
Iniva: Inclusive and Incentive-compatible
Vote Aggregation

Arian Baloochestani, Hanish Gogada, Leander Jehl, Hein Meling
Department of Electrical Engineering and Computer Science

University of Stavanger
Stavanger, Norway

{arian.masoudbaloochestani, hanish.gogada, leander.jehl, hein.meling}@uis.no

Abstract—Many blockchain platforms use committee-based
consensus for scalability, finality, and security. In this consensus
scheme, a committee decides which blocks get appended to the
chain, typically through several voting phases. Platforms typically
leverage the committee members’ recorded votes to reward,
punish, or detect failures. A common approach is to let the
block proposer decide which votes to include, opening the door
to possible attacks. For example, a malicious proposer can omit
votes from targeted committee members, resulting in lost profits
and, ultimately, their departure from the system.

This paper presents Iniva, an inclusive and incentive-
compatible vote aggregation scheme that prevents such vote
omission attacks. Iniva relies on a tree overlay with carefully
selected fallback paths, making it robust against process failures
without needing reconfiguration or additional redundancy. Our
analysis shows that Iniva significantly reduces the chance to omit
individual votes while ensuring that omitting many votes incurs
a significant cost. In addition, our experimental results show that
Iniva enjoys robustness, scalability, and reasonable throughput.

Index Terms—Committee-based blockchains, Vote omission at-
tack, Vote inclusion, Signature aggregation, Incentive-compatible

I. INTRODUCTION

Recently, Ethereum [1], the second largest permissionless

blockchain system and the most popular smart-contract plat-

form, completed its shift from Proof-of-Work (PoW) to a

Proof-of-Stake (PoS)-based consensus mechanism [2]. Sim-

ilar to other networks, like Cosmos [3] or Algorand [4],

Ethereum now uses a committee-based consensus mechanism.

In committee-based consensus, a new block needs to be ac-

cepted and voted for by multiple processes from a committee.

Committee-based consensus can improve security and finality

of PoS [5], [6]. However, committee-based consensus creates

new challenges, e.g., how to reward committee members. To

encourage participation and prevent free-riding, both Cosmos

and Ethereum reward only active committee members [7].

Here, active committee members are detected through the

inclusion of their signatures in the blockchain. Therefore, it is

crucial that the system includes all active members’ signatures

in fault-free cases.

This reward scheme introduces the possibility of novel

forms of attacks. One such attack is the vote omission attack,

This work is partially funded by the BBChain and Credence projects under
grants 274451 and 288126 from the Research Council of Norway.

wherein a malicious actor or a colluding subset of the com-

mittee intentionally omits votes from a targeted victim. This

can drastically affect the victim’s profitability and could even

deter them from further participation in the system [8]. While

existing systems attempt to mitigate vote omission through

carefully crafted incentive mechanisms [3], [9], these strategies

fail to address essential concerns. Attacks can occur even

when there is no immediate, discernible monetary gain for

the attacker. For instance, an attacker could strategically offset

their losses through external mechanisms, such as short-selling

on another platform. Consequently, relying solely on monetary

deterrents may be insufficient for preventing malicious activi-

ties like vote omission. A more nuanced approach to incentives

is crucial for enhancing the robustness of these systems.

Moreover, vote omission attacks are also feasible in per-

missioned systems without a reward mechanism. For example,

Carousel [10] uses vote inclusion to select processes eligible

for leadership. Thus, a vote omission attack in this context

may reduce the chances of electing a correct leader.

Addressing the issue of targeted vote omission is challeng-

ing. Preventing omissions by individual processes requires

redundant aggregation paths. However, existing randomized

approaches that use redundant paths allow free-riding. Ran-

domized approaches remain functional even when a large

fraction of processes evade their aggregation duties, free-

riding on others’ work. Vote aggregation, with its compute-

intensive signature verification, is particularly attractive to

avoid, especially if pairing-based signatures like BLS [11]

are used. Such free-riding again reduces redundancy in vote

aggregation and thus simplifies vote omission. Hence, we want

aggregation protocols that are incentive-compatible, meaning

that processes face penalties or forfeit rewards if they neglect

their aggregation responsibilities.

We analyze existing aggregation schemes. Tree-based pro-

tocols like Kauri [12] and ByzCoin [13] lack the necessary

redundancy to guard effectively against these attacks. On

the other hand, randomized approaches like Handel [14] and

Gosig [15] offer redundant aggregation paths but, ironically,

this redundancy enables free-riding. Our in-depth analysis

shows that Gosig is only effective at mitigating vote omission

under specific configurations. Moreover, the very presence of

free-riding exacerbates the potency of vote omission attacks.

This paper introduces Iniva, a novel method to aggregate

443

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00050

votes in committee-based blockchains. Instead of relying on

incentives, Iniva leverages the properties of indivisible multi-

signatures to effectively counteract vote omissions. In common

multi-signature schemes like BLS [11], aggregated signatures

cannot be decomposed into their constituent parts. More-

over, Iniva organizes processes in a two-level tree. With this

structure, the root cannot omit individual votes aggregated at

lower levels, while votes omitted at intermediate levels can

be re-added. This design effectively neutralizes targeted vote

omissions.

Iniva adopts a redundancy model based on fallback paths,

activated only when required. This approach strikes a balance,

avoiding redundancy in fault-free scenarios while offering

robustness against process and link failures. By employing

fallback paths, Iniva eliminates the complex reconfiguration

steps commonly used in other protocols [12] to find a work-

ing tree. Additionally, Iniva’s reward mechanism discourages

free-riding during vote aggregation. Since fallback paths are

activated only under specific conditions, Iniva can precisely

determine which processes have fulfilled their aggregation

duties.

We integrated Iniva into the HotStuff consensus algo-

rithm [16]. Our experiments show that Iniva ensures vote

inclusion, even in the presence of faults. Additionally, Iniva

is scalable and has a reasonable performance overhead. In

summary, our key contributions are as follows:

• We define indivisibility as a property for multi-signature

schemes, a property provided by existing aggregation

schemes like BLS, and demonstrate its efficacy in miti-

gating targeted vote omission attacks.

• We present Iniva, a robust vote aggregation and reward

scheme for committee-based blockchains that signifi-

cantly improves security against vote omission attacks.

• We analyze our rewarding scheme using game theory, and

prove its incentive-compatibility.

• We analyze Iniva’s security and evaluate its effectiveness.

Our analysis shows that for an attacker controlling 10% of

the processes, the chances to omit an individual signature

are reduced by a factor of 10, while the cost of larger

exclusion is increased by a factor of 7.

• We simulate vote omission attacks against Gosig and

analyze the impact of free-riding.

• We elaborate on the integration of Iniva into the HotStuff

protocol and conduct several experiments to analyze

Iniva’s effectiveness in terms of scalability, throughput,

latency, and vote inclusiveness.

II. BACKGROUND

A. Committee-based Blockchains

Blockchain is a list of blocks cryptographically linked to

form a distributed ledger maintained and shared among all

participants in a network. Each block contains some data, e.g.,

transactions detail. In addition, to ensure the integrity of the

blockchain, each block also contains the hash of its previous

block. Hence, once a block is added to the blockchain, it

is considered immutable since any modification to the block

would also change its hash. Each process in the network

holds a public/private key pair, and their identities are verified

through digital signatures.

