are in charge of the interaction

between the device and the cloud. Given the different types of

executables presented in the firmware image, it is necessary

to pinpoint the device-cloud executables. They share two sig-

nificant features: first, device-cloud executables have request

handlers that handle incoming requests and return responses;

second, handling requests from the cloud is asynchronous,

which means the cloud request handlers are often implemented

with event-based implicit invocations. In general, the request

handlers of other executables are explicitly invoked. As such,

the device-cloud executables can be identified in the following

two steps: (1). identifying the request handlers in all executa-

bles; (2). identifying the asynchronous request handlers among

the identified request handlers.

• Request Handler Identification. A request handler con-

sists of a set of functions that accept incoming requests,

parse them, handle them, and send out responses. In

request handles, a large portion of predicates are related

to request parsing. The operands of the predicates are

mostly request fields. As a result, the request handlers

can be identified by calculating the statistics about how

many operands of predicates are request fields.

Specifically, We first define two types of anchor nodes,

namely the callsites of the request incoming functions

funins (e.g., recv/recvfrom/recvmsg functions)

and the callsites of the response outgoing functions

funouts (e.g., send/sendto/sendmsg functions).

Next, as shown in Fig. 4, we cluster them into pairs of

incoming functions and outgoing functions by their clos-

est distances on the call graph. Function call sequences

between the anchor nodes can be regarded as handlers.

Not all sequences are request handlers. For instance, IPC

handlers are not request handlers. As such, we calculate

a “string-parsing” factor for each sequence given below,

to identify request handlers.

Pf =
Or

O
,O ∈ f

scoreS = max
f∈S

(Pf )
(1)
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ivar10 = FUN_004bf3d0(param_1, local_30, 
&local_34);
puVar13 = strok(local_30[0], "\t");
if (puVar13 != (char*)0x0 && puVar13 != "\0")
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    ivar10 = strcmp(puVar13, "GET");
    if(ivar10 != 0){
        ivar10 = strcmp(puVar13, "POST");
        if(ivar10 == 0){
            *(unit *)(param_1+0xd8) = *(unit 
*)(param_1+0xd8)|0x20;
        }
        else{
            ivar10 = strcmp(puVar13, "HEAD");
            if(ivar10 ==0){
                FUN_004bf264(param_1, 400, 
"Bad request type");
            }
        }
    }
    *(unit *)(param_1+0xd8) = *(unit 
*)(param_1+0xd8)|0x200;
    ......
}
......
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Fig. 4. Illustration of Asynchronous Handler Identification

Or is the number of the predicates’ operands that orig-

inate from the arguments of the callsite of the request

incoming function (i.e., the incoming request) in function

f . Function f belongs to sequence S. O is the total num-

ber of predicates’ operands in f . The function with the

maximum Or

O is regarded as the main parsing function.

The maximum Pf is the feature score scoreS of the

sequence S. The sequence with the highest score between

the same anchor node pairs is identified as the request

handler.

• Asynchronous Handler Identification. Asynchronous

handlers have no direct control flow before the request

incoming function invocation, as the handlers are often

implemented with event-based implicit invocations. As

shown in Fig. 4, the identified request handler in pair
2 has no direct invocation to it, which can be regarded

as an asynchronous request handler. To identify the

asynchronous handler, we check in the identified request

handlers whether there is any direct invocation of the

callers of request incoming functions funins or not. If

not, it is considered an asynchronous handler.

As long as the asynchronous handler is identified in an

executable, such an executable is regarded as the device-cloud

executable.

B. Identifying Message Fields
To reconstruct the messages, the first step is to identify

message fields. We observe that the message fields are con-

catenated in a certain order and formed as the arguments of

network functions, which are eventually sent to the cloud. As

a result, by defining data sources of the message fields, we

can leverage backward taint analysis to capture the informa-

tion flows from the arguments of network functions to the

predefined sources for the aim of identifying message fields.

In particular, the static backward taint analysis is given below.

• Taint Sources. Taint sources are the arguments of the

callsites of the functions that send out the device-cloud mes-

sages. Those functions include SSL-message sending func-

tions like CyaSSL\_write(), HTTP-message sending

functions like curl\_easy\_perform(), and MQTT

protocol functions like mosquitto\_publish(). The

arguments of those functions are the variables that hold

device-cloud messages.

• Taint Sinks. The taint sinks are the potential sources of

the message fields, which could be constants from the

data segment, values from the NVRAM or configuration

files, and environment variables that originate from

the front end. Examples of constants include request

paths, presented in the form of function arguments (e.g.,

sprintf(cloudpath, "?m=camera\&a=login")}.

