
SyRep: Efficient Synthesis and Repair of Fast
Re-Route Forwarding Tables for Resilient Networks

Csaba Györgyi1 Kim G. Larsen2 Stefan Schmid1,3 Jiří Srba2

1University of Vienna 2Aalborg University 3TU Berlin

Abstract—In modern communication networks with stringent
dependability requirements, local fast re-routing (FRR) is es-
sential for a quick response to link failures. Configuring FRR
for multiple failures is, however, challenging since a router’s
forwarding table may take into account only the failed links
directly incident to it. We propose SYREP, an efficient method
to repair and synthesize resilient FRR forwarding tables. At the
heart of SYREP lies a method which identifies and removes ill-
defined routing entries and employs symbolic binary decision
diagram (BDD) technology to automatically replace the removed
entries with correct values. SYREP cannot only be used to
efficiently repair existing forwarding tables, but also to synthesize
new tables from scratch, using an efficient hybrid approach: by
first using fast heuristics that provide close-to-resilient routing
tables and then quickly repair the ill-defined entries. We present
such a fast heuristic based on novel structural reduction rules
and our empirical evaluation shows that SYREP is up to three
orders of magnitude faster compared to the state-of-the-art.

Index Terms—Dependable communication networks, fast re-
routing, synthesis, perfect resilience, binary decision diagrams

I. INTRODUCTION

Almost all modern communication networks support fast

re-routing (FRR) mechanisms to quickly react to link failures,

including IP networks [1]–[3], MPLS networks [4], [5], seg-

ment routing networks [6], [7], software-defined networks [8],

[9], among many more [10]. These FRR mechanisms are based

on conditional forwarding tables in routers which define where

to forward a packet based on which links incident to the

router failed. Such local forwarding decisions in the data plane

can be orders of magnitudes faster compared to reactions to

link failures in the control plane, as they do not require the

communication of failure information [10].

However, while local reactions are fast, the lack of infor-

mation about possible additional failures in other parts of the

network renders configuring FRR mechanisms to provide a

high resilience challenging: an additional link failure along

a backup path can lead to a forwarding loop. And with the

increasing scale of today’s communication networks, multiple

link failures are naturally more likely to occur [11]–[13]. Given

the increasingly stringent dependability requirements, over the

last years, the networking community has hence made great

efforts to devise FRR algorithms which can tolerate multiple

link failures [5], [10], [14]–[25].

This paper explores automated approaches to generate

highly resilient re-routing tables. Automated approaches are at-

tractive as they relieve network operators from the complexity

to reason about possible failure scenarios. In fact, generating

resilient routing tables is expensive even for computers today,

and recent tools such as [26] require significant time to ensure

reachability.

We are particularly interested in designing perfectly
k-resilient FRR mechanisms, for some parameter k (which we

aim to maximize): the network should re-route traffic between

any pair of routers or hosts (henceforth called nodes) even if

up to k links fail, as long as the two nodes are still connected
in the underlying physical network.

Perfect resilience has already been studied intensively in

the literature [10], [22]. A common and particularly memory-

efficient way to realize fast re-routing is skipping [10], [22],

[26], [27]: the conditional failover rules at each node are

organized as a priority list, which defines an order in which

the next-hop links are chosen depending on their availability,

and which results in small forwarding tables. For example, in

software-defined networks based on OpenFlow [28], forward-

ing rules are organized in an ordered list of action buckets,

and each bucket in the fast failover type table is associated

with a parameter that determines whether the bucket is live;

a switch will always forward traffic to the first live bucket.

This paper presents a new method to repair existing rout-

ing tables and an efficient algorithm to generate perfectly

k-resilient FRR tables based on skipping. Our solution,

SYREP, is using binary decision diagrams (BDDs) [29], [30]

as a basis of an efficient method to repair existing routing en-

tries to make the network more resilient. This is attractive for

two reasons. First, repairing forwarding tables is an interesting

use case on its own, as networks in practice already come with

certain mechanisms and forwarding tables, e.g., populated by

network protocols or manually, and our approach hence allows

to quickly fortify an existing data plane. Second, this method

can be used to efficiently synthesize forwarding tables from
scratch, using a hybrid approach: first, using a fast heuristic

that provides close-to-resilient routing tables, and then quickly

repair the ill-defined entries using our rigorous BDD approach.

Example. Before we elaborate on our approach and contri-

bution in more details, let us explain the skipping routing

policy and our repair solution on a small running example.

In Figure 1a we can see a network topology with five nodes

(routers) connected by bi-directional edges (links). For every

node v we assume an implicitly present loop-back interface lbv
(self-loop)—these are used to model the arrival of packets (e.g.

locally generated traffic). The task is to route the packets from

every node in the network to the destination node d. A skipping

routing policy can be described using a routing table as shown

483

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00053

v2

v4d

v3 v1

lbd

lbv3
lbv1

lbv4

lbv2
e0

e6e1 e4

e3

e2

e5

(a) Network with destination node d

in-edge node out-edges

lbv1 v1 e3, e4
e3 v1 e4, e3
e4 v1 e3 ,e4
lbv2 v2 e0, e5
e5 v2 e0, e5
lbv3 v3 e1, e6 ,e3
e3 v3 e1, e6 ,e3
e6 v3 e1, e3, e6
lbv4 v4 e2, e4 ,e5
e4 v4 e2, e5, e6
e5 v4 e2, e4, e6
e6 v4 e2, e4 ,e5

(b) Perfectly 1-resilient routing table

v2

v4d

v3 v1

lbd

lbv3
lbv1

lbv4

lbv2
e0

e6e1× e4

e3

e2×

e5

(c) A forwarding loop with two failed links (start-
ing from v1 or v4 has a similar effect)

Fig. 1: Example of configuration repair to synthesize a perfectly 2-resilient routing

in Figure 1b. The table for each ingress interface (in-edge) at

a given node specifies a prioritized list of egress interfaces

(out-edges). In case of no link failures, the first out-edge is

always used for forwarding. If the first out-edge has failed,

then the left-most out-edge in the list that is not failing is

used for packet forwarding.
For example, a packet arriving on lbv3

to the node v3 makes

the next-hop directly to the destination node d via the edge e1,

unless the edge e1 is failing, in which case it instead uses the

second priority edge e6 to get to the node v4; by following the

routing table, the node v4 then forwards the packet to d via

the edge e2, unless e2 also failed, in which case it forwards

the packet along the edge e4 to v1, etc.
The provided routing table is perfectly 1-resilient, meaning

that for any failure scenario with up to 1 broken link, a packet

arriving to any node in the network is always delivered to the

destination node d, unless the node is disconnected from d
(which cannot happen for one link failure only as the network

is 2-connected). On the other hand, the table is not perfectly

2-resilient as shown in Figure 1c. In case of simultaneous

failure of the links e1 and e2, even though the node v3 is

still connected to d, a packet arriving to the node v3 creates

a forwarding loop in the network by repeatedly visiting the

nodes v4, v1 and v3.
By exploring all failure scenarios of size at most 2, we no-

tice that whenever the packet delivery fails then the forwarding

entries highlighted in Figure 1b are used in the forwarding

along the failed traces. We mark them as suspicious and using

our repair algorithm, we try to replace them with alternative

entries. Indeed, if the highlighted second priority edge e4 in

the last row of the table is dropped (i.e. replaced with e5)—

as fully automatically suggested by our method—we obtain

a perfectly 2-resilient routing that guarantees a packet delivery

with up to two failing links.
Our contributions. We design and implement SYREP, an

efficient and automated approach to repair and synthesize

highly dependable fast re-routing tables, providing perfect

k-resilience. Our approach is based on the BDD technology,

inspired by its recent deployment for computing and storing

all perfectly resilient routings [26]; however, we use BDDs for

repairing existing routing configurations—an application that

has not been considered in [26] nor in other related work

we are aware of. We shall now summarize our three main

contributions.