Processes need to follow a consensus algorithm to agree on

the inclusion of blocks into the chain. Bitcoin [17] introduced

the PoW consensus algorithm. While PoW guarantees security,

it suffers from several drawbacks, such as probabilistic con-

sistency (forks) and high computational overhead [18]. To this

end, some blockchains [4], [19]–[22] adopt classical Byzantine

Fault Tolerance (BFT) protocols [23], [24] as the consensus

algorithm. However, as these protocols do not scale to a large

number of processes, these methods use a small committee to

run the consensus algorithm.

In committee-based blockchains, first, a leader is elected to

propose a block. Then, a selected committee verifies the block

and votes by signing the block using digital signature schemes.

Leaders gather the signed blocks, and if a block gains more

than a fraction of the votes, the block is considered approved.

Designing a fair rewarding mechanism for committee-based

blockchains is challenging. To prevent free riding, only active

members should get rewarded [25]. Most current protocols rely

on the leaders to detect the active members by collecting the

list of voters. As the leaders might deviate from the protocol,

existing methods incentivize them to act correctly. Cosmos [3]

introduces the variational bonus mechanism in which leaders

receive an extra fraction of the reward based on the number

of votes they collect from the previous committee. Rebop [9]

proposes a reputation-based leader election mechanism with

the reputation defined as the number of collected votes in the

last T rounds as the leader.

B. Multi-Signature Aggregation

Some committee-based blockchains elect one process as the

leader to propose new blocks and receive all the votes

to reduce the message complexity. The scalability of these

blockchains is dependent on the computational and network

capacity of the leader [12]. Some previous works, such as

HotStuff [16] rely on multi-signature aggregation schemes to

reduce the message size by compacting all signatures into

a single signature. However, since HotStuff adopts a star

topology, this puts even more load on the leaders by making

them responsible for signature aggregation and sharing the

result with all committee members. Prior works have proposed

decreasing the leader’s load by distributing the aggregation

work over some or all of the processes. Kauri [12] and

ByzCoin [13] use a tree overlay, where parents aggregate their

children’s votes. Gosig [15] uses a randomized overlay. We

discuss these approaches in more detail in the following.

1) HotStuff: HotStuff is a consensus protocol that operates

in a sequence of views, each involving three voting rounds.

The first round is the prepare round, where the leader proposes

block B for view v and height h. The committee members then

validate B and vote with a prepare message if they have not

already prepared a block with a higher view at the same height.

Once the leader receives enough prepare votes, it aggregates

444

them into one signature called a quorum certificate (QC) and

shares it with all processes. Processes record the received QC

and respond with a pre-commit message. The leader waits for

enough pre-commit replies, forming another QC. This QC is

then sent to all processes in the final commit round, resulting in

a block commitment once enough commit votes are received.

According to Yin et al [26], protocols like Casper FFG [27]

used in Ethereum, or Tendermint [19] used in Cosmos can be

seen as variants of HotStuff.

To achieve better performance, the three rounds can be

performed concurrently for three different views. This variant

is called chained HotStuff, where a single QC can serve as

prepareQC, pre-commitQC, and commitQC at the same time.

HotStuff, can use different leader election policies.

Blockchains typically adopt the Leader-Speak-Once (LSO)

model [28], [29], where every leader only proposes a single

block and the leader is changed every view. LSO minimizes

the leader’s power over new block proposals and makes the

protocol more fair.

2) Tree-based approaches: Kauri and ByzCoin use a tree

for distributing the signature aggregation work among the

processes. The tree-based topology reduces the workload on

the leaders compared to the HotStuff star topology because

each parent process is responsible for aggregating its sub-

tree. In case of failure, these protocols require reconfigurations

and may fall back to a star topology in cases with many

failures [12]. Kauri proposes a reconfiguration mechanism for

trees with height 2. In these trees, processes need to aggregate

O(
√
n) many signatures. Kauri uses pipelining techniques to

achieve high throughput despite the added latency through

communication on the tree. However, while the aggregation

work is distributed among the processes, the parent processes

have complete control over their sub-tree and are able to

exclude leaf children from the aggregated signature.

3) Gosig: Gosig [15] is a BFT protocol for committee-

based blockchains. In Gosig, leaders are selected secretly using

a Verifiable Random Function (VRF) and share their block

proposals with other processes. Each process performs signa-

ture aggregation and repeatedly shares its current aggregate

with k other processes, selected at random from the complete

committee.

III. SYSTEM MODEL

A set Π = {p1, p2, ..., pn} of processes are available in

the committee. For simplicity, we assume Π to be constant

and do not consider the committee selection protocols. The

fixed membership assumption is to simplify explanation and

analysis. Our solution also works for dynamic committees as

long as committee members for one view are known a priori.

We assume a synchronous network with an upper bound Δ on

the delivery of any message between correct participants. Our

system requires synchrony to ensure inclusiveness. In the case

of an eventually synchronous system, it ensures inclusiveness

after global stabilization time [30].

We assume an adversary controlling a fraction m of the

processes in the committee, where m ≤ f = 1/3. Processes

under the control of the adversary may behave arbitrarily.

However, we are especially interested in the case where the

adversary tries to diminish the reward received by one victim

pv ∈ Π. We assume that the adversary cannot disturb the

processing and communication between correct processes.

Thus, denial of service attacks are out of scope.

We assume each process pi in the system has a pri-

vate/public key pair ski/pki and access to a list of other

processes with their public keys.

A multi-signature scheme is a digital signature scheme that

allows the aggregation of signatures. Let σ1 = sign(m, sk1)
and σ2 = sign(m, sk2) be signatures for a message m
produced with different private keys. The signatures can be

aggregated with multiplicity i and j where i, j ∈ Z:

σ′ = agg(σi
1, σ

j
2)

The resulting signature σ′ can be verified by aggregating the

corresponding public signatures with the same multiplicity:

verify(σ′, pki1pk
j
2)

We assume processes have access to an indivisible multi-
signature scheme, such that given σ′, it is infeasible to retrieve

σ1 or σ2. For pairing-based signatures, indivisibility of up to k
signatures was proposed as an assumption by Boneh et al [31].

We use BLS signatures [32], which are indivisible according

to Coron and Naccache [33].

At the beginning of each round, pi is assigned a unique

ID (ID[pi] = i). We assume the processes have access to

a deterministic shuffling algorithm, and Π is shuffled every

round so that the IDs will be different at each round of the

protocol. The shuffling algorithm needs to be unpredictable,

meaning that the processes cannot predict the outcome of

the shuffling for future rounds. As an example, the above

algorithm can be implemented using a VRF [34].

IV. PROBLEM STATEMENT

In committee-based blockchains a leader disseminates a block

to participants, who return votes/signatures to the leader. The

leader then outputs an aggregate of these votes, aka a QC.

We present a slight variation of Kauri’s [12] vote aggregation

scheme below.

Definition 1. A vote aggregation scheme has an interface with

the following communication primitives:

• broadcast(B). Invoked by the leader to disseminate a

block B and start vote aggregation.

• Upcall deliver(B) at pi delivers B. pi emits a vote for

block B:

vote(B) =

{
σB,i if B is valid

⊥ if B is invalid

• Upcall aggregate(B,QCB ,md) at the leader delivers an

aggregate QCB of valid signatures from vote and addi-

tional metadata md specifying which processes’ votes are

included.

445

Neiheiser et al [12] define the following liveness properties

for a vote aggregation scheme:

Definition 2 (Reliable Dissemination). If the leader is correct,

all correct processes deliver the block sent by the leader.

