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Abstract—Existing chain-based rotating-leader BFT SMR pro-
tocols for the partially synchronous network model with constant
commit latencies incur block periods of at least 2δ (where δ
is the message transmission latency). While a protocol with a
block period of δ exists under the synchronous model, its commit
latency is linear in the size of the system.

To close this gap, we present the first chain-based BFT SMR
protocols with δ delay between the proposals of consecutive hon-
est leaders and commit latencies of 3δ. We present three protocols
for the partially synchronous model under different notions of
optimistic responsiveness, two of which implement pipelining. All
of our protocols achieve reorg resilience and two have short view
lengths; properties that many existing chain-based BFT SMR
protocols lack. We present an evaluation of our protocols in a
wide-area network wherein they demonstrate significant increases
in throughput and reductions in latency compared to the state-
of-the-art, Jolteon. Our results also demonstrate that techniques
commonly employed to reduce communication complexity—such
as vote-pipelining and the use of designated vote-aggregators—
actually reduce practical performance in many settings.

I. INTRODUCTION

Blockchain networks have become increasingly popular

as mechanisms for facilitating decentralised, immutable and

verifiable computation and storage. These networks leverage

Byzantine fault-tolerant (BFT) consensus protocols to ensure

that their participants (called nodes) execute the same sequence

of operations (called transactions), despite some of them

exhibiting arbitrary failures. Many blockchain networks also

prioritize fairness; i.e., they strive to ensure that i) client

transactions are processed promptly, without granting any

client an unfair advantage over the others, and ii) nodes have

an equal opportunity to be rewarded for the work that they do

in the system. Public blockchain networks in particular also

tend to be large, supporting hundreds (e.g. [27]) or thousands

(e.g. [6]) of nodes in the pursuit of decentralization, and aim to

cater to many concurrent clients. Accordingly, the consensus

protocols driving these networks need to be efficient, maximis-

ing transaction throughput and minimising end-to-end commit

latency (i.e., the time between a client submitting a transaction

and it being executed by the blockchain).

To these ends, prior works [33], [38], [21], [4], [11], [22],

[28] have leveraged two key strategies: i) block chaining,

and; ii) frequent leader rotation. In the block chaining (or

chained) paradigm, transactions are grouped into blocks that

explicitly reference one or more existing blocks (called the

parents of the block), typically by including their hashes.

This enables an optimization called pipelining, wherein the

vote acknowledgement messages sent by the nodes in the

course of agreeing upon a block can be counted towards

the finalization of its parents, facilitating the removal of

additional voting phases and thus reducing the communication

and computational complexity of the protocol by a constant

factor. Our work focuses on the chain-based subcategory of

chained protocols, wherein each block has exactly one parent,

as opposed to DAG-based protocols in which a block may

have many parents. In rotating-leader chain-based protocols,

the leader responsible for proposing these blocks is changed

at regular intervals, even when functioning correctly. This

helps to fairly distribute the proposal workload and any related

rewards. Additionally, the more frequently leaders are rotated

the less amount of time a Byzantine (faulty) leader has to

manipulate the ordering of pending transactions, improving

censorship resistance. Accordingly, rotating-leader protocols

often rotate the leader after every block proposal, an approach

called leader-speaks-once (LSO). This paper seeks to opti-

mize chain-based BFT consensus performance in a modified

version of the LSO setting, which we name leader-certifies-
one (LCO). Whereas an LSO protocol allows a leader to

propose only a single block, an LCO protocol allows it to

propose multiple but ensures that it produces no more than one

certified block. Even as the previously cited works need not be

implemented as LSO, our protocols need not be implemented

as LCO, however, it is in this setting that they have the greatest

advantage. We henceforth refer to chain-based BFT consensus

protocols that implement leader rotation as CRL protocols.

Our work targets the partially synchronous network

model [19] wherein there exists a time called the Global
Stabilization Time (GST) after which message delivery takes

at most Δ time. We use δ to denote the actual delivery time,

which naturally satisfies δ ≤ Δ after GST. Many recent CRL

protocols for this setting have focused on reducing communi-

cation complexity. Some have achieved linear communication

complexity in their steady state phases [24], [21] (i.e. when

the protocol makes progress under a fixed leader), while others

obtain this result in their view-change phases [38], [28] (i.e.

when the protocol elects a new leader) as well. However, these

protocols sacrifice efficiency in several important metrics in

their pursuit of linearity, including i) minimum commit latency
(i.e., the minimum delay between a block being proposed and

it being committed by all honest—i.e., non-faulty—nodes), ii)

minimum view change block period (i.e., the minimum delay

between the proposals of different honest leaders), and iii)
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TABLE I
THEORETICAL COMPARISON OF CHAIN-BASED ROTATING LEADER BFT SMR PROTOCOLS

Model Minimum Commit
Latency

Minimum View Change
Block Period

Reorg
Resilience

View
Length

Pipelined Communication Complexity(1) Optimistic Responsiveness

steady-state view-change standard consecutive honest

HotStuff [38] psync. 7δ(2) 2δ � 4Δ � O(n) O(n) � �
Fast HotStuff [24] psync. 5δ 2δ � 4Δ � O(n) O(n2) � �
Jolteon [21] psync. 5δ 2δ � 4Δ � O(n) O(n2) � �
HotStuff-2 [28] psync. 5δ 2δ � 7Δ � O(n) O(n) � �
PaLa [14] psync. 4δ 2δ � 5Δ � O(n2) O(n2) � �
ICC [11] psync. 3δ 2δ � 4Δ � O(n2) O(n2) � �
Simplex [13] psync. 3δ 2δ � 3Δ � Unbounded(3) O(n2) �(4) �
Apollo [5] sync. (f + 1)δ δ � 4Δ � O(n) O(n2) � �
This work (§III) psync. 3δ δ � 5Δ � O(n2) O(n2) � �
This work (§IV ) psync. 3δ δ � 3Δ � O(n2) O(n2) � �
This work (§V ) psync. 3δ δ � 3Δ � O(n2) O(n2) � �

(1) Assuming the use of threshold signatures. (2) HotStuff has a minimum commit latency of 7δ if the next leader aggregates the votes for the current leader’s proposal. In the
original HotStuff specification, leaders aggregate the votes for their own proposals and then forward the resultant QC to the next leader, incurring an additional 3δ. (3)

Simplex [13] requires each proposal to include its notarized parent blockchain, making the size of each proposal proportional to the size of the blockchain itself. (4) Simplex [13]
claims responsiveness only when all nodes are honest.

view length (i.e., the duration a node waits in a view before

it considers the current leader to have failed). In particular,

these works require at least 5δ to commit a new block, at

least 2δ between honest proposals in the LSO setting, and

view lengths of at least 4Δ. Moreover, since these protocols

all rely on a designated node to aggregate vote messages and

forward the resulting certificates, they grant the adversary the

power to censor certificates for honest proposals when this

aggregator is Byzantine—even after GST. Accordingly, any

implementation of these protocols that uses any node other

than the original proposer as the vote aggregator is not reorg
resilient; i.e., it cannot guarantee that an honest leader that

proposes after GST will produce a block that becomes a part

of the committed blockchain.

A recent line of work [11], [13] designed CRL proto-

cols with minimum commit latencies of 3δ. However, these

protocols are in the non-pipelined setting, have minimum

view change block periods of 2δ and either have long view

lengths [11] or are less practical in nature [13]. To the best of

our knowledge, Apollo [5] is the only existing CRL protocol

with a minimum view change block period of δ. However, it

incurs a minimum commit latency of (f + 1)δ even during

failure-free executions and assumes a synchronous network.

As far as we know, no chain-based consensus protocol has

simultaneously achieved a minimum view change block period

of δ and a constant commit latency. To close this gap, our paper

explores the design of such protocols, which we collectively

refer to as Moonshot protocols.