The values read from the NVRAM or the

configuration files are often related to networking

(e.g., "Host:www.linksyssmartwifi.com") or

device information (e.g., MAC address and device model).

Message fields from the front end are usually information

provided by the user.

Given the complexity of the program logic and semantics,

it is impractical to enumerate all the sinks by defining

their information sources. Fortunately, we observe that the

program retrieves and stores the values of message fields

piece by piece into variables or memory locations, then

assembles the stored values of the fields into messages

in the form of <key, value>. It means that for a single

message field, the information source of the value stored

in variables or memory locations cannot be further decom-

posed. Namely, a single-information-source variable cannot

be decomposed into multiple other variables. Instead, during

the assembly of message fields, some variables can hold

composed fields that originate from multiple information

sources. These variables storing the assembled fields can be

further decomposed. As such, the single-information-source

variables propagated from the taint sources are defined as

taint sinks.
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• Propagation Rules. Propagation rules are set to trace the

complete process of message construction. We modified

Ghidra’s [5] intra-procedural dataflow analysis and im-

plemented our own inter-procedural dataflow analysis to

support taint propagation. Specifically, we trace backwards

the callers of the taint sources on the call graph and analyze

how the taint sources are defined. If the taint source is a

parameter of its caller, all possible callsites of the caller

would be analyzed. Backtracing dataflows in the callsites

starts from the callsites’ function’s return. In addition, we

write function summaries for commonly invoked system

calls and library calls, to avoid time and memory costs

during dataflow analysis.

C. Recovering Field Semantics
This step recovers the semantics of the message fields iden-

tified in Section IV-B. Traditionally, the semantics of the

protocol fields are inferred from execution context using

dynamic analysis [12], [17], which is not adaptable to our task.

Our solution is to extract the code context of each field from

the firmware code (by leveraging a tree structure), and train a

deep learning model to learn the association between the code

context and the field semantics. We observed that message

fields like MAC addresses, serial numbers and usernames that

are critical to access control are often presented in the form of

key-value pairs. This feature can help the model to accurately

recover the primitive semantics of the fields.

Message Fields Tree. To capture contextual information about

the semantics of the field, FIRMRES generates a “message

field tree” (MFT for short) based on the paths from taint

sources to taint sinks. It takes the taint sources (e.g., the

message arguments) as the root nodes and the taint sinks

(e.g., the sources of message fields) as the leaf nodes. The

paths from the leaf nodes to the root node represent message

construction. The context on the paths can be used by the

deep learning model to infer semantics. Thus we compute

code slices for each path on the MFT, which represent the

code context of the corresponding message fields. We observe

that the message fields are primarily constructed in two ways:

(1) using third-party libraries like cJSON.so to assemble the

fields piece by piece. This naturally preserves the contextual

semantics; (2) using formatted output functions like sprintf
to assemble partial and highly-constructed messages. In this

case, the sprintf function is invoked multiple times on the

paths, meaning the format string with multiple fields will add

noise to neural networks. It takes extra steps to handle the lat-

ter. Our solution is to separate the partial message into fields by

delimiters before computing code slices and feeding them into

the neural network. We identify the delimiters by splitting the

formatted strings in the formatted output function and using

clustering on the split substrings. The clustering similarity is

calculated as Similarity(a, b) = 2 ∗ (Lcommon) / (La + Lb),
where Lcommon is the length of the longest common subse-

quence between two substrings, La and Lb are the lengths of

the two substrings. The message separation is illustrated in

Listing 3.

1 sprintf(param_9, "%s %s HTTP/1.1\r\nUser-Agent: GooLink
Terminal 0x%x\r\nHost: s%\r\nConnection: Keep-Alive\r\
nContent-Type: application/x-www-form-urlencoded\r\
nContent-Length: %d\r\n\r\n", &DAT 00074d60,"/
storageweb/UpFileInfoReq.jsp",0x15010011,param_8,sVar1)
;

2

3 // after the split, new statements are created to replace
the above

4 sprintf(param_9, "%s %s HTTP/1.1", &DAT 00074d60,"/
storageweb/UpFileInfoReq.jsp");

5 sprintf(param_9, "User-Agent: GooLink Terminal 0x%x", 0
x15010011);

6 .......