Definition 3 (Fulfillment). If the leader is correct and all

correct processes invoke vote with a valid signature, then the

leader emits a QC containing at least (1− f)N signatures.

These properties are sufficient to ensure liveness and safety of

HotStuff [12]. Additionally, straightforward validity properties

are expected, i.e. that correct processes only deliver blocks

actually sent by the leader, and that QCB only includes valid

signatures.

In this work we are interested in the LSO model, where

the leader changes after every block. We therefore adapt the

vote aggregation scheme, assuming that broadcast is invoked

by the leader proposing B, while aggregate happens at the

next leader. Further, we require reliable dissemination and

fulfillment to hold only if two consecutive leaders are correct.

A. Rewarding

Some committee-based cryptocurrencies use the QC to reward

participants. For example in cryptocurrencies like Cosmos [3],

Solidus [35], or Ethereum [1], the QC is used to detect active

committee members and reward them accordingly to prevent

free riding.

Such rewarding schemes can be modelled as a function

reward(QC), which computes a distribution of rewards based

on the quorum certificate. Since the QC is included in the

next block, the reward distribution can be verified by every

process, re-computing the reward function.

Inclusiveness: If the QC is used for rewarding, it is crucial

for these methods to guarantee the inclusion of all non-faulty

processes within the QC. We refer to this attribute as being

inclusive.

Definition 4 (Inclusiveness). If the current and next leader

are correct, then all signatures from correct processes are

contained in the aggregated QC.

We note that Inclusiveness may also be useful in other con-

texts. For example, Carousel [10] proposes a reputation-based

leader rotation mechanism that looks at the previous QCs to

avoid selecting failed processes as leaders. Using Carousel,

inclusiveness can guarantee that all correct processes actually

can become the leader.

B. Vote omission

Since leaders are in charge of forming QCs, a malicious leader

can ignore some of the votes and form the QC with the

processes it desires. We refer to this attack as the vote omission
attack. Incentive engineering [9] can ensure vote omissions are

not profitable. However, attacks are still possible. Especially

attacks targeted at an individual process may have a devastat-

ing effect on the victim, while only incuring a small cost to the

attacker. In targeted vote omission, an attacker controlling a

large fraction of the committee tries to omit as many votes

from a specific process as possible. In these attacks, the

attacker does not intentionally omit other processes unless it

leads to a more successful attack. We define collateral as the

number of non-target processes that an attacker is willing to

exclude to perform the attack. For example, with a collateral

of 0 only the target will be excluded and no other processes.

To measure the robustness of a protocol against targeted vote

omission attacks, we define c-omission probability.

Definition 5 (c-omission probability). We define the c-
omission probability as the probability for an attacker to

successfully perform a targeted vote omission attack with

collateral at most c during one instance of vote aggregation

based on a random assignment of processes to the attacker and

the victim role. The probability space is the set of all possible

process assignments. We assume all such assignments to be

equally likely. Omission probability is a function in m ∈ [0, 1],
the fraction of the committee’s processes controlled by the

attacker.

For instance, the HotStuff protocol adopts a round-robin leader

selection scheme. Thus, an attacker controlling a fraction m
of the processes can become the leader m fraction of the time.

Given that each leader has the authority to decide which votes

to incorporate, the probability of the attacker executing the

targeted vote omission attack is m.

We note that as an attack probability, a c-omission proba-

bility of m2 signifies a more robust protocol, than c-omission

probability of m.

C. Free riding

Vote aggregation schemes that support redundant aggregation

are susceptible to free riding. Free riding by other processes

(neither victim, nor attacker) helps an attacker to perform vote

omission. For example, in Gosig, all processes are expected

to participate in vote aggregation. However, some processes

may decide to omit the aggregation step to avoid costly

signature verification, and instead, only disseminate their own

signature. If other processes follow this free riding behavior, it

simplifies a targeted vote omission of correct processes, as our

simulations show (see Section VII). To avoid such free riding,

we require vote aggregation to be incentive compatible.

Definition 6 (Incentive compatibility). A rewarding scheme

is incentive compatible if following the protocol gives higher

utility compare to other strategies.

D. Alternative approaches

While existing approaches for signature aggregation also use

indivisible multi-signatures, they have multiple shortcomings.

A summary of the existing protocols’ drawbacks is shown in

Table I.

Existing tree-based signature aggregation approaches such

as Kauri or ByzCoin fail to prevent vote omission attacks as

the internal processes in the tree have direct control over their

children and are able to selectively omit them. Both Kauri and

ByzCoin use a stable tree whose reconfiguration is triggered

by the leader. This allows an attacker in charge of the leader

446

TABLE I: A comparison between existing multi-signature aggregated

schemes

0-omission probability Inclusive Incentive compatible

Star protocol m Yes Yes

Randomized tree ma No Yes

Gosig (k) k-dependentb No No

Iniva m2 Yes Yes

a In a static configuration, the leader may perform the attack every round.
b The 0-omission probability of Gosig depends on k. See Section VII.

to arrange a configuration where it also controls the parent of

the victim. Additionally, the failure of internal processes leads

to the loss of the whole sub-tree under them. This can result in

omissions even in the absence of attacks since these methods

are not inclusive. Complex reconfiguration is needed in case

of failures to rearrange the tree.

Gosig uses a randomized, redundant communication pattern

for vote aggregation. The inclusion of a given process in

the QC is therefore probabilistic, even in fault-free cases.

Here, if the attacker receives the victim’s individual signature

early in the aggregation process, it will be able to remove

it from the final certificate. We performed simulations on

the omission probability of Gosig, which shows that it can

reduce targeted vote omissions only for small values of k and

attackers controlling only a small fraction m. For larger values,

Gosig 0-omission probability is m, allowing targeted omission

every time the attacker is selected as leader. Additionally,

Gosig is vulnerable to free-riding, which simplifies targeted

vote omission.

Another approach to reduce vote omission is to let processes

compete in aggregation and use the process aggregating the

most signatures as the next leader. A similar approach was

applied in Rebop [9]. Unfortunately, this approach opens novel

attacks. An attacker may hold back its own signature, thus

reducing others’ chances of leadership. Note that as incentive

engineering and reputation-based schemes such as Rebop [9]

can defend against targeted vote omission attacks with large

collateral, we are mostly interested in collateral of 0.

In the next section, we show how Iniva avoids reconfigura-

tion and omission using a tree-based overlay and its extension

with an incentive scheme that prevents free riding.

V. INIVA

In committee-based blockchains, committee members work

together to append a new block to the blockchain through sev-

eral views. The current length of the blockchain is represented

through the parameter height h. Processes move to the next

view if they fail to append a new block, while height remains

unchanged. At each view v, one of the processes is selected

as the leader (Lv ∈ Π) and is responsible for proposing a

new block. For adding the proposed block to the blockchain,

Lv must gather at least 1 − f fraction of the votes from the

previous committee, where f defines the maximum fraction of

faulty processes that the protocol can handle (e.g., f = 1/3).

An aggregated signature of 1− f fraction of the committee is

called a QC. The QC of the last approved block is called the

Hash of the previous block

Data
committee h-2

aggregated
signature

Hash of the previous block

Data
committee h-1

aggregated
signature

Hash of the previous block

Data
committee h
aggregated
signature

...

