
PagPassGPT: Pattern Guided Password Guessing
via Generative Pretrained Transformer

Xingyu Su1,2, Xiaojie Zhu3(�), Yang Li1,2, Yong Li2, Chi Chen1,2, Paulo Esteves-Verı́ssimo3

School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
{suxingyu, liyang8119, liyong, chenchi}@iie.ac.cn

{xiaojie.zhu, paulo.verissimo}@kaust.edu.sa

Abstract—Amidst the surge in deep learning-based password
guessing models, challenges of generating high-quality passwords
and reducing duplicate passwords persist. To address these
challenges, we present PagPassGPT, a password guessing model
constructed on a Generative Pretrained Transformer (GPT). It
can perform pattern guided guessing by incorporating pattern
structure information as background knowledge, resulting in a
significant increase in the hit rate. Furthermore, we propose
D&C-GEN to reduce the repeat rate of generated passwords,
which adopts the concept of a divide-and-conquer approach.
The primary task of guessing passwords is recursively divided
into non-overlapping subtasks. Each subtask inherits the knowl-
edge from the parent task and predicts succeeding tokens. In
comparison to the state-of-the-art model, our proposed scheme
exhibits the capability to correctly guess 12% more passwords
while producing 25% fewer duplicates.

Index Terms—password guessing, generative pretrained trans-
former, trawling attack

I. INTRODUCTION

As we embrace the digital age, passwords have become
ubiquitous in our society. Accompanying the widespread use
of passwords, the risk of password cracking is becoming a pub-
lic concern. This threat arises from users’ tendency to select
meaningful characters as passwords [1], inadvertently making
them susceptible to password guessing attacks, particularly
targeted attacks and trawling attacks. Targeted attacks aim to
crack users’ passwords by collecting personally identifiable
information and user identification credentials while trawling
attacks focus on discovering user accounts that match known
passwords [2].

Florêncio et al. [3] investigated various user accounts and
observed that the majority of accounts are not essential.
According to their research, users might opt to create a new
account rather than spend 10 minutes recovering a lost one.
Rather than being a target, users are more likely to face threats
from trawling attacks.

To enrich the literature on trawling attacks, extensive re-
search has been conducted. In 1979, Morris et al. [4] proposed
heuristic rules for generating passwords using dictionary words
and utilized them in password guessing attacks. Subsequently,

(�): Corresponding author
Our code is available at https://github.com/Suxyuuu/PagPassGPT.

Password
Guessing

Model
L4N3S1

Input Pattern

Pass123!

···

Duck101$

lucy903.

Fig. 1. The process of pattern guided guessing. The pattern “L4N3S1”
signifies a password comprising four letters, followed by three numbers, and
ending with one special character. Pattern guided guessing refers to the process
wherein a password guessing model generates passwords that adhere to such
specific patterns.

traditional probabilistic models emerged and evolved, such as
Probabilistic Context-Free Grammar (PCFG) models [5]–[8],
and Markov models [9], [10]. These models heavily depend on
the training set and pose challenges in terms of generalization.
To mitigate this concern, deep learning models are gradually
introduced into the field of password guessing. Models, such as
those based on Long Short-Term Memory (LSTM) [11], [12],
Generative Adversarial Network (GAN) [13]–[16], Autoen-
coder (AE) [17]–[19], and Generative Pretrained Transformer
(GPT) [20]–[23], have contributed significantly to the advance-
ment of password guessing models. Particularly, PassGPT
[23], introduced by Rando et al. in 2023, stands out as the
state-of-the-art model in deep learning-based password guess-
ing. Before the introduction of our scheme, it had the highest
hit rate in trawling attacks, leveraging the capabilities of GPT.
The experimental results illustrate a significant improvement
in our scheme compared to theirs, with an increase of 12% in
hit rate.

A. Problems

Despite advancements in using deep learning technology
for password guessing, two challenges remain open. The first
challenge is to improve the quality of passwords generated in
pattern guided guessing. The second challenge is to minimize
the likelihood of generating duplicate passwords during the
guessing process, i.e., reducing the repeat rate of the passwords
generated.