Listing 3. Separation of Partial Messages

Semantic Information Embedding. Given that the inter-

mediate language P-Code provided by Ghidra [5] preserves

qualified and accurate code semantics from binary code, we

use it as the representation of the slices that contain code

context. P-Code is a register transfer language designed for

reverse engineering applications. It converts a single processor

instruction into a series of P-Code operations that use portions

of the processor state as input and output variables, which

are also known as nodes. The basic form of P-Code is

< Address : Output OP Input1, Input2, ... >, where

Address is the address of the P-code instruction. Inputi
nodes and Output nodes are generalizations about registers

or memory locations for the operands. OP is the operator,

including a set of arithmetic and logical operations performed

by a general-purpose processor. We extract semantic infor-

mation from P-Code representation and embed them into the

slices. Ghidra-extracted information includes the keywords

about field semantics as well as the information in symbol

tables, which enrich the context information of the slices and

benefit the neural network training. Specifically, we embed

semantic information into Inputi nodes and Output nodes

according to their data types. The semantic information at the

P-Code level includes:

• Data Types. Data types are the types of outputs and

inputs of a P-Code instruction, including function, local

variable, parameter, constant, and data pointer. It deter-

mines the information we embed.

• Contents of Constants. Constants includes numeric con-

stants and string constants. In particular, the contents of

string constants contain rich semantic information.

• Names. Names of local variables, parameters, data point-

ers, and functions are suitable sources of semantic infor-

mation.

• Node IDs. There are variables, parameters, and data

pointers with the same name in different functions. To

avoid confusion, we randomly generate Node IDs for

them to differentiate them.

The generic form of the semantic enriched repre-

sentation of the Output nodes and Inputi nodes is

(Datatype,Name/Constant,NodeID). When the data type

is a function, the semantic enriched representation is

(Fun, FunctionName). Similarly, when the data type is

a local variable, parameter, or data pointer, the seman-
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tic enriched representation is (Datatype,Name,NodeID).
When the data type is constant, the new representation

is (Constant, ConstantContent). For example, the origi-

nal P-Code CALL (ram,0x12bd4,8), (unique,0x1000024e,4),
(register,0x2c,4) is represented after processing as CALL
(Fun,printf), (Cons,“posting data of is %s”), (Local,finalBuf, v
1357), where data in the form of (ram,0x12bd4,8) are Output
nodes and Inputi nodes.

Network Training. We select the BERT-TextCNN model [18]

[23] for our semantics recovery task. The BERT model

learns the field context as global features, and the TextCNN

model learns the field semantic information as local features

to improve recognition accuracy. We use code slices with

embedded information as input to the model. The outputs of

the network are Dev-Identifier, Dev-Secret, User-Cred, Bind-
Token, Signature, Address, and None, which are mostly aligned

with the primitives in Section II-B. In particular, Address is

used to label the IP address of the communication (explained

in Section IV-D), and None is used to label the type that

does not belong to any primitives. The architecture of the

model contains Input Layer, BERT Layer, TextCNN Layer

and Fully Connected Layer. The parameter count of BERT is

the default value. TextCNN uses a convolutional kernel of size

(2,3,4,5) with a total of 268800 parameters. We leverage the

Multi-Head-Self-Attention mechanism in the model training

to make it focus on the features and accelerate the fitting of

the network. The attention value can be calculated by:

MultiHeadAttention(Q,K, V )

= Concat (head1, head2, . . . , headk)W
0

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

) (2)

where Q is the query matrices, K is the queried matrices, V
is the actual feature matrices. They can be obtained through

model training. WQ
i , WK

i and WV
i represent the weight

matrix of the i-th head for WQ, WK and WV respectively.

W 0 measures the additional weight matrix and Concat() is

the concatenation function. The model outputs probabilities

of the defined types. The label of the output node with the

highest probability is considered the message field semantics.

D. Concatenating Message Fields
The goal of this step is to reconstruct messages by concate-

nating identified message fields.

Field Grouping. FIRMRES first groups the code slices of

the same message based on the MFT. This is achieved by

matching the paths of the code slices with the MFT using

depth-first search. FIRMRES numbers each path of the MFTs

and assigns a hash value to each path for efficient matching.

After grouping, we check the code slices whose recovered

semantics are Address in the group, extract all string con-

stants, and check whether they are LAN IP addresses. If a

LAN IP address is found, the corresponding MFT is discarded.

The LAN IP addresses include 10.*.*.*, 172.16-31.*,

192.168.*.*, IPv6 addresses beginning with FE80, com-

mon multicast addresses, and broadcast addresses.
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Message Format Inference. Inferring the message format

(with the correct order of the fields) is necessary as it is strictly

checked by the cloud. Given that the content of the message

body is often formed in a nested format (e.g., in JSON/XML),

they can be easily inferred from the MFT representation.