As our first contribution, we define and implement an

automatic method for repairing non-resilient routing tables.

Compared to a recent work [26] which uses a symbolic method

for the synthesis of all perfectly k-resilient routings, there are

two main reasons why the repair methodology, introduced

in our current work, is beneficial: (i) in case of network

vulnerabilities to failures, network operators strongly prefer to

implement the minimum invasive approach for fixing such is-

sues instead of completely replacing the existing data-plane—

our method identifies and replaces only the (usually very few)

misbehaving entries, (ii) the scalability of the synthesis method

from [26] suffers when increasing the size of the networks as

well as the resilience level because it has to automatically

fill in a large number of empty routing entries, which is

computationally demanding—our method allows us to use

several heuristic synthesis approaches that provide close-to-

resilient routing tables and then quickly repair them with

orders of magnitude improved CPU time.

As our second contribution, we suggest a fast heuristic

algorithm for populating skipping routing tables as well as

a method for reducing the size of the synthesized networks

by applying structural reduction rules. For a given network

topology, we first apply structural reductions in order to

obtain a smaller network on which we further apply our

heuristic synthesis algorithm to generate a k-resilient routing.

If the heuristic approach fails, we repair the routing tables

and then expand the routing from the reduced network to

the original one. Again, we verify if the produced routing is

k-resilient and if not, we run our repair algorithm. In many

cases, this results in perfectly k-resilient data plane while using

only a fraction of the computational time compared to the full

484

synthesis on the original network.

As our third contribution, we implement the proposed

methodology in a prototype tool SyRep [31] and carry on a

comparative experimental evaluation on a large range of the

network topologies from the Internet Topology Zoo [32]. The

results document up to three orders of magnitude speedup in

generating resilient routing tables compared to the state-of-

the-art [26].

Organization. The remainder of this paper is organized as fol-

lows. We present a formal problem specification in Section II.

Sections III and IV describe our repair and heuristic approach

in detail, which we evaluate in Section V. After we review

related work in Section VI, we conclude in Section VII.

II. PROBLEM FORMULATION

We shall now provide formal definitions of a network,

routing function for packet forwarding and define the notion

of perfect resilience. We model a network topology as an

undirected multigraph with loop-back edges.

Definition 1. A network is an undirected multigraph G =
(V,E, r) where V a finite set of nodes (routers), E a finite set
of undirected edges (links), and r : E → {{x, y} | x, y ∈ V }
is a function assigning to each edge a set of connected nodes.
We assume that for every node v ∈ V there is always a loop-

back edge (self-loop) called lbv such that r(lbv) = {v}.

Figure 1a depicts an example of a network where the loop-

back edges are drawn using a dotted line. The loop-back edges

are used to represent ingress interfaces for packets arriving

to/originating in the given node. As the loop-back edges are

always implicitly present, we can omit them when drawing

a network topology.

Let us assume a fixed network G = (V,E, r). A finite path
in a network is a sequence of edges (e0, e1, ..., en) such that

there are nodes v0, v1, ..., vn+1 where r(ei) = {vi, vi+1} for

all 0 ≤ i ≤ n. The path then connects the node v0 to vn+1.

We assume that edges in the network can fail. A failure
scenario F ⊆ E is a subset of E and contains the set of all

failed edges. In fast re-route mechanisms [10], a node v has

to be robust to any possible set of links that may fail but the

forwarding decisions have to be resolved locally, i.e. based

only on the knowledge of the set F ∩ {e ∈ E | v ∈ r(e)}
which contains only the failed links that are incident to the

node v. Even though the node v has the knowledge of all failed

incident links, creating a forwarding entry for every possible

subset of failed links, also called combinatorial routing [33],

is expensive and often infeasible in practice due to exponential

memory requirements [34]. An alternative way, called skipping
routing [22], is to provide for every node v and any of its

ingress interfaces (in-edge), a priority list of out-edges. This

requires us to store only linearly many forwarding entries with

the semantics that the node v forwards the packet along the

first non-failing edge in the priority list.

Definition 2 (Skipping Routing). A skipping routing in a
network G = (V,E, r) is a partial function

R : E × V ⇀ E∗

such that if R(e, v) = (e1, e2, . . . , e�) then v ∈ r(e)∩ r(e1)∩
. . . ∩ r(e�), i.e. all edges in the priority list as well as the
incoming edge are connected to the node v.

An example of a skipping routing in a form of a table is

given in Figure 1b. The intuition is that, for a given a failure

scenario F , if R(e, v) = (e1, e2, . . . , e�) then any packet

arriving on the edge e to the node v is routed via the first

available edge ei �∈ F where all the edges with higher priority

are failed, meaning that e1, . . . , ei−1 ∈ F . If e1, . . . , e� ∈ F
then the packet is dropped. We can now define the notion of

a network trace: a path in the network that in a given failure

scenario follows the predefined skipping routing policy.

Definition 3 (Network Trace). A sequence of edges
(e0, e1, . . . , en) is a network trace from the node v0 under
the skipping routing R and the failure scenario F if
• (e0, e1, . . . , en) where e0 = lbv0 is a path in the network

that visits the nodes v0, v1, . . . , vn+1, and
• for every i, 0 ≤ i ≤ n, we have R(ei, vi+1) =

(e′1, e
′
2, . . . , e

′
�) such that ei+1 = e′j for some j, 1 ≤

j ≤ �, where e′1, . . . , e
′
j−1 ∈ F and e′j �∈ F .

For a given routing R and failure scenario F , there is a

unique longest trace from any node v, unless the trace forms

a loop, as it can be seen e.g. in Figure 1c where under the

failure scenario F = {e1, e2} there is a trace from the node

v3 of the form (lbv3 , e6, e4, e3, e6, . . .). On the other hand, in

the failure scenario F = {e1, e6}, the longest trace from the

node v3 is of the form (lbv3 , e3, e4, e2) and delivers the packet

to the destination node d (from which no further routing rules

are defined).

We are now ready to introduce the notion of a perfectly

k-resilient routing, stating that the routing delivers a packet

from any source node to its destination node whenever the

two nodes are connected in a given failure scenario with up to

k failed edges. In the definition, for a network G = (V,E, r),
we let GF = (V,E � F, r|E�F) be a network with all failed

edges in F removed.

Definition 4 (Perfect Resilience). Let d ∈ V be a destination
node and k a nonnegative integer. A routing R is perfectly

k-resilient, if for every node s and every failure scenario F
where |F | ≤ k, there exists a trace from s that reaches the
node d whenever there is a path connecting s to d in the graph
GF . A routing is perfectly resilient if it is perfectly k-resilient
for all k.