View

Time

A

B

E

D

F

C

Fig. 1: An overview of Iniva. A) Lv commits Bh. It creates and

forwards Bh+1 to Lv+1 and Lv+1 children. B) Lv+1 receives

Bh+1 and starts the view by sharing the proposal with its

children. C) Internal nodes forward Bh+1 to their children,

and wait for their response. D) Leaf nodes verify and sign

Bh+1, and share their signature with their parent. E) Internal

nodes aggregate their children signatures, and share it with

their parent. F) Lv+1 commits Bh+1. It creates and forwards

Bh+2 to Lv+2 and Lv+2 children.

highest QC. Lv uses the highest QC to distribute a reward R
among the members whose votes are included.

In this section, we present Iniva, an Inclusive and Incentive

Compatible Vote Aggregation mechanism in committee-based

blockchains. In the following, we first discuss the proposal

propagation and vote aggregation in Iniva, and then we present

a rewarding scheme that makes Iniva incentive compatible.

A. Signature Aggregation

In this section we discuss the block propagation and signature

aggregation procedures in Iniva, which are shown in Algo-

rithm 1 and Figure 1.

At the start of each view v, the leader of that view, Lv

creates a new block extending the blockchain at current height

h, Bh+1. Based on the QC and view number included in

the block, all processes generate the same tree for the given

view (Lines 4-5, Line 8). Lv then forwards the block to the

447

Algorithm 1 Block propagation and signature aggregation

1: Process Variables:
2: parent � Direct parent of the process in the tree

3: aggSig � The aggregated signature

4: on broadcast(B) � at leader Lv

5: root, children ← makeTree(B)
6: send 〈PROPOSAL, B〉 to root and children

7: on 〈PROPOSAL, B〉
8: parent, children ← makeTree(B)
9: if children 	= ∅ then

10: send 〈PROPOSAL, B〉 to children
11: deliver(B)
12: σB ← vote(B)
13: aggSig ← aggSig ∪ σB

14: if children = ∅ then
15: start aggTimer
16: else � tree leaf

17: send 〈SIGNATURE, σB〉 to parent

18: on 〈SIGNATURE, sig〉
19: assert verifies(sig, sig.signers)
20: aggSig ← aggSig ∪ sig

21: on timeout(aggTimer)

22: if isRoot(self) then � root is Lv+1

23: missing ← Π− aggSig.signers
24: send 〈2ND-CHANCE, B〉 to missing
25: start secondChanceTimer
26: else
27: send 〈SIGNATURE, aggSig〉 to parent
28: send 〈ACK, aggSig〉 to children

29: on 〈ACK, sig〉
30: assert verifies(sig)
31: aggSig ← sig

32: on 〈2ND-CHANCE, B, proof 〉 from p
33: assert isValid(B, proof, p)
34: if B has new view then
35: deliver(B)
36: σB ← vote(B)
37: aggSig ← aggSig ∪ σB

38: send 〈SIGNATURE, aggSig〉 to sender

39: on timeout(secondChanceTimer) � at Lv+1

40: aggregate(aggSig, aggSig.signers)

root process in the tree and its children (Line 6, Figure 1-A).

After receiving and verifying a block, a process builds the

tree itself and forwards the block to its children. Processes

without children (tree leaves) instead send their signatures to

their parents (Lines 7-17).

Each internal process in the tree verifies and aggregates the

received signatures together with its own signature (Lines 18-

20). Upon a timeout, or once aggregation for all children is

completed, the process forwards the aggregated signature to its

parent (Line 27). It also sends an acknowledgement (ack) to its

children (Line 28). The ack includes the aggregated signature

and acts as proof that the parent has included the signatures

of the senders.

Due to network issues or malicious processes in the tree,

some processes may not receive the proposal and aggregated

signatures may be incomplete. The root process in the tree is

the leader of the next view Lv+1. The root process collects

the signatures to a QC, which it uses to create the next block.

Before creating the next block, Lv+1 gives one last chance to

the processes whose votes are not included by sending them

a 2ND-CHANCE message. Lv+1 does send this message either

once a QC has been collected or upon a timeout (Lines 22-25).

Replying to a 2ND-CHANCE message with their individual

signature enables the message sender to exclude a process.

Therefore, processes reply to a 2ND-CHANCE with the aggre-

gated signature received from their parent in an ack message.

Otherwise, 2ND-CHANCE messages are validated according

to function isValid. A second chance message is valid if it

includes a quorum of signatures, or a signature from the parent,

but not the current process’s signature. Additionally, a second

chance message may also be valid if sufficient time has passed

since the block creation. This can be checked by comparing

the block timestamp against the current time.

Since the internal tree processes do more work than other

processes, we propose a mechanism to reward them for their

extra work.

B. Rewarding Mechanism

We now explain our rewarding mechanism. Rewards are

distributed by the leader or root. We first explain how rewards

are distributed and then how other processes verify the dis-

tribution determined by the leader. We identify the following

requirements for our rewarding system:

1) All active committee members should be rewarded.

2) Processes with extra responsibilities, like the internal

processes and the leader, should receive an additional

reward.

3) Omission of any assigned duties, i.e. voting, aggregation,

or 2ND-CHANCE messages, should result in reduced

rewards.

4) The total reward paid out per block should be indepen-

dent of how many votes were aggregated.

We note that requirements 1-3 ensure that processes are moti-

vated to conduct their assigned tasks. Requirement 4 ensures

that the aggregation and rewarding procedures do not affect

the amount being distributed. This allows, for example, to use

fees received from users to be redistributed as a reward. In

case rewards are newly minted tokens, this ensures a constant

and predictable creation rate. Finally, this also ensures that

our rewarding method is not susceptible to attacks, where a

process may forfeit some of its rewards but receives a larger

fraction of the total reward paid. Such attacks exist in other

schemes, e.g. selfish mining [36].

According to Requirement 2 and 1, we use a certain fraction

of the total reward to give a bonus for aggregating processes

448

(ba), and the leader (bl) and distribute the remaining reward

evenly among all processes, whose signature is included in the

final vote bv = (1− bl − ba).
Let R denote the total reward given out for one block. Due

to Requirement 4, the bonus for aggregation and leader is

given as a fraction of R. As a bonus for aggregation, internal

processes receive ba
n R for each signature of a child. Similarly,

the leader, or root of the tree, receives ba
n R for each subtree

that it aggregates.

For the leader bonus, we use a similar approach as the

variational bonus introduced in Cosmos [3], where the leader

receives a bonus of bl
fNR for each signature included in

the final certificate, exceeding the minimal requirement of

(1− f)N signatures.

The reason for having a separate bonus for the leader

is that the leader is the only process that can send 2ND-

CHANCE messages to every other process. Therefore, by tying

the leader bonus to the number of included processes, we

motivate the leader to send 2ND-CHANCE messages to all

missing processes.

Finally, we want leaf processes to be aggregated by their

parents rather than through 2ND-CHANCE messages. If a leaf

process is included via a 2ND-CHANCE message, its parent

loses the ba
n R aggregation bonus. In these cases, we also

reduce the voting reward received by the child by ba
n R.

Finally, all remaining reward, after deducing aggrega-

tion and leader bonuses and applying punishment for 2ND-

CHANCE, is distributed evenly among all the processes in the

committee.

We note that to compute the rewards, it is necessary to know

who the leader was, which signatures have been included, who

performed how many aggregations, and whether signatures

have been collected through aggregation or via 2ND-CHANCE

messages.