We process the MFTs by the following steps to recover the

message format and the order of the fields:

• Simplifying the MFT. The format of the message can be

reflected by the structure of the tree representation. Since

MFT represents a message construction process, the nodes

of MFT contain not only field concatenating operations but

also field encoding and message formatting. In terms of

message format inference, we need to remove redundant

nodes in MFT. To this end, we only keep the branching

nodes and the leaf nodes in the MFT, as shown in Fig. 5,

because the branching nodes represent field concatenation

and the leaf nodes are the fields.

• Inverting the simplified MFT. Since MFT is generated by

backward taint analysis, early tagged fields are concatenated

later into the message. Thus, we invert the simplified MFT

for the aim of correctly ordering the fields in the messages.

According to field grouping, we add the annotation of the

identified semantics of the field as a new leaf node to the

corresponding path of the field. This could facilitate the check

of message forms in Section IV-E.

E. Assessing Access Control Implementations

Assessing access control implementations is performed in

two steps: automatic analysis and manual verification. The

step of message form check identifies messages that lack

primitives or hard-coded Dev-Secret. After that, to fill the

fields with dynamically-generated values and verify that the

vulnerabilities indeed exist, we perform manual verification.

Message Form Check. In this step, FIRMRES first checks the

form of the messages to detect if there are missing primitives,

based on the inverted and simplified MFT. Then it tracks the

source of Dev-Secret and detects whether it is hard-coded.
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• Checking the form of messages. To detect the lack of key

primitives in the messages, We check whether the semantic

annotations are aligned with correct primitive forms defined

in Section II-B by examining the composition of the seman-

tic annotations added in Section IV-D.

• Tracking the source of Dev-Secret. The Leak of Dev-Secret
in firmware is typically caused by being hard-coded in the

program context or through a readable configuration file.

We identify the patterns when tracking the source

of Dev-Secret: (1) <Variable = Constant>,

meaning that a hard-coded constant exists; (2)

<Variable = Function(Constant)>, representing

that the constant is read from a file. In this case, we try to

read the file from the firmware system (i.e., the file shown

in Constant).

At the end of this step, FIRMRES outputs the organized

contents of the messages and marks the messages that could

potentially lead to security flaws.

Manual Verification. Manual verification is necessary, as

some dynamically generated information is needed to send

probing device-cloud messages. Corresponding to threat model

mentioned in Section III-B, we developed three methods

to obtain necessary device information. First, we use the

Shodan [9] API to search for IP addresses of devices with open

port 161 on the Internet, thus finding devices with exposed

SNMP services. We obtain the OIDs [6] of device identifiers

by querying device manufacturers’ Management Information

Base (MIB) files [6], then send an SNMP query request with

OIDs to get the device identifiers. The plaintext transmission

and overlooked default passwords of SNMP services make

this approach viable. Second, device identifiers are easily

guessable. For example, the first 3 bytes of a MAC address

are fixed codes assigned by the registry to different manufac-

turers, and the last 3 bytes are assigned by the manufacturers

themselves. So we can also enumerate them by brute force

guessing in some cases. Third, when we have physical access

to the device, we set up a device-cloud interaction environment

in PCs to intercept the exchanged messages. When needed,

we also import SSL certificates of firmware to bypass TLS

authentication. Additionally, we perform a hardware read of

the device’s flash or NVRAM to obtain the device certificates

not packaged in the firmware. Some vendors use the same

device certificate for all users of the device model. In this

case, certificates can be obtained by extracting certificates

from any same model devices. Other vendors use unique

device certificates for users. In this case, the device certificates

can only be obtained from the victim’s device during the

device ownership transfer. With the results from automation,

those procedures are manual operations about configuring and

setting up testing environments, which cannot be solved by

program analysis techniques.