The looping trace from v3 in Figure 1c implies that the

skipping routing in Figure 1b is not perfectly 2-resilient; the

trace clearly does not deliver the packet to d even though there

is a path from v3 to d via the edges e6, e5 and e0. The routing

table is though perfectly 1-resilient, which can be verified by

considering all failure scenarios with up to one failed edge

485

and checking that the routing always delivers the packet to d
from any given source node.

In Definition 4 we consider a fixed destination node. This

is without loss of generality because each packet header has

the information about its destination node and the routing

tables for nodes with different destinations are considered as

independent. Hence we can synthesize the routing tables for

different destination nodes independently of each other. From

now on, we hence focus only on a single, fixed destination

node.

In what follows, we shall see how we can automatically

remove suspicious routing entries that cause that a given

routing is not perfectly k-resilient and try to repair the routing

by finding suitable alternatives to the removed entries.

III. VERIFY AND REPAIR METHOD

In this section, we present our approach aimed at repairing

pre-existing routings. Our method focuses on the identification

and elimination of potentially misbehaving routing entries,

after which the missing entries are filled in correctly using

BDDs.

A. Leveraging BDDs to Synthesise Routings

We build on the existing encoding of routing synthesis into

Binary Decision Diagrams (BDD) [26] to find appropriate

routing entries that provide the desired resiliency character-

istics. We now recall the main building blocks of that method.

At the core of the tool lies a BDD formulation addressing

the routing synthesis problem. Multiple potential routings

are represented using BDDs, a data structure introduced by

Lee [29], which efficiently encodes Boolean functions as

rooted directed acyclic graphs (DAGs). Bryant [30] developed

a reduced ordered variant of BDDs featuring fixed variable

ordering and maximum sharing of isomorphic sub-graphs,

thereby achieving a more compact and canonical representa-

tion. Universal and existential quantifiers are also accommo-

dated in addition to basic logical operators, thus effectively

supporting quantified Boolean formula (QBF). Furthermore,

all operations of QBF exhibit polynomial complexity relative

to the size of the underlying BDDs. For a more in-depth ex-

ploration of the technical intricacies regarding the formulation

with BDDs, refer, for example, to [35].

Any finite set S can be efficiently represented by n =
�log(|S|)	 Boolean variables. Assuming a predetermined

s0, s1, ..., s|S|−1 enumeration of elements and denoting the

Boolean variables as x = (x0, x1, ..., xn), any truth assignment

μ to x can be interpreted as the binary encoding of a natural

number n(μ) ∈ N, representing the n(μ)’th element within

the set S.

We now present an extension of the BDD encoding of the

routing synthesis problem with one link failure (as presented

in [26]) to deal with multiple link failures.

First, we define a few helper formulae. Let state(v, e) de-

note (the encodings of) all the node and edge pairs that are con-

nected in the network topology, and let Vv,e(e0v,e, e1v,e, ..., ekv,e)
encode all possible combination of k + 1 edges (priority list)

dv1
lbv1

lbd

e0

e1

e2

(a) Network topology

x00

x01 x01

1

x02 x02 x02

x10 x10

x11 x11

x12 x12

x20

x21

x22

x20

x11 x11

x12 x12

x20

x21

x22

x10

x11

x12

(b) All perfectly 2-resilient routings encoded in BDD

Fig. 2: A simple network topology and a BDD encoding all

possible perfectly 2-resilient routing

for each v ∈ V and e ∈ E such that every such edge is

connected to v and e0v,e does not encode the edge e.

We now construct a Boolean formula T representing the

valid transitions of a packet from one in-edge and node

combination to another under a given failure scenario and

routing entries is given as follows:

T (ein, v, eout, v′, f1, ..., fk, [e0v,e, e1v,e, ..., ekv,e :
e∈E

v∈r(e)]) =

state(v, ein) ∧ state(v, eout) ∧ state(v′, eout)∧
eout /∈ {f1, ..., fk}∧∧
e∈E∧v∈r(e)

Vv,e(e0v,e, e1v,e, ..., ekv,e)∧

∧
e∈E

∧
v∈r(e)

(
ein(e) ∧ v(v) =⇒ eout ∈ {e0v,e, ..., ekv,e}

)
∧

∧
i∈0,..,k

∧
e∈E

∧
v∈r(e)

(
ein(e) ∧ v(v) ∧ eiv,e /∈ {f1, ..., fk}∧

{e0v,e, ..., ei−1
v,e } ⊆ {f1, ..., fk} =⇒ eout = eiv,e

)

486

In the formula, ein encodes the in-edge we arrived to the

current node represented by v. Similarly eout encodes the

out-edge trough which we go to the next node represented

by v′. The vectors of variables f1, ..., fk encode the list of

failed edges. Finally, [e0v,e, e1v,e, ..., ekv,e :
e∈E

v∈r(e)] represents the

elements of the priority list for each e ∈ E in-edge, v ∈ V
node. In the second line, we require that the in-edge, the out-

edge, the current node and the next node are appropriately

connected. The third line enforces that the out-edge is not

failed. The fourth line ensures that only valid routings are

considered. The fifth line requires that the out edge is present

at the priority list. In the last two lines, we make sure that

the selected index at the priority list is not failed but all links

before it are failed.

We now proceed by defining a sequence of

Boolean formulae (represented as BDDs) starting with

D0(ein, v, f1, ..., fk, [e0v,e, e1v,e, ..., ekv,e : e∈E
v∈r(e)]) = (v = d)

where d is the Boolean encoding of d destination node. The

sequence is built using the following rule:

Dn+1(ein, v, f1, ..., fk, [e0v,e, e1v,e, ..., ekv,e :
e∈E

v∈r(e)]) =

Dn(ein, v, f1, ..., fk, [e0v,e, e1v,e, ..., ekv,e :
e∈E

v∈r(e)]) ∨
(
∃v′, eout :

T (ein, v, eout, v′, f1, ..., fk, [e0v,e, e1v,e, ..., ekv,e :
e∈E

v∈r(e)])

∧ Dn(eout, v′, f1, ..., fk, [e0v,e, e1v,e, ..., ekv,e :
e∈E

v∈r(e)])
)

Let D be Dm where Dm = Dm−1 representing all in-edge

and node pairs (ein, v) from which packets are delivered to the

destination under the failure scenario encoded by f1, ..., fk us-

ing the routing configuration described by [e0v,e, e1v,e, ..., ekv,e :
e∈E

v∈r(e)].
By employing D, we can now express the Boolean formula

P encoding all possible prefectly k-resilient routings as fol-

lows:

P([e0v,e, e1v,e, ..., ekv,e :
e∈E

v∈r(e)]) = ∀f1, ..., fk : ∀(es, s) :
Γ(s(s), f1(f1), ..., fk(fk), d) =⇒
D(es, s, f1, ..., fk, [e0v,e, e1v,e, ..., ekv,e :

e∈E
v∈r(e)])

where Γ(v1, e1, ..., ek, v2) : V × E∗ × V −→ L is true iff

there is a path between v1 and v2 not containing e1, ..., ek. The

input parameters e0v,e, e1v,e, ..., ekv,e for P (vectors of Boolean

variables) provide a Boolean encoding of the edges in the

priority list of R(e, v). For the predefined routing entries,

we can simply substitute the corresponding routing parameter

by their concrete values during the BDD calculations. In

particular, this will allow us to restrict the synthesis to only

a few selected routing parameters.