Since the leader and tree can be recreated deterministically,

the main issue is determining if a signature has been collected

through 2ND-CHANCE messages. For this purpose, we use the

fact that the same signatures can also be aggregated multiple

times in an indivisible aggregation scheme. Thus, when an

internal process aggregates its children, it includes each child’s

signature twice, while a leader aggregating 2ND-CHANCE

messages will include signatures only once. Additionally, the

internal process will include its own signature one additional

time for each aggregated child.

For example, if a process collects 2 signatures σ1 and σ2,

it adds its own signature σi 2 additional times, resulting in an

aggregated signature:

aggSig = agg(σ2
1 , σ

2
2 , σ

3
i) (1)

The leader does check these multiplicities and only includes

correctly aggregated shares. We note that if an internal process

or a leaf sets a wrong multiplicity on its signature, this can be

detected by the leader. Further, the leader cannot change the

multiplicity of signatures reported by internal processes since

these are indivisible. To check that aggregation bonuses and

2ND-CHANCE punishments are computed correctly, processes

simply compare the multiplicities of the signatures of leaf

and internal processes. The leader is considered faulty if the

multiplicities reported in a block are wrong.

C. Discussion

Iniva uses a tree-based structure and indivisible multi-signature

aggregation scheme to remain inclusive and prevent vote

omission attacks. In the absence of failures and attacks, Iniva

requires only one tree aggregation, which is comparable to

existing tree-based aggregation schemes [12] in terms of

latency and throughput. In the presence of partial failures,

Iniva relies on fallback paths for fault tolerance.

Theorem 1. Algorithm 1 guarantees Reliable Dissemination.

Proof. According to Definition 2 and our adjustment to LSO,

we assume that the leader Lv and the next leader Lv+1 are

correct. Lv+1 is also the root of the tree used for dissemination.

If any correct process pi does not receive the block through

the tree dissemination (Line 11 of Alg. 1), pi will not send a

signature. Therefore Lv+1 will send a 2ND-CHANCE message

to pi and pi will deliver executing (Line 35).

In Iniva we use a tree of height 2 (Algorithm 1). A tree

with more levels could provide better protection against

vote omission, as the internal processes would also send

2ND-CHANCE messages. However, multiple rounds of 2ND-

CHANCE messages, and additional levels would significantly

increase latency.

Iniva’s maximum latency for each round is 7Δ. Since Δ
is the upper bound for message delivery between correct

processes, it takes 1Δ for Lv−1 to share a new block with

Lv . Thus, leaf processes receive the block 2Δ later, and it

takes another 2Δ for the leader to receive the aggregated

messages. Finally, if there are any missing signatures, another

2Δ is added to the overall latency due to the 2ND-CHANCE

messages.

Theorem 2. Algorithm 1 guarantees Inclusiveness after 7Δ.

Proof. Let pi be a correct process whose signature was not

received by the root during tree aggregation. Since we can

assume that the root and next leader is correct, pi will

receive a 2ND-CHANCE message and reply either with its own

signature, or an aggregate received in ACK. In the later case,

the aggregate also includes pi’s signature. This signature will

be aggregated by the leader. The delay of 7Δ follows from

the argument above.

The following Corollary follows easily, since Inclusiveness

actually implies Fulfillment.

Corollary 1. Iniva guarantees Fulfillment.

Note that the number of included votes is also dependent on

when the leader send the 2ND-CHANCE messages. Processes

that have not received the block from their parents need

some time to verify and sign the block. If the leader sends

the 2ND-CHANCE within a certain timeout, missing processes

have more time to keep up. However, some processes might

449

receive the 2ND-CHANCE message before the acknowledgment

from their parent. While increasing timeouts alleviates this

problem, it leads to higher latency and lower throughput. Our

evaluations (section VIII) show that in presence of failures,

lower timeouts result in increased throughput, while larger

timeouts favor inclusiveness.

VI. INCENTIVE ANALYSIS

We use game theory to analyze the possible strategies for

processes in different roles. We model the system as a two-

player game, where each player controls a fraction of the

processes. We show that if the player controlling the majority

of processes acts honestly, then strategies available to the

minority player are dominated by the honest strategy.

a) Player Set: We assume two players, an honest player

ph and an attacker pa. We assume that pa controls a fraction

m < 0.5 of all processes.

b) Strategy Set: The strategies available to players are

expressed as S(el, ev, ea, ep). The parameters el, ev , ea, and

ep express different possible attacks. We omit some strategies

that are obviously not beneficial. For example, not propos-

ing a block since it results in zero reward. The strategy

S0 = S(0, 0, 0, 0) corresponds to correct behavior. The attacks

available to a player depend on its processes’ roles in a round:

round leader, internal process, and leaf process.

The leader collects signatures for the block. It can submit

complete subtrees or individual, 2ND-CHANCE messages from

the block. Parameter el describes a strategy in which the player

tries to omit el · n many signatures belonging to the other

player. To form a valid block, el ≤ f must hold.

If a player controls processes that are not the leader, these

processes can refrain from voting for a block. We assume ev ·n
many processes belonging to the player omit their votes.

Internal processes aggregate signatures in their subtree.

They may omit aggregating these signatures, leaving signa-

tures to be aggregated by 2ND-CHANCE messages instead.

The player omits aggregation of ea · n many signatures from

processes belonging to the other player.

Leaf processes can refrain from sending their signatures

to their parent, sending them in a 2ND-CHANCE message to

the leader instead. We assume es · n many processes under a

player’s control do this.

c) Utility Function: We define the player’s utility func-

tion as its payoff in each round. This payoff includes both the

voting reward and the aggregation bonus.

In the following, we analyze the profitability of different

strategies for player pa, assuming that ph follows S0. In

any strategy S′ other than S0, both pa looses some rewards

compared to S0. Let L[S′] be this loss. The total rewards lost

by pa and ph (R[S′]) are redistributed, and pa gains m ·R[S′].
We derive conditions, such that m · R[S′] < L[S′], which

ensures S′ is dominated by S0.

A. Vote Omission

A player controlling the leader may omit entire subtrees. In

S(el, 0, 0, 0) the leader omits el · n many votes, belonging

to another player. In this case, the voting reward of omitted

processes elbvR and the aggregation reward elbaR for these

votes are redistributed among all processes. Similarly, the

leader bonus is reduced by el
f blR and redistributed.

With this strategy, player pa loses at least el
f blR but gains

a fraction m of the redistributed rewards. We deduce the

following condition:

el
f
bl > m

(
el
f
bl + elba + elbv

)
(2)

⇔ bl >
mf

1−m+mf
(3)

B. Vote Denial

If a player is in control of non-leader processes, these may

refrain from voting. In strategy S(0, ev, 0, 0) a player refrains

from voting with evn many of its processes. We only consider

this vote denial attack when the player does not hold the

leader. In this case, the player loses the voting reward for

omitted votes ev ·bvR but gains fraction m of the redistributed

leader bonus ev
f blR and aggregation bonus evbaR. The lost

voting reward is also redistributed. We deduce the following

condition:

evbv > m(
ev
f
bl + evba + evbv) (4)

⇔ bl <
f(1− ba −m)

m+ f −mf
(5)

C. Aggregation Denial

A leaf process in the tree can not send its vote to its parent

and reply to 2ND-CHANCE messages instead. We refer to this

attack as aggregation denial. We use the parameter ea for a

strategy where ean many processes from the player perform

this attack. In this attack, the attacker is punished, losing

eabaR of its voting reward. This punishment and the denied

aggregation bonus eabaR are redistributed. Thus, this attack

is not profitable if the following equation holds:

m2eaba < eaba (6)

D. Aggregation Omission

If a player controls an internal process, it can skip aggregating

some connected leaf processes, leaving the leaf processes’

votes to be collected via 2ND-CHANCE messages. This will

result in punishment for the leaf processes. We refer to

this attack as aggregation omission. If epn many signatures

from the leaf processes belonging to other players are not

aggregated, the attacker loses epbaR of its aggregation reward.