We first present two state machine replication (SMR) proto-

cols for the pipelined setting, each of which satisfies a different

notion of responsiveness: i) optimistic responsiveness [38]

(Definition 6) and ii) optimistic responsiveness under consec-
utive honest leaders [22] (Definition 7). Informally, the former

requires an honest leader to make progress in O(δ) time after

GST (i.e., without waiting for Ω(Δ) time) while the latter

requires an honest leader to make progress in O(δ) time only

when the previous leader is also honest. Our first protocol

satisfies the former definition and is simpler to reason about,

but has a longer view length. The second satisfies the latter

definition and has a shorter view length, but is more complex.

Both of our protocols require only two consecutive honest

leaders after GST to commit a new block, and achieve reorg

resilience through vote-multicasting. This strategy, together

with an optimization that we call optimistic proposal, also

enables them to achieve both a minimum view change block

period of δ and a minimum commit latency of 3δ. We say

that a protocol implements optimistic proposal if a leader is

allowed to “optimistically” extend a block proposed by its

predecessor without waiting to observe its certification. We

implement this in our protocols by allowing the leader of the

next view to propose a new block when it votes for a block

made by the leader of the current view.

As mentioned, pipelining can reduce the communication

and computational overhead of a protocol. However, while

this gives pipelined protocols good latency when all messages

require a similar amount of time to propagate and process,

pipelining actually increases commit latency when blocks

take sufficiently longer to propagate or process than votes.

Accordingly, we also present a non-pipelined variant of our

second protocol in Section V. This final protocol retains

standard optimistic responsiveness and requires only a single

honest leader to commit a new block after GST.

Subsequently, we present an evaluation of LCO implemen-

tations of our protocols against an LSO implementation of

Jolteon. Our protocols outperformed Jolteon in failure-free

wide-area networks (WANs) of up to 200 nodes, committing

approximately 1.5x as many blocks at around half the latency,

on average. Our protocols also outperformed under failures,

with our non-pipelined protocol committing 8x as many blocks

with a reduction in latency by more than two orders of

magnitude under Jolteon’s worst-case leader schedule.

Organization. The rest of the paper is organized as follows:

In Section II, we present the system model and preliminaries

for our work. Section III presents a pipelined CRL proto-
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col with a minimum commit latency of 3δ, minimum view

change block period of δ, reorg resilience and optimistic

responsiveness under consecutive honest leaders. We then

modify this protocol in Section IV to obtain a protocol with

standard optimistic responsiveness and improved view length.

In Section V, we give a non-pipelined version of our second

protocol, which offers improved commit latency when blocks

take sufficiently longer to propagate or process than votes.

We present an evaluation of our protocols in Section VI, and

conclude with a more detailed discussion of related works

in Section VII.

II. PRELIMINARIES

We consider a system comprised of a set V = (P1, . . . , Pn)
of n nodes running a protocol P in a reliable, authenticated

all-to-all network. We assume the existence of a static, compu-

tationally bounded adversary that cannot break cryptographic

primitives but may corrupt up to f < n/3 of the nodes

when P begins, which it may then cause to behave arbitrarily.

We refer to all nodes under the control of the adversary as

being Byzantine, while we refer to those that adhere to P as

being honest. We define a quorum as a set of �n
2 � + f + 1

nodes. Henceforth, for the sake of simplicity, we assume that

n = 3f+1 and that a quorum therefore contains 2f+1 nodes.

We assume that each node has access to a local clock and

that these clocks collectively have no drift and arbitrary skew.

We also assume the partially synchronous communication
model of Dwork et al. [19]. Under this model, the network

starts in an initial state of asynchrony during which the

adversary may arbitrarily delay messages sent by honest nodes.

However, after an unknown time called the Global Stabiliza-
tion Time (GST), the adversary must ensure that all messages

exchanged between honest nodes are delivered within Δ time

of being sent (from the perspective of the sender). In our

initial analyses, we denote the range of the actual transmission

latencies of messages of all types with δ, and observe that

δ = [0,Δ] after GST. Moreover, when we measure latency in

terms of δ, e.g. x = yδ, we are denoting that x requires the

propagation of y sequential messages (i.e. x requires y network

hops). In our later analyses we base our communication model

on the modified partially synchronous model of Blum et al. [7].

Under this model, we denote the range of the actual delivery

times of small messages (such as votes) with ρ and that of

large messages (such as block proposals) with β, such that

ρ = [0,min(β)) and β = (max(ρ),Δ], after GST. We follow a

similar convention as with δ when measuring latency in terms

of β and ρ, with x = yβ + zρ denoting that x requires the

sequential propagation of y large and z small messages.

We make use of digital signatures and a public-key infras-

tructure (PKI) to prevent spoofing and replay attacks and to

validate messages. We use 〈x〉i to denote a message x digitally

signed by node Pi using its private key. In addition, we use

〈x〉 to denote an unsigned message x sent via an authenticated

channel. We use H(x) to denote the invocation of the hash

function H with input x.

A. Property Definitions

State Machine Replication. A state machine replication

(SMR) protocol run by a network V of n nodes receives

requests (transactions) from external parties, called clients, as

input, and outputs a totally ordered log of these requests. We

recall the definition of SMR given in [2], below.

Definition 1 (Byzantine Fault-Tolerant State Machine Replica-

tion [2]). A Byzantine fault-tolerant state machine replication
protocol commits client requests as a linearizable log to
provide a consistent view of the log akin to a single non-faulty
node, providing the following two guarantees.
• Safety. Honest nodes do not commit different values at the

same log position.
• Liveness. Each client request is eventually committed by all

honest nodes.

Definition 2 (Minimum View Change Block Period (ω)). The
minimum view change block period ω of a chained consensus
protocol P is the minimum latency between the proposal of a
block B by an honest node Pi and its extension (directly or
indirectly) by any honest node Pj such that Pj �= Pi.

Definition 3 (Minimum Commit Latency (λ)). A consensus
protocol has a minimum commit latency of λ if all honest
nodes that commit a block proposed at time t, do so no earlier
than t+ λ.

In this paper, we measure the above two metrics in relation

to message transmission latency and assume that message

processing time is relatively negligible.

Definition 4 (View Length (τ )). A consensus protocol has a
view length of τ if an honest node that enters view v at time t
considers the view to have failed if it remains in v until t+ τ .

Definition 5 (Reorg Resilience). We say that a consensus
protocol is reorg resilient if it ensures that when an honest
leader proposes after GST, one of its proposals becomes
certified and this proposal is extended by every subsequently
certified proposal.

Optimistic Responsiveness. Responsiveness requires a con-

sensus protocol to make progress in time proportional to the

actual network delay (δ) and independent of any known upper

bound delay (Δ) when a leader is honest [31]. Optimistic

responsiveness requires this same guarantee, but only when

certain optimistic conditions hold. Several variations [38], [4],

[22], [13] have been formulated in the literature, two of which

we make use of in this paper and recall below.

Definition 6 (Optimistic Responsiveness [38]). After GST, any
correct leader, once designated, needs to wait just for the first
n−f responses to guarantee that it can create a proposal that
will make progress. This includes the case where a leader is
replaced.

We note that in [38], the term “make progress” means that

all honest nodes will vote for the correct (honest) leader’s

proposal, not that all honest nodes observe a certificate for the
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included block; i.e. optimistic responsiveness does not imply

reorg resilience. We also clarify that for LSO/LCO protocols,

these (at most) n− f responses should be messages from the

previous view.

Definition 7 (Optimistic Responsiveness (Consecutive Hon-

est) [4]). We say that a protocol is optimistically responsive
(consecutive honest) if after GST, for any two consecutive
honest leaders Lv and Lv+1, Lv+1 sends its proposal within
O(δ) time of receiving Lv’s proposal.

Importantly, this variant of optimistic responsiveness allows

the protocol to wait for Ω(Δ) time before proposing in the new

view when the leader of the previous view is Byzantine.