In addition, not only are the responses needed to confirm

that the vulnerabilities indeed exist, but also the responses

themselves could include sensitive information. For example,

some vendors return Bind-Token to the device for accessing

TABLE I
LIST OF EVALUATED DEVICES

Device ID Device Model Device Type Firmware Version
1 InRouter: InRouter302 Industrial Router V1.0.52

2 TP-Link: *** Smart Camera ***

3 TP-Link: *** Industrial Router ***

4 TP-Link: TL-TR960G 4G Router 0.1.0.5 Build 211202 Rel.47739n

5 Linksys: *** Wi-Fi Router ***

6 Netgear: GC110 Smart Switch V1.0.5.36

7 Netgear: R8500 Wi-Fi Router V1.0.2.160 1.0.107

8 Netgear: WAC720 Wireless Access Point V3.1.1.0

9 Araknis: AN-100FCC Wireless Access Point V1.3.02

10 TENDA: AC6 Wi-Fi Router V02.03.01.114

11 Teltonika: RUT241 4G-LTE Wi-Fi router RUT2M R 00.07.0 1.3

12 360: C5S Wi-Fi Router V3.1.2.5552

13 Tenvis: 319W Smart Camera V3.7.25

14 Western Digital: My cloud NAS V5.25.124

15 Mindor: ZCZ001 Smart Plug V1.0.7

16 Mank: WF-CT-10X Smart Plug V1.1.2

17 Cubetoou: T9 Smart Camera a01.04.05.0020.5591a.190822

18 DF-iCam: QC061 Smart Camera 2.3.04.25.1

19 VStarcam: BMW1 Smart Camera 10.194.161.48

20 RUISION: S4D5620PHR Smart Camera 1.4.0-20230705Z1s

21 MOFI: MOFI4500 4GXeLTE Router 2 3 5std

22 D-LINK: DAP1160L Wireless Access Point FW101WWb04

cloud resources. We review all cloud responses to confirm

whether there is any sensitive information leakage.

V. EVALUATION

This section presents the evaluation results. Particularly, Sec-

tion V-A gives the implementation and experimental setup.

In other sections, We present the effectiveness of the tool

in device-cloud identification and message reconstruction, the

identified vulnerabilities, the performance and a comparison

with other works.

A. Implementation and Setup

FIRMRES is built upon Ghidra [5] and is implemented with

around 6800 lines of Java code and 1600 lines of Python code.

Notably, static taint analysis is implemented with Ghidra’s

representation Varnode [2] based on the P-Code [7], which

leverages Ghidra’s decompiler to recover variables from bina-

ries and allows developers to implement customized dataflow

analyses. The core of FIRMRES is run on an Intel Core i5

processor featuring 12 cores at 2.90GHz and 8 GB of RAM.

The version of Ghidra is 10.1.3. The model is trained on the

machine with a 13th Gen Intel Core i9-13900K processor and

an NVIDIA GeForce RTX 4090 GPU.

We purchased 22 IoT devices from e-commerce websites.

The device-cloud interaction of 20 devices (with ID 1 to 20 in

Table I) is handled by binary executables, which effectively

apply FIRMRES for evaluation. The devices are made by

different vendors (ranging from top vendors to non-famous

ones) and from various categories. The device types include

industrial routers, home routers, smart cameras, smart plugs,

wireless access points, smart switches and NAS devices. All

these devices can be remotely operated through their cloud

platforms. Table I presents the detailed information about the

target devices.
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TABLE II
OVERALL RESULTS OF MESSAGE RECONSTRUCTION

Device ID Message Reconstruction Field Identification Semantics Recovery
#Identified #Valid #Identified #Confirmed thd=0.5 thd=0.6 thd=0.7 #Accurate

1 21 17 82 69 - - - 64

2 16 14 74 67 - - - 60

3 18 16 102 93 - - - 84

4 17 14 97 86 - - - 79

5 8 7 52 48 - - - 43

6 14 13 82 78 - - - 71

7 18 16 98 81 - - - 74

8 13 13 101 92 5 7 7 86

9 15 14 96 88 - - - 80

10 7 6 62 57 5 6 7 54

11 13 11 76 52 0 0 0 47

12 15 11 85 71 4 5 5 65

13 17 17 162 147 6 8 10 135

14 30 26 323 291 5 7 8 279

15 5 4 58 53 8 8 9 49

16 7 5 71 64 6 8 8 57

17 9 9 101 88 6 6 7 75

18 13 11 117 91 5 7 7 83

19 13 12 93 87 5 6 6 80

20 12 10 87 82 5 6 7 76

Average 14 12 100 89 5 6 7 82

Total 281 246 2019 1785 60 74 81 1641

B. Device-Cloud Executable Identification

The identification algorithm is run on the firmware from

22 purchased devices. FIRMRES successfully identified the

device-cloud executables in the firmware images of the first

20 devices (devices with ID 1 to 20). However, the device-

cloud interaction for the remaining two devices (device ID

21 and device ID 22) is handled by shell scripts and php
files. At the current stage, FIRMRES can only deal with binary

executables but not scripts.