Our example network in Figure 2a has only two nodes,

where d denotes the destination. Since the graph is so small,

we only need to synthesise the R(lbv1 , v1) priority list. With-

out going deeper into the details of the computation, it is easy

to see that the only way of providing the required resiliency

is if we try all 3 possible out-edges in some order. We use

the lbd, lbv1 , e0, e1, e2 ordering of edges for their Boolean

representation. Since we have 5 edges, we need 3 bits to

encode an edge. For example, 011 encodes the third edge

in our ordering which is e1 since we index from 0. Fig-

ure 2b depicts the BDD representation of the Boolean formula

P(e0v1,lbv1 , e1v1,lbv1 , e2v1,lbv1
) encoding all possible perfectly 2-

resilient routings. One can get a satisfying assignment by

following the arrows from the top to the 1 node, such that

the dotted arrows denote that the variable in that node is set

to 0 (false) and a solid arrow means that it gets the value 1

(true). For simplicity, the e0v1,lbv1
, e1v1,lbv1 , e2v1,lbv1 parameters

are denoted by variable vectors x0, x1 and x2 and we use the xi
j

to denote the j-th bit of the vector xi where the least significant

bit is with index 0. Figure 2 depicts a simple network topology

and a BDD encoding all possible perfectly 2-resilient routing.

Now the highlighted path encodes the values 2, 4 and 3
corresponding to the priority list R(lbv1 , v1) = (e0, e2, e1).
Similarly, we can observe all six permutations of these edges

as correct perfectly 2-resilient routings, all compactly encoded

in the BDD data structure.

B. Routing Verification

We rely on the fact that, for small k values, verification

of a routing can be efficiently achieved using a conventional

brute-force approach. Systematically evaluating all possible

failure scenarios and following traces from all nodes to

the destination node can be done with an acceptable run-

time. During this process, we store the failing scenarios and

the routing entries used. If a certain routing entry was firing

during the routing trace, where the packet was not delivered to

its destination, we label that routing entry as suspicious. Let

us call the pair (v, F) a failing delivery if the packet starting

from node v cannot be delivered under the failure scenario F .

In case of our running example depicted in Figure 1, the

routing presented in Figure 1b fails to deliver the packets

starting from v1, v3 and v4 if e1 and e2 fail, since the packets

enter a loop. In fact, (v1, F), (v3, F) and (v4, F) where

F = {e1, e2} are exactly all failed deliveries with up to 2
failed links. During these failed deliveries, we used the six

entries highlighted with grey in Figure 1b and labeled these

entries as suspicious.

C. Routing Repair

After collecting the suspicious entries, we remove these

(and only these) entries from the routing leaving them as

parameters (or holes) to be synthesized using the BDD-

based method described in Section III-A. Here, the BDD-

based algorithm will propose new routing entries that make

the current routing k-resilient if such changes are possible.

Unfortunately, the repair mechanism is not complete, mean-

ing that there are cases, when after removing the suspicious

entries there are still no possible routing entries that can

make the routing k-resilient. The core of the weakness lies

in some particular ill-defined entries that make the discovery

of remaining ill-defined entries impossible. For example, the

priority list R(e, v) = (e, e′) sends back every packet on the

in-edge e. Since the packet arrived on e, the edge e can not

be failed, thus e′ will never be used as it has a lower priority.

487

If e′ is ill-defined, we have no chance of removing it and

suggesting an alternative after the suspicious entry with the

edge e is removed.

Removing every suspicious entry may also result in too

many missing entries, thus slowing down the BDD calculation.

Gradually removing suspicious routing entries is also possible

and can be beneficial in certain cases. However, one should be

careful when selecting the removed suspicious entries. First,

for each failing delivery we must remove at least one firing

entry, otherwise the BDD-based calculation has no chance of

fixing the corresponding failing delivery. Moreover, not every

failure is relevant for a given packet, e.g., if a packet starting

from node v is using the same entries in failure scenarios F1

and F2 where F1 ⊆ F2, then the failing delivery (v, F2) does

not provide any additional insight.

Continuing the repair of the routing table from our running

example presented in Figure 1b, we remove all six suspicious

entries from the routing and let the BDD calculations fill them

in. The BDD solution yields a perfectly 2-resilient solution,

where every routing entry is the same except that the second

priority of R(e6, v4) is now e5. Note that using only e5 as

a backup-edge does not impact perfect 2-resilience, since we

use this entry only if we already encountered 2 failures.

IV. FAST GENERATION OF ROUTING TABLES

We shall now present two approaches that allow us to

synthesize close-to-resilient routing tables in polynomial time.

A. Heuristic Routing Generator

First, we suggest a construction of skipping routings for

a given network topology that, as we demonstrate in our

experiments, often provide routing tables with high resilience.

Let G = (V,E, r) be a network topology together with the

destination node d. We first fix for each node v ∈ V a primary

next-hop edge called ev such that v ∈ r(ev), for example by

following one of the shortest paths from v to the destination

node d. We call the fixed path from v to the destination the

default path. The choice of the default path can be used to

minimize additional quantitative properties of the routing, like

strech or congestion, in the failure-free scenario.

By post(v) we denote the set of all nodes that are on the

default path from v to d. By pre(v) we denote the set of all

nodes such that their default paths to d contain the node v.

We now recall the notion of node’s level and the definition

of a backup edge from [26]. We say that a node v ∈ V is of

level �, if there is an edge e where r(e) = {v, v′} such that

the default path from v′ to d intersects post(v) in at most �
nodes. The minimum (lowest) level of a node v is denoted by

mlevel(v) and the corresponding edge e is called its mlevel
edge. A backup edge for v is either an mlevel edge in case

v has the smallest mlevel among all nodes in pre(v), or the

backup edge is a defaulte edge ev′ for some node v′ ∈ pre(v)
such that some smallest mlevel node from pre(v) is also in

pre(v′).
We note that there can be several different backup edges

for a given node v. These are our primal candidates for

v2

v4d

v3 v1

e0

e6e1 e4

e3

e2

e5

Fig. 3: Default paths for the running example from Figure 1

appropriate high priority edges in the skipping routing (that

we shall construct) because by following them we minimize

the possibility that we meet a failed edge that was encountered

on the default path from v to d.

Our heuristically constructed routing R is now defined so

that from every node v, the first priority always follows the

default path edge ev , unless we arrive to v via the edge

ev itself (getting ourselves further away from d), in which

case we select as the first priority edges the backup edges

for v, followed by the remaining edges. Formally, we define

a skipping routing R such that for every edge e ∈ E and every

node v ∈ V \ {d}
• if e �= ev then

R(e, v) := (ev, e1, e2, . . . , e�, e
′
1, e

′
2, . . . , e

′
m, e)

• otherwise

R(ev, v) := (e1, e2, . . . , e�, e
′
1, e

′
2, . . . , e

′
m, ev)

where e1, e2, . . . , e� are all backup edges for v (in an arbitrary

order) and e′1, e
′
2, . . . , e

′
m are all the remaining edges (different

from ev and the backup edges) connected to v. As the very

last resort, we add the edge on which the packet arrived at

the end of the priority list (meaning that we return the packet

back to the sender only if all other options fail).