B. Protocol Definitions

View-based execution. Our protocols progress through a

sequence of numbered views, with all nodes starting in view

1 and progressing to higher views as the protocol continues.

Each view v is coordinated by a designated leader node Lv

that is responsible for proposing a new block for addition

to the blockchain. For the sake of liveness, we require that

the leader election function L continually elects sequences of

leaders that contain at least two consecutive (not necessarily

distinct) honest leaders after GST for our pipelined protocols,

and only one such leader for our non-pipelined protocol. We

note that L must additionally change the leader every view for

LCO implementations, and must elect each node with equal

probability in fair implementations.

Blocks. The blockchains of each of our protocols are ini-

tialized with a genesis block B0 that is known to all nodes

at the beginning of the protocol. Each block references its

immediate predecessor in the chain, which we refer to as

its parent, with the parent of the genesis block being ⊥.

We say that a block directly extends its parent and indirectly
extends its other predecessors in the chain. For simplicity when

reasoning, we also say that a block extends itself. We refer to

the predecessors of a given block as its ancestors and measure

its height by counting its ancestors. A block Bk with height

k has the format, Bk := (bv, H(Bk−1)) where bv is a fixed

payload for the view v for which Bk is proposed, Bk−1 is

the parent of Bk, and H(Bk−1) is the hash digest of Bk−1.

We allow the implementation to dictate the contents of bv (e.g.

transactions or hashes of batches of transactions). Accordingly,

Bk is valid if i) its parent is valid, or if k = 0 and its

parent is ⊥, and ii) bv satisfies the implementation-specific

validity conditions. Finally, we say that two blocks Bk and

B′
k′ proposed for the same view equivocate one another if

they do not both have the same parent and payload.

Block certificates. In our protocols, a node sends a signed

vote message to indicate its acceptance of a block. A block

certificate Cv(Bk) for view v consists of a quorum of distinct

signed vote messages for Bk for v. We use Cv to denote a

block certificate for view v when knowledge of the related

block is irrelevant to the context. We rank block certificates

by their views such that Cv ≤ Cv′ if v ≤ v′. We provide more

detailed definitions in the following sections where necessary.

Timeout messages and timeout certificates. Our protocols

maintain the liveness SMR property by requiring nodes to

request a new leader when they fail to observe progress in

their current views after a certain amount of time. They do so

by sending signed timeout messages for the view, the contents

of which are protocol-specific. A view v timeout certificate,

denoted T Cv , consists of a quorum of distinct signed timeout

messages for v, denoted Tv .

III. SIMPLE MOONSHOT

We now present Simple Moonshot (Figure 1), the first of

our CRL protocols for the pipelined setting. Simple Moonshot

achieves ω = δ, λ = 3δ, reorg-resilience and responsiveness

under consecutive honest leaders. We first discuss how our

protocols obtain the former properties before elaborating on

Simple Moonshot itself.

Towards achieving ω = δ and λ = 3δ. Prior CRL protocols

require Lv to observe Cv−1 before proposing during their

happy paths (i.e. when views progress without any honest

node sending a timeout message—as opposed to the fallback
path). This is intended to help honest leaders create blocks

that will become committed, but is unnecessarily strict for

this purpose and naturally affects ω ≥ 2δ and λ ≥ 4δ in the

pipelined setting. Our protocols improve upon these results

by requiring i) the leader of view v to propose a block for

v, say Bk, upon voting for a block in v − 1, say Bk−1, and;

ii) nodes to multicast their votes. Allowing leaders to propose

optimistically in this way enables voting for Bk−1 to proceed

in parallel with the proposal of Bk. Moreover, when the

dissemination times of vote and proposal messages are equal

(see Figure 2), having nodes multicast their votes ensures that

if all honest nodes vote for Bk−1 then they will all receive Bk

at the time that they construct Cv−1(Bk−1), allowing them to

vote for Bk and Lv+1 to propose immediately upon entering v.

Hence, in the happy path, Lv+1 proposes as soon as it receives

Lv’s proposal, giving our protocols an ω of δ. Furthermore,

since our pipelined protocols require two consecutive views to

produce certified blocks before a new block can be committed,

requirements (i) and (ii) also give our protocols a λ of 3δ.

A. Protocol Details

We define Simple Moonshot in Figure 1 as a series of event

handlers to be run by each node Pi ∈ V . We elaborate below.

Advance View and Timeout. Pi enters view v from some

view v′ < v upon receiving a view v−1 block certificate or a

view v−1 timeout certificate (i.e. Pi never decreases its local

view). Before doing so, it first multicasts this certificate. This

ensures that if the first honest node enters v after GST then

all honest nodes will enter v or higher within Δ thereafter,

helping our protocol to obtain liveness and reorg resilience.

Subsequently, Pi updates locki to the highest ranked block

certificate that it has received so far and if locki is not Cv−1

then Pi unicasts a status message containing locki to Lv .

We note that Pi only updates locki during the view transition

process and does not do so after entering the new view, even if

it receives a higher ranked block certificate. This ensures that
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A Simple Moonshot node Pi runs the following protocol whilst in view v:

1) Propose. If Pi is Lv and enters v at time ti, propose: (i) upon receiving Cv−1(Bk−1) before ti + 2Δ, or; (ii) at ti + 2Δ. Do so by
multicasting 〈propose, Bk, Cv′(Bk−1), v〉, where Cv′(Bk−1) is the highest ranked block certificate known to Lv and Bk extends Bk−1.

2) Vote. Pi votes once using one of the following rules:

a) Upon receiving 〈opt-propose, Bk, v〉 such that Bk extends Bk−1, if locki = Cv−1(Bk−1) then multicast 〈vote, H(Bk), v〉i.
b) Upon receiving 〈propose, Bk, Cv′(Bh), v〉, if Cv′(Bh) ≥ locki and Bk extends Bh then multicast 〈vote, H(Bk), v〉i.

3) Optimistic Propose. Upon voting for Bk in v, if Pi is Lv+1, multicast 〈opt-propose, Bk+1, v + 1〉 such that Bk+1 extends Bk.
4) Timeout. Upon receiving f + 1 distinct 〈timeout, v〉∗ or when view-timeri expires, stop voting in v and multicast 〈timeout, v〉i.
5) Advance View. Upon receiving Cv′−1(Bh) or T Cv′−1, where v′ > v, and before executing any other rule, do the following: i) multicast

the certificate; ii) update locki to the highest ranked block certificate received so far; iii) unicast a status message 〈status, v′, locki〉 to
Lv′ if locki has a view less than v′ − 1, iv) enter v′, and; v) reset view-timeri to 5Δ and start counting down.

Pi additionally performs the following action in any view:

1) Direct Commit. Upon receiving Cv−1(Bk−1) and Cv(Bk) such that Bk extends Bk−1, commit Bk−1.
2) Indirect Commit. Upon directly committing Bk−1, commit all of its uncommitted ancestors.

Fig. 1. The Simple Moonshot Protocol

Fig. 2. Optimistic proposal (pictured in blue) and vote multicasting (pictured
in orange) enable Simple Moonshot and Pipelined Moonshot to propose new
blocks at the same rate that they become certified when proposals and votes
take equal time to propagate and process.

the block certificate reported in a status message corresponds

to its honest sender’s locki for the duration of v, meaning

that if Lv waits to receive status messages from all honest

nodes before proposing, then it is guaranteed to extend the

block certified by the highest ranked block certificate locked

by any honest node. Finally, Pi enters v, resets view-timeri
to 5Δ and starts counting down. If Lv is honest and the

network is synchronous then Pi should enter v + 1 within

5Δ of entering v. If it does not, then it considers the current

leader to have failed and so multicasts 〈timeout, v〉i to request

a view change and prevent the protocol from halting. Pi also

does this whenever it observes that at least one other honest

node has requested a view change for v.