C. Effectiveness of Message Reconstruction

FIRMRES recovered a total of 281 device-cloud messages

from 20 devices, with detailed statistics shown in Table II.

To assess whether the reconstructed messages are valid, we

forged device-cloud messages sent by a PC and checked the re-

sponses of the cloud. The responses such as "Request OK",

"No Permission" and "Access Denied" indicate that

the reconstructed message is valid. The responses like

"Bad Request", "Request Not Supported", and

"Path Not Exits" mean the device-cloud messages are

invalid. 246 out of 281 messages were verified as valid.

The field Address for device-cloud message reception is not

directly evident in some firmware images, which requires

capturing communication traffic and examining it.

Message Field Identification. As detailed in Table II, FIRM-

RES identified a total of 2019 message fields in 246 identi-

fied device-cloud messages. We manually verified the recon-

structed messages and confirmed that 1785 of these message

fields are required to construct the messages. Thus, the ac-

curacy of field identification is 88.41%. The irrelevant items

identified as message fields are usually numeric constants

that have no specific meanings. For example, the statement

*(undefined4 *)buf = 0x5353414d was identified

as a taint sink by FIRMRES, making 0x5353414d to be

identified as a message field. In fact, buf is an intermediate

taint data during analysis. This statement is a register shift

operation caused by disassembly errors. The real operation on

buf is strcpy(buf, username). FIRMRES is unable

to identify the device-cloud message fields in the PHP files

and the shell script files, which leads to some false negatives.

Notably, no message fields were missed in device-cloud exe-

cutables given that our strategy is to overtaint during dataflow

analysis.

Field Semantic Recovery. we collected about 147,414

firmware images from different vendors’ official websites and

open firmware repositories [3] to build the dataset of the

deep learning model. We select both device-cloud executables

(about 73%) and non-device-cloud executables (about 27%)

to form the dataset. Given that the purpose of training is to

recover field semantics, feeding the neural network model

with code slices from non-device-cloud executables could

improve the accuracy of primitive recognition. We selected

547 executables from those firmware images as samples to

generate code slices. Finally, we obtained 30,941 code slices

as the dataset to train the deep learning model. We put the

obtained code slice into a file. Each code slice is a row of data.

We developed a script to add labels by searching for manually-

defined keywords about field semantics in each line through

regular matching. We define a simple dictionary for each

primitive for regular matching of keywords. For instance, Dev-

Identifier’s keywords include ”MAC”, ”deviceId”, ”modelId”,

and so on. Labels generated using only this approach also

have errors. We then used the visualization tool Doccano [4]

to effectively examine the labels, and correct the label when

there is an error. We split the dataset into training, validation,

and test sets with a ratio of 7:2:1. Our model underwent 100

epochs of training, consuming nearly 5 hours. The accuracy

on the validation set and the test set is 92.23% and 91.74%,

respectively.
In building the MFT, not all executables use the sprintf

function to assemble the partial messages (denoted by "-" in

Table II). We empirically set the similarity thresholds of the

clustering to 0.5, 0.6, and 0.7, and the substrings of the de-

constructed message are grouped into 5, 6, and 7 clusters,

respectively. In total, we performed semantic recovery on

1785 code slices for the 20 firmware images and used the

primitive with maximum probability outputted by the model

as its recovered semantics. After a manual examination, we

found that there are 1641 message fields whose semantics were

correctly predicted. FIRMRES achieves semantic recovery

with an accuracy of 91.93%.

D. Identified Vulnerabilities
By manually probing the cloud and verifying the reconstructed

messages, we found a total of 14 vulnerabilities in 8 devices,

including 1 known vulnerability (by checking the device model

and the firmware version) and 13 previously-unknown vulner-

abilities. We present partial details of the vulnerable device-

cloud interfaces and their impacts in Table III. 10 of these

interfaces rely on Dev-Identifiers such as MAC addresses,

serial numbers and uid for authentication and authorization

checks. 2 of them lack Dev-Secret and 1 lacks User-Cred. It

could lead to severe consequences such as privacy breaches,

data tampering, or disruption of normal user operations.
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TABLE III
SUMMARY OF DISCOVERED VULNERABILITIES

Device ID Functionality Partial Detail Consequence
Path: /***/***/registrations It returns a fixed device token, which can be

5 Registrating device to the cloud. Params: serialNumber/macAddress/modelNumber/uuid used to upload tampered system information

/hardwareVersion/firmwareVersion/manufacturingDate and crash logs to the cloud.