If we restrict the constructed routing R to contain only

the first backup edge, we obtain with guarantee a perfectly

1-resilient routing as proven in [26]. Our extension of the con-

struction to higher levels of resiliency is though not guaranteed

to be safe. In fact, this cannot even be achieved in general,

as there exist networks for which there are no perfectly

3-resilient routings [22] and the question of whether for any

network there exists a perfectly 2-resilient routing is still an

open problem (see e.g. [26]). On the other hand, we provide

experimental evidence that our fast (polynomial) heuristic

construction of skipping routings either already provides 2- or

3-resilient routings and if not, it can often be repaired using

our method from Section III.

Figure 3 depicts the primary next-hops for all nodes in our

running example (and the default paths to the destination). In

Figure 1b we can see a routing table R constructed using our

heuristic approach. For example for the entry R(lbv3 , v3) =
(e1, e6, e3) we only have one option of edge ordering. The

first edge e1 is the default next-hop (that delivers to d) and

488

the second edge is e6 as it is the only backup (mlevel) edge

for v3 that has the level 1 (the default path from v4 intersects

the default path from v3 only at the destination). Finally, e3
is the last edge in the priority list as it is not a backup edge

for v3 because the default path from v1 goes via v3 and hence

intersects the v3 default path at two nodes (v3 and d).

On the other hand, there are two options for the rout-

ing entry at node v4 when arriving on the edge e6: either

R(e6, v4) = (e2, e4, e5) (the one chosen in the table from

Figure 1b) or R(e6, v4) = (e2, e5, e4). This is because both

e4 and e5 are backup edges for v4 — the default paths from

the target nodes of these two edges intersect the default path

from v4 only at the destination node d. We can see that our

choice of the first option caused that the routing table is not

perfectly 2-resilient (but can be quickly repaired), while the

other choice produces already a perfectly 2-resilient routing.

B. Structural Reduction Methods

Reducing the size of the network can speed up the synthe-

sis of resilient routing configurations. In this subsection we

leverage structural reduction rules to get k-resilient routings

for smaller graphs that can be extended and used for the

original network. We present two reduction rules with different

guarantees.

Structural reduction rule 1: sound chain-reduction. In the

sound reduction, we reduce every chain with at least four edges

to only three edges as depicted in Figure 4. This means that we

can remove a node vi, 1 < i < n, from the network topology

with the destination node d if

• vi has exactly two incident edges e′ and e′′ where r(e′) =
{vi, vi−1}, r(e′′) = {vi, vi+1} such that vi−1, vi, vi+1

and d are all different nodes, and

• vi−1 and vi+1 have exactly two incident edges too.

After removing vi, we introduce a new edge e that connects

the nodes vi−1 and vi+1 such that r(e) = {vi−1, vi+1}. We

repeat the application of this reduction rule until no further

nodes can be removed.

We can now compute a resilient routing R on the reduced

network (which can take less time than on the original net-

work) and expand R to a routing on the original network as

follows (we again refer to Figure 4):

• if R(e′′′, v1) contains a new edge e not present in the

original network, we replace it with an original edge

between v1 and v2 and similarly if R(e′′′, vn) contains a

newly added edge, we replace it with the edge between

vn and vn−1, and

• for every removed node vi with incident edges e′ and e′′,
we define R(e′, vi) = (e′′, e′), R(e′′, vi) = (e′, e′′) and

R(lbvi , vi) = (e′, e′′) where

– e′ connects vi−1 and vi in case that R(lbv1 , v1)
contains as the first priority an edge between v and

v1 (i.e. the default edge of v1 points to the left),

otherwise

– e′ is the edge that connects vi and vi+1 (i.e. the

default edge of v1 points to the right).

v v1 v2 vn v′

replace with (sound reduction)

v v1 vn v′

replace with (aggressive reduction)

v v′

Fig. 4: Sound and aggressive structural reduction rules

We can now prove the following soundness theorem.

Theorem 1. Let R be a routing on the reduced network after
any number of applications of the sound reduction rule and
R′ be the routing that expands R to the original network. If
R is perfectly k-resilient on the reduced network then R′ is
perfectly k-resilient on the original network.

Proof sketch. Let us assume that in the reduced network R
delivers a packet arriving at any source node to the destination

node d under any failure scenario of size at most k, whenever

the source and destination nodes are connected. We shall argue

that R′ also delivers a packet from any source node to the

destination under any failure scenario F ′, |F ′| ≤ k, where the

source and destination node remain connected.

Let us first construct a failure scenario F in the reduced

network such that F contains all edges from F ′ that appear

also in the reduced network and if F ′ contains an edge that is

not in the reduced net then we add to F the newly added edge

that connects the nodes v1 and vn directly (refer to Figure 4).

If a packet now arrives in the original network under the

failures F ′ to some source node that is also present in the

reduced network, the same routing as in R is applied in R′.
Should the network trace traverse the nodes v2, . . . , vn−1 (say

from left to right) that were removed, the expanded routing

R′ will deliver the packet to the end node v′ as in the reduced

network, unless some of the edges are failed, in which case

the packet returns back to v (the same behaviour as in the

reduced net in case that the newly added edge between v1 and

vn is failed). Clearly, if the reduced routing R deliveres the

packet to d, so will the expanded routing R′.
If a packet arrives in original network under F ′ to a source

node vi, 1 < i < n, that is not present in the reduced network

then we in R′ forward in the same direction as the node v1
does in the routing R (either to the left via v or to the right

via vn). As the packet arriving at v1 under R will be delivered

to the destination node d, so will be the packet arriving at the

node vi.
This concludes that R′ is perfectly k-resilient whenever R

is perfectly k-resilient.

489

�

�

�

�

�

�

�

	

�

��
��

��

��

�� ��
��

�	

�

��

��

��

��

��

��

�� ��

�	

�

(a) Original (29 nodes)

�

�

�

�

�

�

�

�

��
��

��

��

�� ��
��

��

��

��

��

��

��

��

�� ��

��

��

(b) After sound reduction (26 nodes)

�����

�

	�
		

	

	�

	�

��

�� ��

�

(c) After aggressive reduction (11 nodes)

Fig. 5: Effect of the two structural reduction rules on the BizNet topology where node 0 is the destination node.

The sound reduction rule allows us to extend any perfectly

k-resilient routing in the reduced network to the original one

while preserving its resilience. However, the reduction rule

only applies to networks that contain chains of nodes with

at least four edges, which does not happen too often in the

typical ISP topologies. Reducing chains with less then three

edges will imply that the endpoints of the reduced chain are

able to see a possible link failure inside the chain which can

help them to make more qualified routing decisions (something

that is not possible in the unreduced network).

In order to extend the applicability of the reduction rule, we

suggest an aggressive variant of the reduction rule which is

more often applicable on typical ISP topologies, however, it

does not guarantee the correctness of the reduction as shown

for the sound reduction rule in Theorem 1. On the other hand,

if the reduced routing cannot be expanded to a resilient routing

on the original net, we can use our repair method. Advantages

of this approach are discussed in our experimental section.

Structural reduction rule 2: aggressive chain-reduction.
This rule removes a super-set of nodes removed by the

previous safe rule thus allowing for smaller reduced networks.

An application of the aggressive reduction rule is shown at the

bottom of Figure 4. We remove a node vi, 1 ≤ i ≤ n, from

the network if

• vi has exactly two incident edges e′ and e′′ where

r(e′) = {vi, v′}, r(e′′) = {vi, v′′} and vi, v
′, v′′ and d

are different nodes.