Propose. Simple Moonshot allows two proposals to be created

during view v: i) an optimistic proposal for view v + 1,

and; ii) a normal proposal for v. In the former case, Lv+1

multicasts 〈opt-propose, Bk+1, v + 1〉, where Bk+1 extends

Bk, upon voting for Bk in v, hoping that Bk will become

certified. When the protocol is operating in its happy path after

GST, Bk will indeed become certified, enabling voting for

consecutive honest proposals to proceed without delay. In the

latter case, Lv multicasts 〈propose, Bh, Cv′(Bh−1), v〉, where

Bh extends Bh−1, either upon receiving Cv−1(Bh−1) within

2Δ time of entering v, or after having Cv′(Bh−1) as its highest

block certificate after waiting for 2Δ after entering v. Since

messages are delivered within Δ time after GST, this 2Δ wait

ensures that Lv will extend the highest certified block locked

by any honest node when it proposes after GST, assisting

with liveness and reorg resilience. We require Lv to multicast

a normal proposal even when it has already multicasted

an optimistic proposal to ensure that it always produces a

certified block when it proposes after GST. We note that this

requirement can be removed from each of our protocols to

obtain the corresponding leader-speaks-once variant, but doing

so naturally sacrifices reorg resilience because the adversary

can cause optimistic proposals to fail, even after GST. We

discuss how after introducing the remaining protocol rules.

Vote. Simple Moonshot has two rules for voting, at most

one of which each node may invoke at most once per view.

Firstly, Pi may vote for an optimistic proposal containing Bk

proposed for view v and extending Bk−1, when locked on

Cv−1(Bk−1). In the best case, Pi receives the optimistic pro-

posal containing Bk and Cv−1(Bk−1) simultaneously and so

votes for Bk immediately upon entering view v. Alternatively,

if Pi receives 〈propose, Bh, Cv′(Bh−1), v〉 and Cv′(Bh−1)
ranks higher than or equal to locki and Bh extends Bh−1, then

it votes for Bh. Importantly, if Lv creates both an optimistic

proposal and a normal proposal with the same parent, then

since payloads are fixed for a given view, both proposals will

contain the same block. This ensures that all honest nodes will

vote for the same block, even if they use different vote rules.

Commit. Finally, at any time during protocol execution,

when an honest node Pi receives Cv−1(Bk−1) and Cv(Bk),
it commits Bk−1 and all of its uncommitted ancestors. We

say that a node directly commits Bk and indirectly commits
any ancestors that it commits as a result of committing Bk.

B. Analysis

We now provide some discussion on the properties of

Simple Moonshot, including brief intuitions for its safety,

liveness and reorg resilience. We are unable to provide full

proofs for our protocols in this paper due to space limitations,

but the interested reader can find them in [18].

How does our protocol achieve safety? The vote and commit

rules together ensure that Simple Moonshot satisfies the safety
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property of SMR. Specifically, if an honest node commits Bk

for view v after receiving Cv(Bk) and Cv+1(Bk+1), then a

majority of the honest nodes must have voted for Bk+1 in

view v + 1. Therefore, since honest nodes vote at most once

per view, an equivocating Cv cannot exist so no honest node

will be able to commit any block other than Bk for view v.

Moreover, since the set of honest nodes that voted for Bk+1,

say H , must have had Cv(Bk) when they voted for Bk+1, they

will either lock this certificate or one of a higher rank upon

transitioning from v + 1 to a higher view. Once again then,

since block certificates must contain votes from a majority

of the honest nodes, every block certificate for every view

greater than v must contain a vote from at least one member

of H . Suppose that v′ is the first view greater than v + 1
to produce a block certificate and let Pi be a member of H
that votes towards Cv′(Bl). Importantly, since Pi must lock

Cv(Bk) before voting for Bl and since no higher ranked block

certificate than Cv+1(Bk+1) can exist before it does so, by the

vote rules, Bl must directly extend either Bk or Bk+1. By

extension then, every block certified for a higher view than v
must extend Bk. This is sufficient to ensure safety.

Why propose twice? As previously mentioned, we require our

leaders to make normal proposals even if they have already

made an optimistic proposal because the adversary can cause

optimistic proposals to fail even after GST. Suppose that an

honest leader Lv proposes Bk extending Bk−1 in an optimistic

proposal. Per the optimistic vote rule, the adversary can cause

Bk to fail by preventing some honest node from locking

Cv−1(Bk−1). This could happen either due to some other

block, say Bl, becoming certified for view v − 1, or due

to the node entering v via T Cv−1. In either case, since Lv

is guaranteed to observe the highest ranked block certificate

locked by any honest node upon entering view v, say Cv′(Bh),
before it multicasts its normal proposal, it will be able to

multicast a new block, say Bh+1, that extends Bh. Therefore,

since honest nodes only update their locks when entering a

new view, those that receive Bh+1 whilst in view v will all

have locki ≤ Cv′(Bh) and hence will vote for it. Thus, this

requirement yields two important properties: i) that honest

leaders are able to correct themselves when they initially

extend a block that fails to become certified, and; ii) that if this

block does become certified and its certificate is locked by any

honest node, then the block included in the optimistic proposal

will become certified even if some honest nodes initially fail

to lock this certificate. This ensures that every honest leader

that proposes after GST produces exactly one certified block.

How does our protocol achieve reorg resilience and live-
ness? As we have just explained, Simple Moonshot guarantees

that every honest leader that proposes after GST produces

exactly one certified block. Suppose that Lv is such an honest

leader and produces Cv(Bk), and let t denote the time that

the first honest node enters v. Since the multicasting of block

certificates and timeout certificates ensures that all honest

nodes will enter view v or higher within t+Δ, if Lv is honest

then it will send its last proposal by t+3Δ, so all honest nodes

will finish voting before t + 4Δ and thus before any honest

node can have sent Tv or higher. Therefore, either all honest

nodes vote for Bk or some honest node must have entered v+1
via Cv(Bk) first. In either case, all honest nodes will receive

Cv(Bk) within 5Δ of the first honest node entering v, so at

least f + 1 honest nodes will lock this certificate. Therefore,

since these f + 1 nodes will not vote for any optimistic

proposal that does not directly extend their lock, and since

no higher ranked block certificate can exist before they lock

Cv(Bk), every certified block for every view greater than v
must extend Bk satisfying Definition 5. Moreover, when Lv+1

is also honest, it will necessarily be among the f + 1 honest

nodes that lock Cv(Bk) and will therefore multicast a proposal

that extends Bk no later than the time that it enters v + 1.

Consequently, by the prior reasoning, all honest nodes will also

receive Cv+1(Bk+1) and thus will commit Bk. Accordingly,

Simple Moonshot commits a new block whenever there are

two consecutive honest leaders after GST, which is sufficient

to ensure liveness.

IV. PIPELINED MOONSHOT

Although Simple Moonshot has ω = δ, λ = 3δ and reorg

resilience, it only provides responsiveness under consecutive

honest leaders. If the leader of the current view fails then the

next leader has to wait for Ω(Δ) time to ensure that it can

create a block that will become certified, naturally increasing

τ . We now present Pipelined Moonshot (Figure 3), a CRL

protocol that improves on Simple Moonshot in both of these

areas to achieve full optimistic responsiveness and a τ of 3Δ.

Towards achieving optimistic responsiveness with τ = 3Δ.
In Pipelined Moonshot, we separate the fallback case of

Simple Moonshot’s normal proposal into its own proposal

type by enabling Lv to create a fallback proposal extending

its lock upon entering v via T Cv−1. While this means that

Lv no longer needs to wait Ω(Δ) time before proposing in

the fallback path—making Pipelined Moonshot optimistically

responsive per Definition 6—it also means that Lv may

not receive the locks of all honest nodes before proposing.