429

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00049

1) Pattern guided guessing: A password guessing model
is more effective when it possesses the ability to generate
passwords guided by patterns. The process of pattern guided
guessing is shown in Fig.1. The success of traditional proba-
bilistic models (e.g., PCFG models [5]–[8]) has validated that
incorporating password patterns enhances a model’s ability
to crack more passwords. Furthermore, we have analyzed
the pattern distribution in dozens of password datasets and
observed a convergence in users’ choice of password patterns.
The top 10 patterns are consistent across all datasets and
align with those observed within individual datasets. All these
findings indicate that leveraging patterns from the known
passwords as prior knowledge is a promising approach.

However, all the existing deep learning-based approaches
do not support pattern guided guessing except PassGPT [23].
PassGPT achieves pattern guided guessing by filtering can-
didate tokens during the token selection process based on
a specific pattern. Nevertheless, there is a high chance that
the selected token deviates from the model’s selection due to
the specified pattern. For instance, the applied model predicts
that the next token is a character while the pattern specifies
a number, and finally, the scheme simply outputs a number
without considering the model prediction. Due to the lack
of consideration for the model’s prediction, this approach
increases the likelihood of word truncation which contradicts
the observations in [24]–[28] that users are more likely to use
meaningful words. This insight motivates us to integrate both
model predictions and password patterns into the design of a
new scheme. In particular, we incorporate the password pattern
as an initial condition in the password generation process, as
illustrated in (1).

2) Repeat rate: Reducing the number of duplicate pass-
words can enhance the performance significantly. Existing
password guessing models generate each guess independently,
akin to random sampling from the password space, leading to a
large number of duplicate passwords. This issue is particularly
pronounced with a large volume of guesses, resulting in a
substantial number of duplicate passwords. In our experiments,
we find that PassGPT [23], the current state-of-the-art model,
generates 34% of duplicate passwords when making 109

guesses. In slightly older models like PassGAN [16], the repeat
rate can be as high as 66%, implying that over half of the
guesses are useless.

B. Our solutions

To address the aforementioned challenges, we propose a
solution depicted in Fig.2, comprising two core components:
PagPassGPT, a password guessing model, and D&C-GEN, a
password generation algorithm. The former improves pattern
guided password guessing, and the latter reduces the repeat
rate during password generation. With the assistance of D&C-
GEN, PagPassGPT not only achieves higher hit rates but also
maintains lower repeat rates.

1) PagPassGPT: The integration of model predictions and
password patterns can be achieved by treating the preset
password pattern as background knowledge during model

Passwords

PagPassGPTExtract

New
Passwords

Patterns

Train

Generate

Attack

D&C-GEN

Users

Fig. 2. The overview of the proposed solution. We utilize passwords and
patterns extracted from known passwords to train PagPassGPT. Leveraging the
ability of pattern guided guessing from PagPassGPT and with the assistance
of D&C-GEN, PagPassGPT generates high-quality passwords for trawling
attacks.

predictions. It takes into account not only the constraint on
the password pattern but also the model prediction. In a
more formal representation, it is denoted by Pr(t1, · · · , tn|P),
where ti (1 ≤ i ≤ n) represents a token comprising
the password, and P stands for a password pattern. In an
auto-regressive model, tokens are generated sequentially. To
match the mechanism, as illustrated in (1), we transform the
conditional probability into an auto-regressive form. Based
on that, we propose a design that adopts an auto-regressive
model based on the second generation of Generative Pre-
trained Transformer (GPT-2) [21], named PagPassGPT.

Pr(t1, t2, . . . , tn|P) =
n∏

i=1

Pr(ti|P, t1, t2, . . . , ti−1) (1)

Specifically, we encode the password pattern information
as the previous tokens preceding the password tokens and the
model calculates the probability of the next token at each
step based on the known tokens. PagPassGPT successfully
achieves our goal of effectively generating passwords in a
pattern guided guessing manner while also leveraging the
power of GPT-2. In our experiments, we compared our scheme
with PassGPT, and the results demonstrate that our scheme
achieves up to approximately 27.5% improvement in hit rate
during the test of pattern guided guessing.