After removing the node vi, the nodes v′ and v′′ are connected

with a newly added edge e and as before the reduction rule can

be applied multiple times. We can now construct a perfectly

k-resilient routing on the reduced network and try to extend it

to the original one using the same approach as for the sound

reduction rule. The only issue is how to define the expanded

routing entry for R(lbvi , vi) for a removed node vi. In case of

the sound reduction rule, we overtook the forwarding direction

of the node v1, however, in the aggressive reduction the node

v1 is removed as well. We shall instead forward the packet in

the direction of a shortest path to the destination of d as it is

experimentally confirmed to return close-to-resilient routings.

If the resulting extended routing is not perfectly k-resilient,

we apply our repair method from Section III. In Figure 5 we

can see the effect of the sound and aggressive reduction on

the BizNet topology from the topology Zoo database [32].

V. IMPLEMENTATION AND EVALUATION

We implemented the heuristic synthesis methods as well as

our repair procedure in the tool SYREP. Our implementation

relies on the CUDD [36] backend of the omega [37] Python

library and is available together with the reproducibility data

at [31].

A. SYREP Architecture

The overall flow diagram of SYREP is depicted in Figure 6.

We can either start with network topology without any existing

routing information, apply the aggressive structural reduction

rule and generate (using our fast heuristic method) a skipping

routing for the reduced network. We then verify if the routing

is k-resilient and try to repair it otherwise. After this, the

resilient routing on the reduced network is expanded to the

full network and passed to the verify/repair module. As an

alternative, an existing (less resilient) routing on the network

can be collected and passed directly to the verify/repair

module.

The verify/repair module first checks if the routing is

already perfectly k-resilient and if not, it initiates the repair

procedure. As the outcome, we get either perfectly k-resilient

routing on the original input network, or the information that

the generated or existing routing cannot be repaired in order

to achieve k-resilience.

B. Experimental Evaluation

We run our experiments on the publicly available benchmark

of ISP topologies called topology Zoo [32], using all con-

nected networks from the benchmark. Each of the topologies

are for a single AS (Autonomous System). We consider up to 3

490

collect existing routing

and network

information

generate heuristic

routing
expand routing

repair reduced

routing

input network

repair expanded

routing

unrepairable

routing

non-perfectly

k-resilient routing
verify

perfectly k-resilience

perfectly k-resilient routing

perfectly k-resilient

routing

verify

perfectly k-resilience

apply structural

reduction

existing network setup

routing

candidate

routing

candidate

routing

candidate

reduced

network

faulty

routing
unrepairable routing for reduced network

resilient routing

for reduced

network

resilient routing

for reduced

network

Fig. 6: Modular architecture of SYREP

failed links in these ISP topologies, as this is often a sufficient

resiliency level in IP backbone networks (very few topologies

from the benchmark are more than 3-connected anyway).

All experiments are conducted utilizing Intel Xeon Gold

6209U CPUs (2.10GHz) with a memory limit of 128GB and

a timeout set to 20 minutes. We note that our algorithms are

guaranteed to terminate, however, for some larger networks,

they may exceed the given timeout. On the other hand,

sometimes a network routing is not repairable by our method,

even though a perfectly resilient routing may exist.

In Figure 7a we compare the baseline method from [26]

for the synthesis of perfectly 2-resilient routings with our

combined approach that uses both the aggressive structural

reduction as well as heuristic routing generator. For complete-

ness, we also add the results where the heuristic generator

and structural reduction are used on their own. Independently

for each of the method, the network instances (on x-axis)

are ordered by the CPU time (on y-axis) that is needed

to find a perfectly 2-resilient routing. We notice that our

combined method achieves about two orders of magnitude

speedup (the y-axis is logarithmic) compared to the baseline

method. Interestingly, the structural reduction method on its

own performs worse than the baseline (likely because it has

to compute both the reduced solution BDD and then the BDD

solution for the whole network, which does not pay off in some

cases), however, in combination with the heuristic routing

generator it achieves superior performance compared only to

the heuristic routing generator alone. In total, the baseline

solved 120 instances while our combined method solved 167.

The expansion succeeded in 126 cases and repair was initiated

only for 41 networks where in all cases it successfully repaired

the routing to be perfectly 2-resilient.

The plot in Figure 7a highlights the main overall perfor-

mance trends but does not show instance to instance compari-

son of the methods (all methods are sorted independently). In

Figure 7b we instead show the ratios (sorted on x-axis) of our

combined runtime divided by the baseline time. Only the ratios

where both methods finished before the timeout are shown.

The ratios are reported for the same instance of the problem

and values smaller than 1 imply that our method is faster than

the baseline on the concrete instance of the problem. This is in

fact always the case except for a single network Renater2001
on which the combined method used 21.9 seconds while the

baseline found the solution in 4.6 seconds. This is likely due

to the fact that in this singular case computing the two BDDs

(first the reduced one and then repairing the expanded one)

is more expensive than computing the final BDD with all

solutions directly. However, on most of the networks, our

method provides between one to three orders of magnitude

speedup.

Similarly, Figure 7c shows the plots for generating perfectly

3-resilient routings. The baseline solved 89 instances while we

solved 106 and 6 of those needed a repair that was successful.

The number of solved instances is lower than for 2-resilient

routing generation as the problems become combinatorially

more challenging. The main observation is that our combined

method is even faster than the baseline. Again, structural

reduction helps less than the heuristic routing generation but

their combination solves larger number of instances compared

to 2-resilient routings. The ratio plot in Figure 7d demonstrates

also larger instance per instance improvement in the running

time (up to four orders of magnitude). There were only

two instances where our method is slightly slower than the

baseline, namely Cesnet200511 and Cesnet200603, on both

of which we saw less than 6% deterioration in the running

time.

Finally, in Figures 8 and 9 we can see how the running

time for constructing resilient routings for k = 2 and k = 3

491

0 25 50 75 100 125 150
instances

10−5

10−4

10−3

10−2

10−1

100

101

102

103
ru
n
ti
m
e
(s
)

baseline

heuristic routing generator + repair

structural reduction + repair

combined (SyRep)

(a) Sorted runtimes for k = 2

0 20 40 60 80 100
instances

10−4

10−3

10−2

10−1

100

101

ru
n
ti
m
e
ra
ti
os

baseline/combined (SyRep)

(b) Sorted runtime ratios for k = 2

0 20 40 60 80 100
instances

10−5

10−4

10−3

10−2

10−1

100

101

102

103

ru
n
ti
m
e
(s
)

baseline

heuristic routing generator + repair

structural reduction + repair

combined (SyRep)

(c) Sorted runtimes for k = 3

0 10 20 30 40 50 60 70 80
instances

10−4

10−3

10−2

10−1

100

101

ru
n
ti
m
e
ra
ti
os

baseline/combined (SyRep)

(d) Sorted runtime ratios for k = 3

Fig. 7: Topology Zoo benchmark results

0 20 40 60 80 100
edges

10−3

10−2

10−1

100

101

102

103

ru
n
ti
m
e
(s
)

k = 2

k = 3

Fig. 8: Network size (number of edges) vs. runtime

depends on the number of edges/nodes. The required time is

growing with the number of edges and nodes and we reach the

limit of our method at around 80 edges/nodes. The running

time also clearly depends on the structure of the network,

sometimes even relatively small networks can be difficult to

synthesize routings for. Also, as expected, constructing 3-

resilient routings is more difficult than constructing 2-resilient

routings and in particular for networks with 50 edges are more,

there are several instances where the computation for k = 3
did not finish within the timeout while for k = 2 the result

0 20 40 60 80 100
nodes

10−3

10−2

10−1

100

101

102

103

ru
n
ti
m
e
(s
)

k = 2

k = 3

Fig. 9: Network size (number of nodes) vs. runtime

was computed relatively fast.