However, since T Cs must be constructed from 2f + 1 time-

out messages, which in turn must now include the sender’s

lock, Lv must process the locks of at least f + 1 honest

nodes before creating its proposal. Consequently, Lv’s lock
is guaranteed to have a rank at least as great as the highest

the highest ranked lock among these nodes at the time that

they sent their timeout messages. This, along with the rules

for voting, guarantees that there cannot exist a committable

block with a higher height than Lv’s lock. This helps to

preserve safety in light of the additional modification that

we make to preserve liveness, which we do by allowing Pi

to vote for 〈fb-propose, Bk, Cv′(Bh), T Cv−1, v〉 even if it has

locki > Cv′(Bh), given Bk directly extends Bh and Cv′(Bh)
has a rank at least as great as the highest ranked block

certificate included in T Cv−1.

Requiring timeout messages to include block certificates

naturally increases their size. Similarly, since T Cs must prov-

ably contain the highest ranked block certificate out of 2f +1
timeout messages, they are necessarily linear in size even when
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A Pipelined Moonshot node Pi runs the following protocol whilst in view v:

1) Propose. Upon entering v and after executing Advance View and Lock, if Pi is Lv , propose using one of the following rules:

a) Normal Propose. If Lv entered v by receiving Cv−1(Bk−1), multicast 〈propose, Bk, Cv−1(Bk−1), v〉 such that Bk extends Bk−1.
b) Fallback Propose. If Lv entered v by receiving T Cv−1, multicast 〈fb-propose, Bk, Cv′(Bk−1), T Cv−1, v〉 such that Cv′(Bk−1) is

locki and Bk extends Bk−1.

2) Vote. Pi votes at most twice in view v when the following conditions are met:

a) Optimistic Vote. Upon receiving 〈opt-propose, Bk, v〉 such that Bk extends Bk−1, if (i) timeout viewi < v − 1, (ii) locki =
Cv−1(Bk−1) and (iii) Pi has not voted in v, multicast 〈opt-vote, H(Bk), v〉i.

b) After executing Advance View and Lock with all embedded certificates, vote once when one of the following conditions are satisfied:

i) Normal Vote. Upon receiving 〈propose, Bk, Cv−1(Bh), v〉, if (i) timeout viewi < v, (ii) Bk directly extends Bh and (iii) Pi

has not sent an optimistic vote for an equivocating block B′k′ in v, multicast 〈vote, H(Bk), v〉i.
ii) Fallback Vote. Upon receiving 〈fb-propose, Bk, Cv′(Bh), T Cv−1, v〉 if (i) timeout viewi < v, (ii) Bk directly extends Bh and

(iii) Cv′(Bh) has an equal or greater rank than the highest ranked certificate in T Cv−1, multicast 〈fb-vote, H(Bk), v〉i.
3) Optimistic Propose. Upon voting for Bk in view v, if Pi is Lv+1, multicast 〈opt-propose, Bk+1, v+1〉 such that Bk+1 extends Bk.
4) Timeout. Upon the expiration of view-timeri, if Pi has not already sent Tv , multicast 〈timeout, v, locki〉i and set timeout viewi =

max(timeout viewi, v). Additionally, upon receiving f + 1 distinct 〈timeout, v′, 〉∗ messages or T Cv′ such that v′ ≥ v and not
having sent Tv′ , multicast 〈timeout, v′, locki〉i and set timeout viewi = max(timeout viewi, v

′).
5) Advance View. Pi enters v′ where v′ > v using one of the following rules:

- Upon receiving Cv′−1(Bh). Also, multicast Cv′−1(Bh).
- Upon receiving T Cv′−1. Also, unicast T Cv′−1 to Lv′ .

Finally, reset view-timeri to 3Δ and start counting down.

Pi additionally performs the following actions in any view:

1) Lock. Upon receiving Cv(Bk) in any protocol message whilst having locki = Cv′(Bk′) such that v > v′, set locki to Cv(Bk).
2) Direct Commit. Upon receiving Cv−1(Bk−1) and Cv(Bk) such that Bk extends Bk−1, commit Bk−1.
3) Indirect Commit. Upon directly committing Bk−1, commit all of its uncommitted ancestors.

Fig. 3. The Pipelined Moonshot Protocol

using threshold signatures [8]. Accordingly, to avoid cubic

communication complexity even under threshold signatures,

our protocol replaces the T C multicast of Simple Moonshot

with a Bracha-style amplification step [9]. In particular, Pi

multicasts a Tv whilst in view v′ where v′ ≤ v when it first

receives either f+1 Tv or T Cv from other nodes. This ensures

that all honest nodes continue to enter new views after GST:

In short, either all honest nodes will send view v Timeout

messages, or, since we still require nodes to multicast block

certificates, either some honest node must have observed and

multicasted a view v or higher block certificate, or all honest

nodes will send view v′′ Timeout messages, where v′′ > v.

A. Protocol Details

We now present the details of Pipelined Moonshot. We start

with refinements to the definition of a block certificate and

the certificate ranking rules before elaborating on the steps

outlined in Figure 3 that differ from Simple Moonshot.

Block certificates. In Pipelined Moonshot, we use three types

of signed vote messages: an optimistic vote (opt-vote), a nor-

mal vote (vote) and a fallback vote (fb-vote). Importantly, vote

messages with different types may not be aggregated together.

Accordingly, we now distinguish between three different types

of block certificates. An optimistic certificate Co
v(Bh) for a

block Bh consists of 2f+1 distinct opt-vote messages for Bh

for view v. Similarly, a normal certificate Cn
v (Bh) consists of

2f + 1 distinct vote messages for Bh for view v. Finally, a

fallback certificate Cf
v (Bh) consists of 2f +1 distinct fb-vote

messages for Bh for view v. We denote a block certificate

with Cv(Bh) whenever its type is not relevant.

Locking. Simple Moonshot only allowed Pi to update locki
upon entering a new view. In contrast, Pipelined Moonshot

requires Pi to update locki upon receiving a higher ranked

block certificate than its current locki, which may happen at

any time during the protocol run.

Advance View and Timeout. As in Simple Moonshot, Pi

enters view v from some view v′ < v upon receiving Cv−1

or T Cv−1. In the former case, as before, it then multicasts

Cv−1 to assist with reorg resilience and view synchronization.

Comparatively, in the latter case Pi now unicasts T Cv−1

to Lv instead of multicasting it. This helps to reduce the

communication complexity of the protocol in light of its

modified timeout messages, while still ensuring that Lv enters

v within Δ of the first honest node doing so after GST. This in

turn makes a view-timer of 3Δ sufficient to guarantee liveness,

which Pi additionally resets regardless of how it enters v, and

starts counting down. As before, if Pi does not advance to

a new view before its view timer expires then it multicasts

〈timeout, v, locki〉i. It likewise multicasts the same message

for v′′ upon observing evidence of at least one honest node

requesting a view change for v′′ such that v′′ ≥ v. This

latter rule differs from Simple Moonshot and compensates for

Pipelined Moonshot’s removal of T C multicasting.

Propose. Pipelined Moonshot consists of three distinct ways

to propose a new block in a view; i) an optimistic proposal,

ii) a normal proposal, and iii) a fallback proposal. An honest

node proposes using at most two of the three methods. The

optimistic proposal rule remains the same as in Simple Moon-

shot and serves the same purpose, allowing voting to proceed

without delay when network conditions are favourable. Com-

476



paratively, the normal proposal rule now only captures the first

case of the same rule in Simple Moonshot: Namely, Lv multi-

casts a normal proposal 〈propose, Bk, Cv−1(Bk−1), v〉, where

Bk extends Bk−1, upon entering view v via Cv−1(Bk−1). As

before, Lv does this even if it has already sent an optimistic

proposal extending Bk−1 (which, as before, will necessarily

contain Bk). As in Simple Moonshot, this helps Pipelined

Moonshot obtain reorg resilience by ensuring that, after GST,

Lv will create a proposal that all honest nodes will vote for.