The methodological distinction between PassGPT and the
proposed PagPassGPT lies in their approach to utilizing
password patterns. PassGPT strictly adheres to the password
pattern by sequentially checking each element, whereas Pag-
PassGPT derives the generated password based on the initial
condition of the password pattern.

As an example, consider the password pattern “L1N1”,
denoting a letter followed by a number. In the PassGPT
approach, the initial step entails selecting the character with
the highest probability, followed by choosing a number with
the highest probability under the condition of the previously
selected character. Conversely, PagPassGPT starts by selecting

430

the first character based on the “L1N1” condition, ensuring
it has the highest probability under this specific condition.
Subsequently, the next number is chosen, taking into account
both the “L1N1” condition and the character chosen in the
preceding step.

2) D&C-GEN: After analyzing deep learning-based pass-
word guessing schemes, we observed that these schemes lack
background knowledge during password generation as each
of them applies almost the same initial environment, leading
to a large number of duplicate passwords. To reduce the
repeat rate of PagPassGPT, inspired by the concept of the
divide-and-conquer approach [29], we propose D&C-GEN
that recursively divides the main guessing task into small,
non-overlapping subtasks with distinct requirements, including
different patterns and different prefixes. For instance, one
subtask may necessitate passwords conforming to the pattern
“L4N1” with the prefix “abc”, while another subtask may
require passwords conforming to “L1N4” with the prefix
“A12”. Each subtask inherits all the requirements from the
parent task as the background knowledge and is intentionally
designed to have no overlaps, resulting in a low repeat rate.
In the experiment, when the number of guesses reaches 109,
the repeat rate of our proposed scheme is only 9.28%, while
PassGPT reaches 34.5%.

Overall, the contributions of this paper are summarized as
follows.

• We investigate the issue of trawling attacks and unveil the
shortcomings of existing deep learning-based password
guessing schemes. Additionally, we introduce PagPass-
GPT, which addresses these weaknesses by properly
integrating deep learning-based models with password
patterns. Furthermore, in an effort to reduce the occur-
rence of duplicate passwords, we propose the D&C-GEN
algorithm, which adopts a divide-and-conquer approach
for the task of password guessing.

• We conduct thorough experiments to assess the effective-
ness of PagPassGPT and D&C-GEN on public datasets,
performing a comparative analysis with the state-of-the-
art models. Furthermore, we analyze the experimental
results and conclude that the proposed schemes exhibit
superior performance.

II. BACKGROUND AND RELATED WORK

A. Password Guessing

Password guessing can be briefly categorized into two
types based on whether the attack target is known: trawling
attacks [4], [30] and targeted attacks [31]–[33]. These two at-
tacks have different usage scenarios and evaluation strategies.

1) Trawling Attack: Trawling Attack [4] is one of the
earliest attacks that has drawn substantial attention. In a
trawling attack, the attacker does not specifically target an
individual user but rather focuses on a broad group of users.
The attacker builds password guessing models by modeling
real leaked passwords [34], [35], and then uses the models to
generate a large number of passwords to hit the new users’
real passwords. The attacker does not care about which user

is under attack. The attacker’s objective is to maximize the hit
rate while minimizing the number of guesses. Hence, password
guessing models should prioritize generating passwords with
higher probabilities of being used.

2) Targeted Attack: The objective of a targeted attack is to
rapidly crack the password of a specific user. Thus, the attacker
would use personally identifiable information (PII) [36] or
previously used passwords to launch an attack. In 2015, a
targeted guessing model [37] based on Markov [38] was
proposed. The main observation of this model is that users
prefer to choose passwords based on names. After that, various
models [31]–[33] are built based on PII or used passwords.

B. Password Guessing Models for Trawling Attacks

Password guessing models are the core of password guess-
ing. Extensive research has been conducted in this domain,
categorizing the models into three types based on their tech-
nical foundations, presented chronologically as follows: rule-
based models, probability-based models, and deep learning-
based models.

1) Rule-based Models: The earliest models were rule-based
models exemplified by tools like Hashcat [39] and John the
Ripper [40]. Both of them can perform rule-based attacks that
output new passwords by applying transform rules to the old
set of passwords. This approach is very fast but its shortcoming
is obvious: it has a strong background knowledge dependency.