VI. RELATED WORK

Fast re-routing mechanisms have been studied intensively

in the literature and are already widely deployed, see also the

survey by Chiesa et al. [10]. Fast re-routing is attractive as it

is a purely local mechanism and reactions can be an order of

magnitude faster than in the control plane [14] which requires

the communication of failure information, e.g. [38], [39].

The challenges introduced by the inherent locality of fast

re-routing have been subject to much research already as

492

well. Feigenbaum et al. [23] proved the negative result that

it is not always possible to ensure a failover route between

two routers even if they are physically connected (known

as perfect resilience); on the positive side, they presented a

deterministic algorithm which is provably 1-resilient for any

network (graph). This result has later been generalized by

Dai et al. [25] who presented an algorithm which is always

2-resilient, but requires source matching, however, as stated

in [26], the question of 2-resilience without source matching

remains open. This is interesting as in more restricted models

(namely circular routing), it has been known for several years

that 2-resilience is not possible [27]. Borokhovich et al. [33]

showed that locality not only limits the achievable reachability

on the routing layer, but also the achievable link utilization.

There also exists work on the achievable resilience against

multiple link failures on special graphs. Foerster et al. [22]

studied how the achievable resilience depends on the graph

minors of the network. They proved that perfect resilience

(even under multiple link failures) is always achievable in

outerplanar graphs, but impossible on non-planar graphs. The

authors further showed that all graph families closed under link

subdivision allow for a simple and efficient failover algorithm,

using skipping of failed links, though they do not provide any

implementation that we can compare against. For the special

case of k-connected graphs (for some k), Chiesa et al. [19],

[20], [27] showed that it is always possible to tolerate k−1 link

failures, using arc-disjoint arborescence covers. This approach

generalizes the widely-used approaches based on spanning

trees [40] and can also be implemented with skipping. Yang

et al. [15] initiated the study of approaches beyond spanning

trees and acyclic graphs, however, without providing strong

formal connectivity guarantees.

Fast re-routing solutions have further also been studied for

networks which support dynamic packet headers modifica-

tions [16], [17], [41], source matching [18], [19], [27], or

per-packet randomization on routers [20], [21].

However, all the above results are either limited in the

number of link failures, the graph type they support, or the

technology they assume. To the best of our knowledge, the

only general approach to compute perfectly resilient routings

on arbitrary graphs and under arbitrary failures is [26], which

is the closest work to ours. One exception is Grafting [42],

however, this algorithm does not provide any formal guar-

antees. The authors of [26] present a BDD-based method

to synthesize resilient forwarding tables from scratch using

binary decision diagrams. In contrast, we in this paper propose

a novel repair methodology allowing us to fix ill-defined

routing entries, and we also suggest heuristic approaches that

can generate close-to-resilient routing tables. Being able to

repair existing tables is not only practically relevant, but

also enables a new and significantly faster methodology to

synthesize entire tables, as we have shown in this paper

empirically: using heuristics to fill tables and then improve

them formally, using BDDs, is orders of magnitudes more

efficient than the approach from [26] in terms of CPU time.

We are not aware of other tools (except for the one we compare

with) supporting a fully automated synthesis of perfectly

resilient routings.

More generally, great efforts have been made over the last

years by the networking community, to automate and simplify

the operation of communication networks. Many interesting

synthesis and formal methods approaches have been pre-

sented for other aspects of networking [43]–[53]. For example,

SyNET [43] synthesizes correct network configurations for

routing protocols such as BGP and OSPF, and AalWines

[35] provides an automated what-if verification of the policy-

compliance of routes under multiple failures in MPLS net-

works. There are also tools to automatically and correctly

update network configurations, such as NetComplete [51] and

AllSynth [54], which ensure policy compliance.

VII. CONCLUSION

We presented an automated approach to synthesize and

repair fast re-routing tables for highly dependably communi-

cation networks. Our tool, SYREP, is significantly faster com-

pared to the state-of-the-art solution, as it introduces the verify

and repair method for fixing of existing forwarding tables.

This hence also supports a hybrid approach where first “fairly

resilient” tables can quickly (in polynomial time) be computed

using heuristics, which can then be improved (repaired) effi-

ciently to provide provable resilience. Our method scales well

for two link failures and becomes slower for three link failures.

Even though for many ISP networks, considering two to three

concurrent link failures seems sufficient, scalability for larger

sets of failed links is still to be explored.

On the other hand, our repair method seems promising for

dynamically changing networks. If we already have a resilient

routing and the networks introduces (or removes) an additional

link or even a node, our method should be able to fill in (or

correct) the routing tables in the area where the network has

changed, while preserving most of the routing information

that is not affected by this change. Experimental evaluation

of the repair method for dynamically changing networks will

be a part of our future work.

There exist other heuristic approaches for routing synthesis

like e.g. Grafting [42], which however do not guarantee to

output perfectly resilient routings but they can be also used

as input to our method as we are often able to repair such

routing tables. As another future work, it will be interesting

to extend our tool to provide additional desirable properties

beyond connectivity, e.g., accounting for link utilization or

congestion along backup paths.

ACKNOWLEDGMENT

Research supported by the Vienna Science and Technology

Fund (WWTF) project, grant 10.47379/ICT19045 (WHATIF),

2020-2024, by the Danish DFF project QASNET, and by the

Villum Investigator Grant S4OS, 2020–2027.

REFERENCES

[1] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-free
alternates,” RFC, vol. 5286, pp. 1–31, 2008.

493

[2] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “IP fast reroute: Loop
free alternates revisited,” in INFOCOM. IEEE, 2011, pp. 2948–2956.

[3] A. Bashandy, C. Filsfils, B. Decraene, S. Litkowski, P. Francois,
D. Voyer, F. Clad, and P. Camarillo, “Topology independent fast reroute
using segment routing,” Working Draft, 2018.

[4] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE
for LSP tunnels,” RFC, vol. 4090, pp. 1–38, 2005.

[5] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T.
Thorgersen, “P-Rex: Fast verification of MPLS networks with multiple
link failures,” in CoNEXT. ACM, 2018, pp. 217–227.

[6] K.-T. Foerster, M. Parham, M. Chiesa, and S. Schmid, “TI-MFA:
Keep calm and reroute segments fast,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2018, pp. 415–420.

[7] P. François, C. Filsfils, A. Bashandy, B. Decraene, S. Litkowski et al.,
“Topology independent fast reroute using segment routing,” 2014.

[8] Switch Specification 1.3.1, “OpenFlow,” in https://bit.ly/2VjOO77, 2013.
[9] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisinski,

G. Nikolaidis, and S. Schmid, “PURR: a primitive for reconfigurable fast
reroute: hope for the best and program for the worst,” in CoNEXT’19.
ACM, 2019, pp. 1–14.