Finally, Lv multicasts 〈fb-propose, Bh, Cv′(Bh−1), T Cv−1, v〉,
where Bh extends Bh−1 and Cv′(Bh−1) is locki, upon entering

v via T Cv−1. Importantly, since Lv only attempts this proposal

after executing the Lock rule, Cv′(Bh−1) is guaranteed to have

a rank greater than or equal to that of the highest ranked

certificate included in T Cv−1.

Vote. In Pipelined Moonshot, Pi may vote up to twice in

a view; at most once for an optimistic proposal and at

most once for either a normal proposal or a fallback pro-

posal. More precisely, Pi multicasts 〈opt-vote, H(Bk), v〉i for

〈opt-propose, Bk, v〉, where Bk extends Bk−1, when in view

v if it has not yet sent a vote for v, or a timeout message

for v − 1 or higher, and has locked Cv−1(Bk−1). As before,

this enables Pi to vote for Bk immediately upon entering

v in the best case. Additionally, Pi sends 〈vote, H(Bk), v〉i
for 〈propose, Bk, Cv−1(Bk−1), v〉 when in v if it has not

sent either an opt-vote for an equivocating block in v or

a timeout message for v or higher, and Bk extends Bk−1.

Importantly, Pi must send this vote if it has already sent

an optimistic vote for Bk. This ensures that Bk will be

certified when Lv is honest and proposes after GST in the

case where some honest nodes are unable to send an optimistic

vote for Bk. Otherwise, Pi multicasts 〈fb-vote, H(Bh), v〉i for

〈fb-propose, Bh, Cv′(Bh−1), T Cv−1, v〉 when in v if it has not

sent a timeout message for v or higher, Bh extends Bh−1

and Cv′(Bh−1) has a rank greater than or equal to that of the

highest ranked block certificate in T Cv−1. Notice that this rule

allows Pi to send a fallback vote for Bh after having sent an

optimistic vote for an equivocating block, say Bk. However,

since the fallback proposal containing Bh can only be valid if

it contains T Cv−1, at least f +1 honest nodes must have sent

Tv−1 before entering v and thus will not be able to trigger the

optimistic vote rule for Bk, so Co
v(Bk) will never exist.

B. Analysis

Why is it safe to vote for a fallback proposal? As we

mentioned earlier, we require honest nodes to vote for valid

fallback proposals even when they are locked on a higher

ranked block certificate than that of the parent of the proposed

block. This remains safe because a fallback proposal must be

justified by a T C for the previous view, which in turn contains

information about the locks of a majority of the honest nodes.

Specifically, T Cv guarantees that at least f + 1 nodes had

yet to vote for a higher height than h + 1 upon sending Tv ,

where h is the height of Cv′(Bh), the highest ranked block

certificate included in T Cv . Consequently, there cannot exist

a committable block for any height greater than h when T Cv

Commit Moonshot can be obtained by adding the following rules
to the protocol for Pi presented in Figure 3:

1) Direct Pre-commit. Upon receiving Cv(Bk) whilst in any
view v′ such that v′ ≤ v, if timeout viewi < v, multicast
〈commit, H(Bk), v〉i.

2) Indirect Pre-commit. Upon receiving Cv(Bk) whilst in any
view, having multicasted a commit vote for any descendant of
Bk, having timeout viewi < v and having not yet multicasted
〈commit, H(Bk), v〉i, multicast 〈commit, H(Bk), v〉i.

3) Alternative Direct Commit. Upon receiving a quorum of
distinct 〈commit, H(Bk), v〉∗ whilst in any view, commit Bk.

Fig. 4. Commit Moonshot

is constructed. Moreover, if any block can be committed at

height h then there can be only one such block. This is because

the commit rule only allows a block at height h proposed

for view v′′ to be committed if its child becomes certified

in v′′ + 1. Therefore, if Bh can be committed then at least

f + 1 honest nodes must have voted for its child in v′ + 1,

and since an honest node cannot vote for a block unless it

possesses the block certificate for its parent, these nodes must

have had Cv′(Bh) when they did so. Consequently, every T C
for v′+1 or higher will necessarily contain Cv′(Bh) or a block

certificate for one of its descendants as its highest ranked block

certificate, meaning that every fallback proposal for v′ + 1 or

higher will necessarily extend Bh. Moreover, by extension, so

will every subsequent optimistic or normal proposal.

V. COMMIT MOONSHOT

Until now, we have measured λ in terms of δ. However, this

is imprecise because δ provides no way of differentiating be-

tween the performance of protocols that exchange one type of

message for another. The pipelining technique fundamentally

facilitates the removal of one or more phases from a protocol

by granting another phase additional meaning. In existing

pipelined consensus protocols, this technique replaces two (or

more) consecutive phases of voting for one block proposal,

with one phase of voting for two (or more) consecutive block

proposals. This means that the commit latency of a block

in the pipelined setting is proportional to the dissemination

time of not only the block itself, but also its child (in the

best case). More to the point, pipelining essentially exchanges

the cost of disseminating additional votes for the cost of

disseminating additional proposals and thus naturally increases

commit latency when proposals take sufficiently longer to

disseminate than votes.

We characterize this behavior using a communication model

based on the modified partially synchronous model [7] in

which we assume that small messages (here, votes) are de-

livered within ρ time while large messages (here, block pro-

posals) are delivered within β time such that ρ = [0,min(β))
and β = (max(ρ),Δ], after GST. Under this model, Simple

Moonshot and Pipelined Moonshot both incur λ = 2β + ρ.

We now present a protocol with λ = β+2ρ, which we call

Commit Moonshot. Accordingly, when ρ < β (as in Figure 5),

which we assume is typical in practice, this protocol provides
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Fig. 5. Explicit commit votes (pictured in green) enable Commit Moonshot
to commit blocks sooner than its pipelined counterparts when block proposals
(pictured in blue) take sufficiently longer to disseminate than votes.

improved commit latency over those previously presented by

integrating an explicit pre-commit phase. Like its counterparts,

Commit Moonshot also obtains ω = δ (β) and provides both

reorg resilience and optimistic responsiveness. Additionally,

while Simple Moonshot and Pipelined Moonshot require two

consecutive honest leaders to guarantee a commit after GST,

Commit Moonshot requires only one.

We present the modifications required to convert Pipelined

Moonshot to Commit Moonshot in Figure 4. Since Commit

Moonshot retains the rules of Pipelined Moonshot, the same

liveness argument that can be made for the latter also applies to

the former. However, the introduction of a secondary commit

path demands additional reasoning about the safety of the

protocol. We present a brief intuition to this end below, and

provide full reasoning in [18].

Safety intuition. Per the alternative commit rule given in Fig-

ure 4, Pi commits Bk and all of its uncommitted ancestors

upon receiving a quorum (i.e. 2f + 1 when n = 3f + 1)

of distinct 〈commit, H(Bk), v〉∗ messages. This remains safe

because 2f + 1 such messages can only exist if at least

f + 1 honest nodes do not send Tv . Consequently, if any

block becomes certified for v + 1 then it must have been

proposed in either an optimistic or normal proposal and thus

must be a child of Bk. Otherwise, T Cv+1 will contain Cv(Bk)
as its highest ranked block certificate and therefore every

subsequently certified block will necessarily extend Bk.

VI. IMPLEMENTATION AND EVALUATION

As shown in Table I, Pipelined Moonshot and Commit

Moonshot equal or surpass the theoretical performance of

prior O(n2) CRL protocols in all considered metrics. The

primary question that remains, then, is whether their increased

communication complexity relative to linear protocols is justi-

fied. Accordingly, we decided to implement our protocols and

evaluate them against Jolteon, a linear protocol with state-of-

the-art performance in most metrics and several high-quality

open-source implementations.