Path: /***/***?uploadType=*****
5 Uploading crash logs. Params: uploadSubType/firmwareVersion/serialNo/ Attackers upload fake crash logs to trick users.

macAddress/hardwareVersion/uploadType/deviceToken

2&3
Binding the device to the cloud Method: *** Attackers can bind the device to the accounts

user. Params: deviceID/cloudusername/cloudpassword by sending a fake binding request.

3
Acquiring the shareID list of Method: *** ShareID list can be used to obtain the shared

the device. Params: deviceID information about the device.

17
Checking the availability of the Path: ?m=cloud&a=queryServices

Privacy information leakage.
cloud storage service. Params: uid

17 Uploading crash logs.
Path: ?m=camera&a=crash report After a successful upload, the device crashes

Params: uid/version and loses its connection.

17 Pushing monitor alert.
Path: ?m=camera alarm&a=camera pic alarm

Attackers push false alerts to victim users.
Params: uid/alarm time/lang/img

18 Obtaining binding information. Path: /auth/get bind params Params: userid/mac/sdkver Privacy information leakage.

18 Retrieving stored video records.
Path: app/device/save video/report

Privacy information leakage.
Params: start time/code/userid/mac/sdkver

19 Changing the device ID Path: /change Params: vuid/code/cluster Information tampering.

20
Querying the cloud storage Path: /store-server/api/v1/storages/status

Privacy information leakage.
services of the device. Params: deviceId/channel

20
Authenticating the device to the Path: /store-server/api/v1/storages/auth The cloud returns access-key and secret-key
cloud storage server. Params: deviceId used to upload videos to the cloud.

20
Querying the videos stored on Path: /store-server/api/v1/storages/files The cloud returns video information and

the cloud. Params: deviceId/channel/stream/type/date/begin/end download paths for the queried time period.

***: To prevent malicious exploitation, we hide some details of the vulnerabilities.

FIRMRES reported a total of 26 flawed messages in 20

devices, and we confirmed 15 of them. The false positives

are mainly caused by (1) customized primitives defined by

vendors. For example, a user issues a command to the cloud

through the web service front end of a device. This command

requires the submission of a verification code previously

received from the cloud by the user. The verification code

is collected by the device front end and utilized as a field by

the device back end to construct the corresponding command

message sent to the cloud. In this case, the verification

code is User-Cred. However, the FIRMRES cannot recover

its semantics accurately because very few vendors use this

field. This results in the misdetection of the message as

lacking User-Cred, leading to a false positive alarm. (2) the

messages lacking the primitives but containing vendor-specific

fields used for message events, such as eventType and

pluginId. They do not belong to the primitives.

Ethics and Responsible Disclosure. We have taken ethical

considerations seriously in our research. We only validated

the vulnerabilities on our own accounts and our own devices,

and we never tried to compromise other users’ accounts and

devices. We responsibly disclosed the details to the device

vendors. For those vulnerabilities that have not yet been

patched at the time of this writing, we redacted their vendor

names as well as their device models with the symbol “***”,

in order to avoid negative impacts. We will continue to engage

with the vendors to offer help with our best efforts.

E. Performance of FIRMRES

Overall, FIRMRES is fast and efficient in reconstructing

device-cloud messages. The shortest time to reconstruct

device-cloud messages for a target firmware is only 154

seconds, while the longest is 1472 seconds (about 25 minutes).

The time cost primarily depends on the number of executables

in the firmware, the number of device-cloud messages, and the

number of message fields. On average, the steps of pinpointing

device-cloud executables, identifying message fields, recover-

ing field semantics, concatenating message fields, and detect-

ing incorrect forms occupy 37.67%, 43.83%, 3.71%, 9.96%,

and 4.81% of the total time cost, respectively. For message

field identification, the time is mostly spent on performing the

taint analysis because the strategy is to overtaint.

F. Comparison with Other Tools

To the best of our knowledge, FIRMRES is the first tool

that automatically reconstructs device-cloud messages from

IoT firmware. There are no other solutions that analyze IoT

firmware and target IoT cloud backends. As a result, we

opt to compare our approach with LEAKSCOPE [40] and

IOT-APISCANNER [25]. LEAKSCOPE deals with mobile apps

and exposes access control issues in the mobile app’s cloud
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TABLE IV
COMPARISON OF EXISTING WORKS

FIRMRES LEAKSCOPE [40] IOT-APISCANNER [25]
Inputs IoT firmware Mobile App Mobile loT App

Target Cloud IoT vendor’s AWS, Azure, and
IoT platforms

Platforms clouds FireBase’s cloud

# of Cloud
246 32 157

Interfaces
Accuracy of

87.5% 100% 100%
Recovery

services. IOT-APISCANNER deals with mobile IoT apps and

exposes access control issues in the clouds of IoT platforms.