The punishment and lost aggregation bonus are redistributed.

This results again in Equation 6. For m < 0.5, Equation 6

holds and we get the following Lemma:

Theorem 3. For a player pa with m < 0.5, if Equations 3

and 5 hold, then all strategies S(el, ev, ea, ep) are dominated

by S(0, 0, 0, 0).

Proof. This follows from the analysis above, since the redis-

tributed and lost rewards (R[S′] and L[S′]) for different attacks

sum up.

450

VII. SECURITY ANALYSIS

This section analyzes the security of Iniva against possible

attack scenarios.

A. Targeted Vote Omission

Here we analyze the security of Iniva against targeted vote

omission attack with collateral 0, in which the attacker tries

to omit an individual vote.

In Iniva, the direct parent is not able to omit its children

since the 2ND-CHANCE messages help an omitted process

to get re-added by the tree root. Additionally, due to the

indivisible multi-aggregation schemes, the root is not able to

retrieve and omit one specific signature from the aggregated

signatures it receives. Therefore, in order for the attack to be

successful, the attacker needs to control two specific processes.

If the victim is a tree leaf, the attacker can omit its signature if

it controls both the root of the tree and the direct parent of its

victim in one view. Considering m to denote the attacker’s

power as the fraction of committee members the attacker

controls, and P is the probability of the victim to be a leaf,

the probability of such an attack is P ·m2.

Omitting an individual vote is also possible if the victim is

an internal process, and the attacker controls both the current

and previous view leaders. In this way, the attacker can skip

sharing the block proposal with the victim, and collect the

victim’s children through 2ND-CHANCE messages. Note that

controlling both leaders is required for this scenario since the

block proposal is created by the leader of the previous view

and is shared with both the current view leader and its children.

The probability of such a scenario is (1− P) ·m2.

Theorem 4. In Iniva, the probability for an attacker with

power m, to omit only its target is m2.

Proof. This is an immediate result of summing the above

probabilities: P ·m2 + (1− P) ·m2 = m2

Corollary 2. Considering the two attacks above, 0-omission

probability of Iniva is m2.

Note that if an internal process does not respond with an

acknowledgment to the received signatures, a process might be

lured into replying to a 2ND-CHANCE sent by a faulty leader

and gets omitted. Therefore, Theorem 4 holds if the victim

receives the acknowledgment from a correct parent before a

potential 2ND-CHANCE from the attacker.

An attacker can still exclude a whole branch (a + 1 pro-

cesses, considering a leaves for the aggregator) to omit one

targeted process by having access to Lv (collateral of a). This

is further analyzed in our simulations below. However, existing

incentive-based solutions are well suited to prevent such large

omissions and may be applied additionally to Iniva.

B. Simulations

To prove the security of Iniva against the mentioned at-

tacks, we conducted different simulations. We use Gosig and

a simple star protocol with round-robin leader election as

the baseline. Unless mentioned otherwise, in all simulations

related to Iniva there are 111 processes in the committee,

forming a 2-level tree with fan-out of 10. Results of the

simulations are shown in Figure 2.

We first simulated the targeted vote omission attack with

collateral of 0 in Gosig under different k and different at-

tacking power m. We also looked into situations where 30%
of the processes are free riding and also situations where

the malicious leader tries to be greedy, and initiates the

aggregation process by first sharing the signature with the

victims. As shown in Figure 2a, while Gosig can defend

against the attack under small k and m, increasing these

parameters highers the omission probability of Gosig that of a

star protocol. The results also show that free riding makes the

attack more successful. For example, while having k = 2 and

m = 5% the attack in Gosig happens only 4% of the time,

free-riding increases the chances of the attack up to 24%.

In the second simulation we analyzed the robustness of

Iniva and Gosig against vote omission attack under different

collateral. Figure 2b shows the number of successful omissions

based on the collateral. In this simulation, the attacking power

m is set to 5%. Different than Gosig, collateral has little effect

on omission probability in Iniva, as long as it is not enough

to allow removal of a complete sub-tree. Thus Iniva has a

reasonable and mostly better omission probability compared

to baseline methods under different collateral.

The third simulation compares the fraction of the reward

lost by victim and attacker under different attacks in Iniva,

with the star protocol as the baseline. In Iniva, we use bl as

15%, and ba as 2%. The baseline also uses the same leader

bonus, but not aggregation reward.

Figure 2c shows the difference between the reward gained

by the victim and attackers with their expected share (1/111).

We can see that while in baseline, an attacker with m = 0.3 is

able to lower the expected share of the victim by vote omission

attack almost 25%, in Iniva this is reduced to around 7%.

The effect of vote denial attack is almost the same in both

baseline and Iniva, but it’s is a much more expensive attack

compare to vote omission, since the attackers lose much more

for performing the attack. We note that, while for a larger

attacker, the fraction of reward lost in the attack is reduced,

the actual cost still increases.

In the fourth simulation we show the effect of the tree

configuration (number of internal processes) on vote omission

with any collateral. Figure 2d compares how much reward

(percentage of the block reward) attacker and victim lose

in Iniva having 4 and 10 internal processes (111 and 109

processes in total respectively), and star protocol as the base-

line. For example, an attacker with m = 0.1 loses 7 times

more in Iniva with 10 internal processes compared to the star

protocol. Having larger sub-trees makes the attack with high

collateral even more expensive due to the larger number of

children under each aggregator. We see that an attacker with

m = 0.1 loses 15 times more in Iniva with 4 internal processes

compared to the baseline. This shows while Iniva is unable to

reduce the probability of the attack for higher collateral, it

effectively increases the cost of the attack, making it more

451

(a) Vote omission probability with collateral 0: This simulation
compares the possibility of targeted vote omission attack in Gosig
with Star protocol and Iniva under different values of k and m.

(b) Vote omission probability with larger collateral: Percentage of
blocks with successful vote omission attack in Iniva, Gosig, and Star
protocol with different collateral. m is set to 5%.

(c) Effect of different attacks with collateral 0: It compares the fraction of the fair
reward lost by the victim and attacker under different attacks under different (m)
for a star protocol with leader reward and Iniva.

(d) Vote omission effect with large collateral: Compares
the reward lost (a percentage of the block reward) for
both the attacker and the victim when the attacker
removes up to a whole branch for omitting its target in
Iniva with 4 and 10 internal nodes and the star protocol.

Fig. 2: Simulation results. In each simulation, there are 111 processes in each committee for Iniva (a full 2-level tree with a

fan-out of 10). In (a) and (b) there are 100 processes in the committee for Gosig. In (d), there are 109 processes when having

4 internal nodes.

difficult to perform.