Implementation. We implemented all three of our protocols

by modifying the code for Jolteon available in the Narwhal-

HotStuff branch of the repository [32] created by Facebook

Research for evaluating Narhwal and Tusk [16]. We decoupled

our implementation from Narhwal and did the same for Jolteon

TABLE II
OBSERVED LATENCIES (IN MS) BETWEEN AWS REGIONS

Destination∗
Source us-e-1 us-w-1 eu-n-1 ap-ne-1 ap-se-2

us-east-1 5.23 61.87 113.78 167.6 197.42
us-west-1 62.88 3.69 172.17 109.89 141.54
eu-north-1 114.09 173.31 5.48 248.67 271.68

ap-northeast-1 168.04 109.94 251.63 5.99 111.67
ap-southeast-2 199.54 146.06 272.31 112.11 4.53
∗Region names are abbreviated versions of the Source regions.

so that we could compare the two consensus protocols in

isolation. We replaced both the Narwhal mempool and the

simulated-client process by having the leaders of each protocol

create parametrically sized payloads during the block creation

process, with individual payload items being 180 bytes in size.

We used ED25519 signatures and constructed certificate proofs

from an array of these signatures. We left the TCP-based

network stack mostly intact and applied the few necessary

changes to both implementations to ensure that any differences

in performance were solely due to the differences between the

consensus protocols themselves.

Setting. We chose to perform our evaluation in a setting typical

of modern low-latency public blockchains such as Aptos [20]

to demonstrate the efficacy of our protocols when network

latency is the dominating performance factor. Accordingly, we

constructed moderately-sized (up to 200 nodes) wide-area net-

works of nodes with high bandwidth capabilities and moderate

computational capabilities. Specifically, we distributed the

nodes evenly across the us-east-1 (N. Virginia), us-west-1 (N.

California), eu-north-1 (Stockholm), ap-northeast-1 (Tokyo)

and ap-southeast-2 (Sydney) AWS regions, with each node

being allocated its own m5.large EC2 instance and connected

to every other node via a separate point-to-point link. Each

instance ran Ubuntu 20.04 and had a network bandwidth of

up to 10Gbps1, 8GB of memory and Intel Xeon Platinum

8000 series processors with 2 virtual cores. Table II reports

the typical (90th percentile) latencies observed between these

regions around the time of our experiments.

Variables and metrics. We first evaluated the trade-off be-

tween λ, ω and steady-state communication complexity in

this setting by running all protocols with f ′ = 0, where

f ′ denotes the number of actual failures in the system (i.e.

f ′ ≤ f = �n−1
3 �), under varying network and payload

sizes. Subsequently, we evaluated the impact of τ , reorg

resilience, pipelining and optimistic responsiveness by running

all protocols in a fixed network with f ′ = f and varying

leader schedules. We measured these trade-offs by comparing

the throughput and latency of each protocol and established

two metrics for throughput: Firstly, the number of blocks

committed by at least 2f + 1 nodes during a run, hereafter

referred to as throughput; and secondly, the average number

of bytes of payload data from (subsequently) committed blocks

1https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-
network-bandwidth.html
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TABLE III
PERFORMANCE VS JOLTEON (f ′ = 0, OUTLIERS REMOVED)

Throughput Increase (%) Latency Reduction (%)
Prot. Max x̄ x̃ Min Max x̄ x̃ Min
SM 72 53 55 33 56 43 42 37
PM 70 51 54 24 56 43 42 32
CM 74 52 54 25 69 54 58 38

Fig. 6. Performance Overview (f ′ = 0, p ≤ 1.8MB). Key trends: (1)
Throughput approximately halves and latency roughly doubles for every order
of magnitude increase in p. (2) Performance in both metrics decreases for all
protocols as the network size increases. (3) Our protocols perform similarly in
terms of throughput; Commit Moonshot achieves increasingly better latency
as p increases. (4) Our protocols outperform Jolteon in both metrics.

transferred per second (i.e., throughput × payload size ÷
runtime), hereafter referred to as transfer rate. For latency, we

measured the average time between the creation of a block and

its commit by the (2f+1)-th node. The plotted results are the

averages of the related metrics across three five minute runs

for each related configuration of the system.

We refer to Simple Moonshot, Pipelined Moonshot, Commit

Moonshot and Jolteon as SM, PM, CM and J in the accom-

panying figures and tables.

A. Happy Path Evaluation (f ′ = 0)

We initially tested networks of 10, 50, 100 and 200 hon-

est nodes with block payload sizes ranging from empty to

1.8MB to understand how the tested protocols scale under an

increasing communication load. Figure 6 reports the results of

these experiments. We subsequently tested additional payload

sizes in the 200 node network to discover the approximate

maximum transfer rate of each protocol in this setting, which

can be seen in Figure 8.

Fig. 7. Performance vs. Jolteon (f ′ = 0, No Outliers)

Fig. 8. Throughput vs Latency (n = 200, f ′ = 0, p ≤ 9MB)

As shown in Figure 6, Figure 7 and Table III, all Moonshot

protocols produced notably higher throughput than Jolteon

in all tested configurations due to the more frequent block

production afforded by their reduced ω. Likewise, the reduc-

tion in λ achieved by multicasting votes (in conjunction with

optimistic proposals, in the case of the pipelined protocols)

also caused them to produce substantially decreased latency

compared to Jolteon across all configurations. The 200 node

network produced significant outliers under the empty and

1.8kB payload configurations, with all three protocols exhibit-

ing about thrice the throughput and a quarter of the latency

of Jolteon, compared to the approximately 50% increase in
throughput and 40% − 50% reduction in latency seen on

average across all other configurations. Simple Moonshot and

Pipelined Moonshot produced near-identical performance in

both metrics for most configurations due to the similarity

of their happy-path protocols. Conversely, although Commit

Moonshot produced similar throughput to these protocols, it

exhibited substantially reduced latency for payloads above

18kB due to its explicit commit messages, clearly showing

the inefficiency of pipelining when blocks are large. Generally

479



speaking, all three Moonshot protocols produced increasingly

higher throughput and relatively consistent improvements to

latency compared to Jolteon as the network size increased,

showing that obtaining linear communication complexity is

counter-productive in WANs of this scale if it comes at the

cost of sequentializing network operations (i.e., reducing ω
and λ). Finally, per Figure 8, all three Moonshot protocols

achieved a higher maximum transfer rate with lower latency
than Jolteon in the 200 node network, with Commit Moonshot

producing the best results. Overall, these results show that the

happy paths of our Moonshot protocols scale well and pro-

vide meaningfully decreased latency and increased throughput

compared to Jolteon under the experimental conditions, with

Commit Moonshot being the most efficient option.

B. Evaluation Under Failures (f ′ = f )

We subsequently further evaluated the impact of pipelining

along with τ , reorg resilience and optimistic responsiveness,

by running all protocols with a fixed n, f ′, p (i.e., block

payload size) and Δ under three different fair LSO/LCO leader

schedules. We chose n = 100, f ′ = 33 and p = 0 to maximize

the impact of the quadratic steady-state complexity of our

protocols without risking a repeat of the outliers seen in the

n = 200, f ′ = 0 experiments. We also chose Δ = 500ms, a

somewhat-conservative value (per Table II) that still ensured

that each protocol would make it through several iterations

of the leader schedules within the five minute duration of

each run. As for the leader schedules, the first (B) had all

honest nodes followed by all byzantine nodes, representing

the best case for non-reorg-resilient and pipelined protocols.

The second (WM) had honest-then-byzantine leaders for

2f ′ views, followed by honest leaders for the remaining

n− 2f ′ views, representing the worst case for reorg resilient,

pipelined protocols. The third (WJ ) repeated two-honest-

then-byzantine for 3f ′ views, followed by the remaining

n − 3f ′ honest, representing the worst case for non-reorg

resilient, pipelined protocols.