As shown in Table IV, FIRMRES, LEAKSCOPE, and IOT-

APISCANNER take different forms of inputs and target differ-

ent cloud services. FIRMRES deals with IoT firmware images.

Its targets are IoT device vendors’ backends. LEAKSCOPE

targets the backends of mobile apps, and IOT-APISCANNER

targets the backends of the IoT platforms that provide IoT

solutions to device manufacturers. LEAKSCOPE and IOT-

APISCANNER target cloud platforms with API documenta-

tions for vendors. In contrast, FIRMRES focuses on vendors’

private cloud services that often lack open API documenta-

tions. Among them, FIRMRES’s targeted cloud backends are

more diverse. As such, FIRMRES can test more cloud inter-

faces than the other tools. In terms of message reconstruction,

IOT-APISCANNER directly inserts complete messages into

send functions through dynamic analysis without reconstruct-

ing messages. Given that FIRMRES is based on static analysis

while the other tools take dynamic approaches, the accuracy

of FIRMRES in reconstructing APIs or device-cloud messages

is lower than the others.

VI. RELATED WORK

Broken Access Control. In recent years, there has been a

growing concern regarding the security of IoT systems [11],

[13]. Several related studies have focused on detecting broken

access control in cloud services. Zhou et al. [38] and Chen

et al. [15], [16] dissected the IoT device binding process,

analyzing the security risks associated with this procedure.

Some solutions systematically investigated access control se-

curity risks in multi-party communication scenarios within the

IoT and conducted evaluations using real devices [20], [21],

[38], [39]. Research on broken access authorization detection

solutions for IoT cloud-mobile applications has also seen

significant developments [19], [25]–[27], [37]. KingFisher [37]

detects security issues with shared credentials in IoT-mobile

communication by identifying shared credentials, tracking

their usage, and checking for violations of nine security at-

tributes that the credentials should adhere to. ATester [26] is an

access token execution security testing tool based on Android

Hooking to detect access token security vulnerabilities in IoT

smart home platforms. Yuan et al. [35] discussed authorization

security issues in emerging cross-cloud delegation services

and implemented a semi-automated tool for modeling cross-

cloud delegations on different platforms. It conducts security

attribute verification to detect security issues between cross-

cloud delegations. Meanwhile, some research [24], [31], [34],

[36] conducted an analysis of authorization flaws in the inter-

action process and proposed enhancement solutions. Although

the above works aim to analyze broken access control, they

are applicable to particular targets like mobile and IoT cloud

backends. However, to the best of our knowledge, there is no

existing solution that constructs messages from firmware and

tests device-cloud interfaces.

Mobile Application Analysis. Since mobile applications play

an important role in IoT systems, many solutions focus on

them to study the security issues in IoT systems. Some solu-

tions [14], [22], [28] perform security detections on physical

devices by analyzing their companion apps. These solutions

need physical devices to perform detection. Wang et al. [32]

revealed the sharing of vulnerable components across smart

home IoT devices by cross-analysis of the mobile companion

apps. It requires prior domain knowledge about other devices

and existing vulnerabilities. Schmidt et al. [29] combined

value set analysis with data flow analysis to analyze mobile

apps, revealing how the applications communicate with IoT

devices and remote cloud-based backends. The other works

[30], [41] focus on BLE issues by analyzing the IoT com-

panion apps. However, when device-based interactions are not

involved, app-cloud issues are not specific to IoT. Mobile

app analysis is more concerned about securing communication

on the application side, making it less intuitive to detect

communication between devices and the cloud. Without the

challenges in firmware analysis, performing static analysis or

dynamic testing based on mobile apps is relatively easy.

VII. CONCLUSION

In this paper, we have presented the tool FIRMRES that

reconstructs device-cloud messages through static firmware

analysis, and have demonstrated that it is constructive in

facilitating the assessment of access control in IoT device-

cloud interfaces. We have also presented a set of new tech-

niques that make FIRMRES highly practical. By conducting

evaluations in 22 real-world devices, FIRMRES successfully

identified 13 unknown vulnerabilities that could lead to serious

consequences, bringing such hidden and critical device-cloud

interfaces to the spotlight.
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