VIII. EXPERIMENTAL RESULTS

A. Implementation

We implemented Iniva, integrating the signature aggregation

described in Algorithm 1 in an existing implementation of

the HotStuff consensus algorithm [37] 1. Iniva is added as a

module in the framework to perform propagation of blocks and

vote aggregation. Iniva does not change the implementation of

consensus, or client and request handling.

The HotStuff algorithm operates in synchronous

rounds [16]. A new block is only proposed after the

votes for the previous block have been aggregated. In this

setting, additional latency during dissemination and waiting

for additional votes affects not only latency but also the

throughput of the protocol. This allows us to realistically

evaluate the overhead added by Iniva.

1The source code for the experiments and simulations is available at https:
//github.com/relab/iniva-artifacts.

We also implemented a few variants of Iniva to evaluate

our design choices. In most BFT protocols, the leader stops

collecting/waiting for votes once it has a quorum. Iniva triggers

a 2ND-CHANCE after obtaining a QC to provide a second

chance to the processes which their parents intentionally left

out. To understand the overhead of this design choice, we

implemented a variant that we call Iniva-No2C, where no

2ND-CHANCE messages are sent. Iniva-No2C provides the

cost of proposal dissemination and vote aggregation in the

tree communication model.

The aggregation timer started on Line 15 of Algorithm 1

determines performance and inclusion of the protocol. If the

timer is set too low, the leader may not be able to collect a

QC, causing a view failure. If it is set too high, the processes

will wait longer for the contribution from faulty processes,

resulting in degraded performance. For failure scenarios, we

varied the timer to understand its effect on view failures,

throughput, latency, and inclusion.

452

0.6 0.8 1 1.2 1.4 1.6 1.8
·104

0

1

2

3

Throughput (op/sec)

L
at

en
cy

(s
ec

)

Iniva 64b B=100 Iniva-No2C 64b B=100 HotStuff 64b B=100

Iniva 128b B=100 Iniva-No2C 128b B=100 HotStuff 128b B=100

Iniva 64b B=800 Iniva-No2C 64b B=800 HotStuff 64b B=800

Iniva 128b B=800 Iniva-No2C 128b B=800 HotStuff 128b B=800

(a) Throughput vs latency for HotStuff, Iniva,
and Iniva-No2C.

100 800

100

200

300

400

Batch size

C
P

U

HotStuff 64b HotStuff 128b

Iniva 64b Iniva 128b

(b) CPU usage of HotStuff and Iniva.

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2
·104

Replicas

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

HotStuff 0b

HotStuff 64b

Iniva 0b

Iniva 64b

(c) Scalability evaluation with batch size
B = 100 and varying configuration sizes and
payloads. Configuration sizes are selected to
have an almost complete tree of height 3.

Fig. 3: Experimental results with 21 replicas, 4 clients and different payload and batch sizes.

B. Setup

We used our local cluster to evaluate our implementation. The

cluster contains 25 machines and each node has 32 GB of

RAM and 12 cores of Intel Xenon processors with a maximum

frequency of 3.3 GHz. A 10 Gbps TOR switch connects nodes

and the latency among the nodes is less than 1 ms. We used

round-robin leader rotation policy in the experiments, except

for a few experiments where we used the Carousel leader

election policy [10]. All experiments run for 150 seconds and

metrics are collected every second. The first 5 seconds are used

as a warm-up period. All results have less than 1% variance

with a 90% confidence interval.

C. Evaluation

We evaluated our implementation in three ways, each with a

different objective.

• Base evaluation is performed to evaluate the overhead,

throughput, latency, and resource utilization of Iniva and

compare it with HotStuff in a fault-free configuration.

• Scaling experiments are conducted to compare Iniva and

HotStuff with increasing configuration size.

• Resiliency evaluation is conducted on the different Iniva

variants to understand the effect of failures on throughput,

latency, and inclusiveness.

1) Base Evaluation: We used 21 machines as processes

and 4 machines as clients. For Iniva, these 21 processes are

arranged as a complete tree of height 2 with 4 internal and

16 leaf nodes.

Clients send the request to all processes and expect a

quorum of replies before considering the request committed.

Requests contain 64 or 128 bytes payload. Batching of re-

quests is enabled at the processes and we used 100 and 800

batch sizes for this evaluation. Clients measure latency and the

throughput is measured at the processes. We used BLS12 [11]

for signature aggregation.

Figure 3a shows throughput and latency under different

client loads. The aggregation timer is adjusted based on the

client load on the cluster. We observe that the throughput of

Iniva is ∼ 33% lower than HotStuff. The tree-based communi-

cation without 2ND-CHANCE (Iniva-No2C) is responsible for

about half of the overhead. Although throughput is not the

primary objective of Iniva, it can be compensated for with

larger batch sizes. Additionally, pipelining of requests in the

tree, similar to Kauri [12] could improve throughput. Also,

Iniva still has a reasonable throughput compared to most PoW-

based schemes such as Bitcoin.

Figure 3b shows the CPU usage for HotStuff and Iniva for

two different payload sizes (64 and 128 bytes) and batch sizes

(B = 100 and B = 800). The CPU usage is measured as the

percentage of CPU time used by the process. The results show

that Iniva uses ∼ 48% less CPU compared to HotStuff. The

lower CPU consumption is due to Iniva’s tree structure. The

tree structure distributes the load and thus reduces CPU usage,

but also increases latency and reduces throughput. Doubling

the payload from 64 to 128 bytes does not significantly impact

CPU usage. When the throughput results are correlated with

the CPU usage, we argue that Iniva could outperform HotStuff

in a resource-constrained environment.

2) Scaling Evaluation: To evaluate the scalability, we run

up to 130 processes, having each physical machine hosting

5 processes. We use batch size 100 and 4 clients. With

increased configuration size, the branching factor of the tree

is increased to keep the tree’s height constant. Figure 3c

shows throughput observed for various configurations with

and without payload for HotStuff and Iniva. With increased

configuration size, throughput decreases gradually.

3) Resiliency Evaluation: We conducted the resiliency eval-

uation of the Iniva protocol by inducing crash failures in

the configuration. As explained earlier, Iniva reconfigures the

position of the processes in the tree for every view and faulty

processes are randomly placed in the tree. The experiment is

done with 21 processes, each running on individual machines

with batch size 100 and 4 clients. We set the aggregation timer

and second chance timer based on the following heuristic.

453

δ = 5 ms (Carousel) δ = 5 ms δ = 10 ms Minimum votes for Quorum Certificate Maximum possible votes

0 1 2 3 4

1,000

2,000

3,000

4,000

5,000

Number of faulty nodes

T
h
ro

u
g
h
p
u
t

(o
p
/s

ec
)

(a) Throughput.

0 1 2 3 4
0

2

4

6

8

Number of faulty nodes

L
at

en
cy

(s
ec

)

(b) Latency.

0 1 2 3 4
0

10

20

30

Number of faulty nodes

F
ai

le
d

V
ie

w
s

(%
)

(c) Percentage of failed views.

0 1 2 3 4
14

16

18

20

Number of faulty nodes

S
iz

e
o
f

th
e

Q
u
o
ru

m
C

er
ti

fi
ca

te

(d) Average number of votes included in quorum certificates.

Fig. 4: Experiments with a 21-replica configuration with faulty nodes randomly placed in the tree. We vary the second chance

timer (δ) and leader election policy (Round-Robin and Carousel).

Let Δ be the network delay between the processes. The

aggregation timer is set to 2Δ · height(p), where height(p)
is p’s height in the tree. The second chance timer is set to

δ = 2Δ. We repeated the experiments with two different δ
values, 5ms and 10ms.