As shown in Figures 9a and 9b, Jolteon’s performance

degrades enormously in the presence of failures due to its

lack of reorg resilience. This is evident by the difference

in its results for B and WJ , with the former producing

approximately seven times higher throughput and fifty times

lower latency than the latter. The pipelined nature of Simple

Moonshot and Pipelined Moonshot likewise caused a sig-

nificant reduction in latency between the worst (WM) and

best case (B) leader schedules for these protocols. Simple

Moonshot’s 2Δ wait after a failed leader (i.e. lack of Opti-

mistic Responsiveness) caused its performance to vary more

significantly than Pipelined Moonshot, while its longer view

length caused a substantial decrease in throughput.

As shown by their absence from Figure 9c, both Simple

Moonshot and Pipelined Moonshot failed to improve over

Jolteon under WM. More precisely, although they both

produced a several-fold increase in throughput compared to

Jolteon, Jolteon produced much lower latency. Both of these

results were a side-effect of reorg resilience: Both Moonshot

protocols committed all blocks proposed by honest leaders

with Byzantine successors under this schedule, but only after

a significant delay. Comparatively, Jolteon lost all such blocks

due to lacking this property, with only the block of the

final honest leader in the schedule being committed with a

delay. Since Jolteon commits n − 2f ′ out of every n blocks

under this schedule, its relative improvement in block commit

latency should increase proportionally to n, while its relative

throughput should similarly decrease. However, we note that in

this case reduced block commit latency at the cost of decreased

throughput should be considered an undesirable trade-off as it

does not imply a reduction in transaction commit latency.

Finally, Commit Moonshot performed consistently well

regardless of the leader schedule due to its explicit pre-commit

phase, which denies the adversary any power to delay the

commit of honest blocks. Notably, as shown in Figure 9c,

it produced around eight times higher throughput and more

than two orders of magnitude lower latency than Jolteon under

WJ . Overall, then, Commit Moonshot produced superior

performance in both the happy path and in the presence of

failures, making it a prime candidate for application in modern

low-latency public blockchains.

VII. RELATED WORK

There has been a long line of work towards designing effi-

cient BFT SMR protocols for partially synchronous networks

(which we cite further on). Our work contributes to this effort

by introducing the first CRL protocols to obtain both ω = δ
and λ = 3δ. Our protocols further provide reorg resilience,

improving their recovery time after a failed leader compared to

prior chain-based works that fail to achieve this property. This

is especially true of both Pipelined Moonshot and Commit

Moonshot, which also have low τ and are optimistically

responsive. These properties come at the cost of O(n2) steady-

state communication complexity, making our protocols less

performant in this metric compared to vote-aggregator-based

protocols like HotStuff. However, as shown in Section VI,

this trade-off is worthwhile in many settings. We presented a

brief comparison between our protocols and other recent works

in Section I. We now undertake a more thorough review.

Early works. PBFT [12] was the first practical BFT SMR

protocol, achieving λ = 3δ at the cost of O(n2) steady-

state communication. PBFT’s slot-based nature complicated its

view change, leading it to only rotate leaders after a failure—

an approach that allows proposal frequency to be reduced

below δ, but precludes fairness. Much later, Tendermint [10]

combined the steady-state and view-change sub-protocols into

a unified protocol for the LSO setting, resulting in a simpler

protocol than PBFT at the cost of an Ω(Δ) wait before every

new view at the same height, thus sacrificing optimistic re-

sponsiveness. HotStuff [38] formalized the notion of optimistic

responsiveness and improved upon Tendermint both by imple-

menting this property and being the first protocol to obtain

linear (O(n)) communication complexity in both its steady-

state and view-change phases (in the presence of an abstract
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Fig. 9. Performance comparison at n = 100, f ′ = 33 and p = 0

pacemaker for view synchronization). To our knowledge, it

was also the first protocol to implement block chaining.

Linear protocols. Like HotStuff, many other chain-based pro-

tocols [23], [24], [21], [36], [28] have focused on minimising

communication complexity, with some achieving linearity only

in their steady states and others during their view-change

phases as well. Recently, some [15], [28] have even achieved

amortized-linear view synchronization. In all cases though,

these protocols obtain steady-state linearity through the use of

a designated vote-aggregator node. As we previously observed,

this naturally increases their λ, ω and τ relative to our

protocols, and precludes reorg resilience when the aggregator

is not the original proposer. Moreover, while most nodes

incur a steady-state complexity of O(1) in these protocols,

the proposer must still send and the aggregator must still

receive, O(n) messages. This imbalance means that these

protocols under-utilize the available bandwidth in the point-to-

point CRL setting (in which there should be no choke-points

in the network and each node should have similar capabilities).

Non-linear pipelined chain-based protocols. PaLa [14] is

a pipelined CRL protocol with λ = 4δ and ω = 2δ. While

this improves upon the commit latencies of linear pipelined

protocols with ω = 2δ, like [21], PaLa achieves this result

at the cost of O(n2) communication complexity in its steady

state. Accordingly, PaLa is sub-optimal in all three properties.

Non-pipelined chain-based protocols. Similar to PaLa,

ICC [11] incurs O(n2) steady-state communication complex-

ity. However, this protocol eschews pipelining, allowing it to

achieve λ = 3δ through the use of an explicit second round of

voting for each block. Even so, it lacks reorg resilience and its

ω of 2δ and τ of 4Δ make it less efficient in these metrics than

our protocols. Simplex [13] obtains the same λ and ω with τ
= 3Δ, however, it claims responsiveness only when all nodes

are honest. Additionally, its requirement that a leader must

send the entire certified blockchain along with its proposal

makes its communication complexity proportional to size of

the blockchain and thus unbounded, rendering it impractical.

Apollo [5]. Apollo obtains ω = δ at the cost of a λ = (f+1)δ
and assuming a synchronous communication model.

DAG-based protocols. DAG-based consensus protocols

like [34], [35], [29], [25] focus on improving block through-

put. While they naturally produce and commit more blocks

over a given interval than chain-based protocols by virtue

of having all nodes propose in each step, they incur O(n3)
communication in doing so. While recent protocols [25], [29]

in this setting have achieved ω = δ, and λ = 3δ for blocks

proposed by the leader, they require at least 4δ to commit

blocks proposed by other nodes. Consequently, since most

blocks committed by these protocols are non-leader blocks,

their average block commit latency is still higher than our

protocols. Moreover, since these protocols use pipelining, each

δ corresponds to one β under our model from Section V,

meaning that these latencies become even more significant

relative to our protocols as blocks become larger.
Inspiration for future work. Moonshot may be further

optimized by applying insights from other works. For example,

a related line of works [1], [26], [30], [3], [23] achieve λ = 2δ
via optimistic commits when n ≥ 5f − 1. Similarly, works

such as [37], [17] have leveraged trusted execution environ-

ments to limit the power of the adversary, enabling consensus

when n ≥ 2f + 1. Giridharan et al. also recently proposed

BeeGees [22], a pipelined CRL protocol that is able to commit

without requiring consecutive honest leaders. Defining variants

of Moonshot that leverage these optimizations represents an

interesting direction for future work.

VIII. CONCLUSION

We presented the first chain-based rotating leader BFT

protocols for the partially synchronous network model with

ω = δ and λ = 3δ. All three of our protocols outperformed

the previous state-of-the-art CRL protocol, Jolteon, both in the

presence of failures and in failure-free scenarios in a WAN set-

ting. Pipelined Moonshot consistently outperformed Jolteon,

showing the value of low ω and reorg resilience. Likewise,

Commit Moonshot equalled or outperformed Pipelined Moon-

shot in all experiments, showing that pipelining is counter-

productive in the presence of failures and when blocks are

large. These results show that our protocols are suitable for

application in modern low-latency public blockchain systems.
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