[10] M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári, and S. Schmid, “A survey
of fast recovery mechanisms in the data plane,” TechRxiv, May 2020.

[11] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, Y. Ganjali,
and C. Diot, “Characterization of failures in an operational IP backbone
network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–762, 2008.

[12] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from googles network
infrastructure,” in SIGCOMM, 2016, p. 58–72.

[13] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in SIGCOMM.
ACM, 2011, pp. 350–361.

[14] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,
“Ensuring connectivity via data plane mechanisms,” in NSDI, 2013.

[15] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep forwarding:
Towards k-link failure resilient routing,” in INFOCOM, 2014, pp. 1617–
1625.

[16] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed
and robust SDN control plane for transactional network updates,” in
INFOCOM. IEEE, 2015, pp. 190–198.

[17] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: introducing openflow graph algorithms,”
in HotSDN. ACM, 2014, pp. 121–126.

[18] M. Chiesa, I. Nikolaevskiy, A. Panda, A. V. Gurtov, M. Schapira, and
S. Shenker, “Exploring the limits of static failover routing (v4),” vol.
abs/1409.0034.v4, 2016.

[19] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Panda, A. V. Gurtov,
A. Madry, M. Schapira, and S. Shenker, “The quest for resilient (static)
forwarding tables,” in INFOCOM, 2016, pp. 1–9.

[20] M. Chiesa, A. V. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Schapira, and S. Shenker, “On the resiliency of randomized routing
against multiple edge failures,” in ICALP, 2016, pp. 134:1–134:15.

[21] G. Bankhamer, R. Elsässer, and S. Schmid, “Local fast rerouting with
low congestion: A randomized approach,” in ICNP, 2019.

[22] K.-T. Foerster, J. Hirvonen, Y.-A. Pignolet, S. Schmid, and G. Tredan,
“On the feasibility of perfect resilience with local fast failover,” in Proc.
SIAM APOCS, 2021, pp. 55–69.

[23] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and
A. Singla, “Brief announcement: on the resilience of routing tables,” in
PODC. ACM, 2012, pp. 237–238.

[24] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in USENIX NSDI, 2019, pp. 161–176.

[25] W. Dai, K.-T. Foerster, and S. Schmid, “A tight characterization of fast
failover routing: Resiliency to two link failures is possible,” in Proc.
ACM SPAA, 2023, p. 153–163.

[26] C. Gyorgyi, K. Larsen, S. Schmid, and J. Srba, “SyPer: Synthesis
of perfectly resilient local fast re-routing rules for highly dependable
networks,” in IEEE INFOCOM’24. IEEE, 2024, pp. 1–10, to appear.

[27] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. V. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133–1146, 2017.

[28] M. Borokhovich, C. Rault, L. Schiff, and S. Schmid, “The show must go
on: Fundamental data plane connectivity services for dependable sdns,”
Computer Communications, vol. 116, pp. 172–183, 2018.

[29] C. Y. Lee, “Representation of switching circuits by binary-decision
programs,” The Bell System Technical Journal, vol. 38, no. 4, pp. 985–
999, 1959.

[30] Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[31] C. Györgyi, K. Larsen, S. Schmid, and J. Srba, “Reproducibility
Package for SyRep: Efficient Synthesis and Repair of Fast Re-Route
Forwarding Tables for Resilient Networks,” 2024. [Online]. Available:
https://zenodo.org/doi/10.5281/zenodo.10992678

[32] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[33] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with
SDN local fast failover - A load-connectivity tradeoff,” in OPODIS,
2013, pp. 68–82.

[34] B. Stephens, A. L. Cox, and S. Rixner, “Plinko: Building provably
resilient forwarding tables,” in HotTopics in Networks, 2013, pp. 1–7.

[35] P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk,
and J. Srba, “AalWiNes: A fast and quantitative what-if analysis tool
for mpls networks,” in ACM CoNEXT, 2020, p. 474–481.

[36] F. Somenzi, “CUDD: CU decision diagram package release 3.0.0,”
University of Colorado at Boulder, 2015. [Online]. Available:
http://vlsi.colorado.edu/ fabio/CUDD/

[37] “Omega Python package,” 2023. [Online]. Available:
https://github.com/tulip-control/omega

[38] C. Busch, S. Surapaneni, and S. Tirthapura, “Analysis of link reversal
routing algorithms for mobile ad hoc networks,” in ACM SPAA, 2003,
p. 210–219.

[39] E. Gafni and D. P. Bertsekas, “Distributed algorithms for generating
loop-free routes in networks with frequently changing topology,” IEEE
Trans. Communications, vol. 29, no. 1, pp. 11–18, 1981.

[40] J. Tapolcai, “Sufficient conditions for protection routing in ip networks,”
Optimization Letters, vol. 7, no. 4, pp. 723–730, 2013.

[41] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “IP fast rerouting
for multi-link failures,” in INFOCOM, 2014.

[42] K.-T. Foerster, A. Kamisinski, Y.-A. Pignolet, S. Schmid, and G. Trédan,
“Grafting arborescences for extra resilience of fast rerouting schemes,”
in INFOCOM. IEEE, 2021, pp. 1–10.

[43] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide
configuration synthesis,” in CAV’17. Springer, 2017, pp. 261–281.

[44] T. Schneider, R. Schmid, and L. Vanbever, “On the complexity of
network-wide configuration synthesis,” in ICNP. IEEE, 2022, pp. 1–11.

[45] L. Beurer-Kellner, M. Vechev, L. Vanbever, and P. Veličković, “Learning
to configure computer networks with neural algorithmic reasoning,”
Advances in Neural Information Processing Systems, vol. 35, pp. 730–
742, 2022.

[46] K. G. Larsen, A. Mariegaard, S. Schmid, and J. Srba, “AllSynth: A BDD-
based approach for network update synthesis,” in Science of Computer
Programming (SCICO), vol. 230, 2023.

[47] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev, “Probabilis-
tic verification of network configurations,” in Proc. ACM SIGCOMM,
2020, p. 750–764.

[48] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in 17th USENIX Symposium on Networked Systems Design
and Implementation ({NSDI} 20), 2020, pp. 953–967.

[49] J. McClurg, H. Hojjat, P. Černỳ, and N. Foster, “Efficient synthesis of
network updates,” in ACM Sigplan Notices, vol. 50, no. 6. ACM, 2015,
pp. 196–207.

[50] B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, and E.-R. Olderog,
“Model checking data flows in concurrent network updates (full ver-
sion),” arXiv preprint arXiv:1907.11061, 2019.

[51] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Netcomplete:
Practical network-wide configuration synthesis with autocompletion,” in
USENIX NSDI, 2018, pp. 579–594.

[52] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” ACM sigplan notices, vol. 49, no. 1, pp. 113–126, 2014.

[53] S. Schmid, M. K. Schou, J. Srba, and J. Vanerio, “R-MPLS: Recursive
protection for highly dependable MPLS networks,” in Proc. ACM
CoNEXT, 2022, p. 276–292.

[54] K. G. Larsen, A. Mariegaard, S. Schmid, and J. Srba, “AllSynth:
Transiently correct network update synthesis accounting for operator
preferences,” in Proc. TASE, 2022, pp. 344–362.

494