Figure 4 shows the effect of failures on the throughput,

latency, failed views, and inclusion. With faulty processes in

the system, internal processes will wait for votes and the

leader will wait for 2ND-CHANCE messages. With increasing

failures, latency increases and throughput decreases, as seen in

Figures 4a and 4b. The longer second chance timer of 10 ms

causes higher latencies and lower throughput.

Figure 4c shows the percentage of failed views. A view may

fail either because its leader is faulty, or because no QC could

be collected. We also included a variant of Iniva that uses

the Carousel leader election to avoid electing faulty leaders.

If two of the four internal processes are faulty, no QC can be

collected without the 2ND-CHANCE messages. With a higher

second chance timer, the number of failed views decreased by

10%.

One of the main objectives of the Iniva mechanism is

inclusion. Figure 4d shows the average number of votes

included. With 4 failures Iniva includes more than 99% of

correct processes. Our baseline, HotStuff, always includes a

quorum of 15 votes. We also see that the increased timer has

a positive effect on inclusion.

IX. CONCLUSION

In this paper we proposed Iniva, a vote aggregation protocol

to defend against targeted vote omission attacks. Iniva is

built upon Indivisibility, a feature of some multi-signature

aggregation schemes that we defined. Using a tree overlay

and fallback paths, Iniva stays inclusive and fault-tolerant.

The designed rewarding mechanism motivates processes to

participate in the aggregation procedure, and makes Iniva

incentive compatible. We conducted several experiments and

simulations to analyze Iniva from different perspectives such

as security, throughput, latency, recourse efficiency, scalability,

and tolerating faults. The results show while Iniva outperforms

previous work in terms of preventing vote omission attacks,

it has a reasonable performance even in presence of faulty

processes in the system.

454

REFERENCES

[1] V. Buterin, “Ethereum 2.0 spec–Casper and sharding,” Available [on-
line].[Accessed: 30-10-2018], 2018.

[2] Ethereum, “The merge,” Nov 2022. [Online]. Available: https:
//ethereum.org/en/upgrades/merge/

[3] J. Kwon and E. Buchman, “Cosmos: A network of distributed ledgers,”
URL https://cosmos. network/whitepaper, 2016.

[4] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theoretical Computer Science, vol. 777, pp. 155–183, 2019.

[5] Y. Liu, J. Liu, Z. Zhang, and H. Yu, “A fair selection protocol for
committee-based permissionless blockchains,” Computers & Security,
vol. 91, p. 101718, 2020.

[6] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-
Piergiovanni, “On fairness in committee-based blockchains,” arXiv
preprint arXiv:1910.09786, 2019.

[7] V. Buterin, D. Reijsbergen, S. Leonardos, and G. Piliouras, “Incentives
in Ethereum’s hybrid Casper protocol,” International Journal of Network
Management, vol. 30, no. 5, p. e2098, 2020.

[8] V. Buterin, “Discouragement attacks,” ETH research, 2018.
[9] A. Baloochestani, L. Jehl, and H. Meling, “Rebop: Reputation-based in-

centives in committee-based blockchains,” in IFIP International Confer-
ence on Distributed Applications and Interoperable Systems. Springer,
2022, pp. 37–54.

[10] S. Cohen, R. Gelashvili, L. K. Kogias, Z. Li, D. Malkhi, A. Sonnino, and
A. Spiegelman, “Be aware of your leaders,” in International Conference
on Financial Cryptography and Data Security. Springer, 2022, pp.
279–295.

[11] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves
with prescribed embedding degrees,” Cryptology ePrint Archive, Paper
2002/088, 2002, https://eprint.iacr.org/2002/088. [Online]. Available:
https://eprint.iacr.org/2002/088

[12] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable BFT
consensus with pipelined tree-based dissemination and aggregation,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021, pp. 35–48.

[13] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing Bitcoin security and performance with strong consistency
via collective signing,” in 25th usenix security symposium (usenix
security 16), 2016, pp. 279–296.

[14] O. Bégassat, B. Kolad, N. Gailly, and N. Liochon, “Handel: Practi-
cal multi-signature aggregation for large byzantine committees,” arXiv
preprint arXiv:1906.05132, 2019.

[15] P. Li, G. Wang, X. Chen, F. Long, and W. Xu, “Gosig: a scalable and
high-performance byzantine consensus for consortium blockchains,” in
Proceedings of the 11th ACM Symposium on Cloud Computing, 2020,
pp. 223–237.

[16] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: BFT consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[17] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Tech.
Rep., 2008.

[18] Y. Meng, Z. Cao, and D. Qu, “A committee-based byzantine consensus
protocol for blockchain,” in 2018 IEEE 9th International Conference on
Software Engineering and Service Science (ICSESS). IEEE, 2018, pp.
1–6.

[19] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall,
vol. 1, no. 11, 2014.

[20] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the Libra blockchain,” The Libra Assn., Tech. Rep, 2019.

[21] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2019, pp. 23–41.

[22] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology overview
series, consensus system,” arXiv preprint arXiv:1805.04548, 2018.

[23] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[24] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” in Concurrency: the works of Leslie Lamport, 2019, pp. 203–226.

[25] Y. Amoussou-Guenou, B. Biais, M. Potop-Butucaru, and S. Tucci-
Piergiovanni, “Rational behavior in committee-based blockchains,”
Cryptology ePrint Archive, 2020.

[26] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus in the lens of blockchain,” 2019.

[27] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[28] I. Abraham, K. Nayak, and N. Shrestha, “Optimal good-case latency for
rotating leader synchronous bft,” Cryptology ePrint Archive, 2021.

[29] N. Giridharan, F. Suri-Payer, M. Ding, H. Howard, I. Abraham, and
N. Crooks, “Beegees: stayin’alive in chained bft,” in Proceedings of the
2023 ACM Symposium on Principles of Distributed Computing, 2023,
pp. 233–243.

[30] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, apr 1988.
[Online]. Available: https://doi.org/10.1145/42282.42283

[31] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in International
conference on the theory and applications of cryptographic techniques.
Springer, 2003, pp. 416–432.

[32] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” Journal of cryptology, vol. 17, no. 4, pp. 297–319, 2004.

[33] J.-S. Coron and D. Naccache, “Boneh et al.’sk-element aggregate ex-
traction assumption is equivalent to the diffie-hellman assumption,” in
Advances in Cryptology-ASIACRYPT 2003: 9th International Confer-
ence on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, November 30–December 4, 2003. Proceedings
9. Springer, 2003, pp. 392–397.

[34] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th annual symposium on foundations of computer science (cat. No.
99CB37039). IEEE, 1999, pp. 120–130.

[35] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solidus:
An incentive-compatible cryptocurrency based on permissionless byzan-
tine consensus,” CoRR, abs/1612.02916, 2016.

[36] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Communications of the ACM, vol. 61, no. 7, pp. 95–102,
2018.

[37] H. Gogada, H. Meling, L. Jehl, and J. I. Olsen, “An extensible framework
for implementing and validating byzantine fault-tolerant protocols,” in
Proceedings of the 5th Workshop on Advanced Tools, Programming
Languages, and PLatforms for Implementing and Evaluating Algorithms
for Distributed Systems, ser. ApPLIED 2023. New York, NY, USA:
Association for Computing Machinery, 2023.

455