2) Probability-based Models: The probability-based mod-
els were proposed after rule-based models, such as
Markov [38] models and Probabilistic Context-Free Grammar
(PCFG) [41] models. Narayanan et al. [1] proposed a single-
layer Markov password guessing model in 2005, which used
n-gram [42], [43]. It assumes that neighboring n characters
have a strong correlation and uses n− 1 preceding characters
to predict the next character. After that, Markus et al. [10]
proposed OMEN to improve the performance of Markov
models. In 2009, Weir et al. [5] proposed the first PCFG
model for automated password guessing. After that, various
techniques are proposed to enhance the performance of PCFG
models, such as adding new rules [6], introducing semantic
information [7], and supporting long passwords [8]. However,
all of the probability-based models have a common weakness
that password guessing relies on a fixed vocabulary, which
limits the diversity of generated passwords.

3) Deep Learning-based Models: With the emergence of
deep learning, many deep learning-based techniques are ap-
plied to password guessing models. In 2017, Melicher et
al. [12] proposed FLA based on Long Short-Term Memory
(LSTM) [11], which is one of the first to introduce deep
learning into password guessing. After that, Recurrent Neu-
ral Networks (RNN) [44], Generative Adversarial Networks
(GAN) [13], [14], and Autoencoders (AE) [45] are widely ap-
plied in this field. Hitaj et al. [16] proposed PassGAN in 2019,
and Pasquini et al. [17] developed a new framework named
Dynamic Password Guessing (DPG) by using Wasserstein
Autoencoders (WAE) [46] in 2021. One year later, Yang et
al. [18] proposed VAEPass based on Variational Autoencoder

431

(VAE) [47]. All these works have demonstrated the potential
application of GAN and AE in this field. However, a challenge
persists, namely the accuracy loss resulting from the mapping
from continuous space to discrete space. The latest trend in
this field involves the utilization of language models, such
as PassGPT [23] based on Generative Pretrained Transformer
(GPT) and PassBERT [48] based on Bidirectional Encoder
Representations from Transformers (BERT) [49]. These mod-
els provide an approach by treating passwords as short texts.

C. Probabilistic Context-Free Grammar Models

Probabilistic Context-Free Grammar (PCFG) [41] extends
Context-Free Grammar (CFG) [50], providing a framework
for describing the syntactic structure of sentences in natu-
ral language with the incorporation of probabilities. PCFG
models [5]–[8] fall under the category of password guessing
models that integrate PCFG with passwords. In 2009, Weir
et al. [5] proposed the first scheme based on PCFG. The
core concept is to divide passwords into segments based
on character types (letters, numbers, and special characters).
Throughout the training process, the model computes and
retains the probabilities associated with patterns and segments.
In the generation process, it prioritizes patterns based on
their probabilities. For each pattern, it selects segments in
descending order of probability that adhere to the pattern.
For instance, given the password “abc123!”, the scheme first
divides it into three segments (“abc”, “123”, and “!”), and
then the entire password pattern is represented as “L3N3S1”.
“L3”, “N3”, and “S1” represents three letters, three numbers,
and one special character respectively. The probability of the
entire password can be expressed as follows:

Pr(abc123!) =Pr(L3N3S1) · Pr(abc|L3)
Pr(123|N3) · Pr(!|S1) (2)

Subsequent PCFG models have introduced various en-
hanced techniques, including improvements in password seg-
mentation methods [6], [7] and enhancements in the capa-
bility to generate longer passwords [8]. Despite numerous
improvements in subsequent research, two primary challenges
persistently remain unresolved. The first challenge is that
PCFG models struggle to generate words that are not present
in the vocabulary. The second challenge involves the difficulty
of perfectly segmenting passwords into appropriate segments.

D. Generative Pretrained Transformer

Generative Pretrained Transformer (GPT) [20]–[22] is a
series of natural language processing models proposed by
OpenAI [51], which has excellent text generation capabilities.
It undergoes pre-training through unsupervised learning on
a broad corpus of diverse textual data. Its core architecture
comprises multiple layers of transformer decoders [52]. These
layers leverage attention mechanisms [52] for efficient feature
extraction and parallel processing of data.

GPT’s generation is accomplished through a process called
“auto-regression” [53]. During text generation, GPT processes
input tokens, incorporating information from preceding tokens

to predict the likelihood of the next token. This process iterates
sequentially, with each token generated based on the context
established by the preceding tokens. Therefore, the probability
of generating a sequence of tokens can be represented as
below:

Pr(x1, x2, . . . , xn) =
n∏

i=1

Pr(xi|x1, x2, . . . , xi−1) (3)

In contrast to n-gram-based models, auto-regressive gener-
ation utilizes all preceding tokens for prediction. This mech-
anism not only enhances the model’s comprehension but
also allows for better control of the generation process by
manipulating input tokens.

III. OUR APPROACH

In this section, we start by introducing the threat model.
Subsequently, we present our proposed scheme, PagPassGPT.
Finally, we illustrate its enhancement algorithm, D&C-GEN,
designed to reduce duplicate passwords.

A. Threat Model

In this paper, following [23] [54], we concentrate on trawl-
ing attacks as the targeted threat model. In trawling attacks,
the assailant endeavors to recover passwords by making an
extensive number of guesses, such as up to 1014 [55] [56] as
the upper limit. This choice of a large number of guesses aligns
with a practical attacker scenario considering the available
computing power.

B. PagPassGPT

As shown in Fig. 3, PagPassGPT includes two parts, training
and generation. In the phase of training, the input is the
passwords that are from the training set and the output is
the trained model. During the generation phase, the input is
the password pattern that is applied to guide the password
generation, and the output is the generated passwords.

Following PassGPT [23], PagPassGPT is built upon GPT-
2 [21], which is the second generation of the GPT model intro-
duced by OpenAI. GPT-2 is known for its open-source nature
and robust generative capabilities. As discussed in Section I-B,
we need an auto-regressive model to calculate the conditional
probability of passwords in pattern guided guessing. GPT-2,
being a decoder-only model employing masked self-attention
mechanisms, excels in generative tasks by considering all
preceding tokens when generating new ones. Moreover, in
comparison to other models such as GAN [13], VAE [47], and
flow-based models [57], GPT-2 is particularly well-suited for
learning the intrinsic characteristics of discrete texts [58]. Even
when compared with LSTM [11], another text model based on
deep learning, GPT-2 exhibits a superior parallel mechanism,
allowing for faster training [59]. Additionally, thanks to its
attention mechanism, GPT-2 demonstrates stronger semantic
understanding and more robust feature extraction capabili-
ties [60].

432

6614014 ···250 106 2

Token Embedding Position Embedding

Transformer Decoder Layer

Transformer Decoder Layer

···

Transformer Decoder Layer

Linear Layer

5714013 ···250 106 2

×12
Pass123$

Input Password

Auto-regressive Generation

14014250

···

106 2

L4N3S1

Input Pattern

Pass123$

Generated Password

Preprocess

Tokenization
Encode

Cross-Entropy Loss
Backpropagation

Preprocess

Tokenization
Encode

Tokenization
Decode

14014250 66

Auto-regressive Generation

Auto-regressive Generation

14014250 66 ···

Auto-regressive Generation

14014250 66 ···

106

Fig. 3. The training process (left) and the generation process (right) of PagPassGPT. The numbers in the figure correspond to the indexes after encoding, as
presented in Fig. 5. Instances, where the number is shadowed, denote incorrect predictions, while numbers highlighted in red signify predicted indexes of a
new password.

1) Training Process: As shown in the left part of Fig. 3,
during the training process, each input password undergoes
preprocessing followed by tokenization, both implemented
within a specialized component called the tokenizer. As shown
in the left part of Fig. 4, in the phase of training prepro-
cessing, the tokenizer of PagPassGPT applies PCFG (detailed
in Section II-C) to extract the password pattern, “L4N3S1”,
from the input password, “Pass123$”. “L4N3S1” stands for a
password consisting of four letters followed by three numbers
and one special character. Then, it utilizes the extracted pattern
to concatenate with the password, forming a rule in the format
below,

< BOS > || Pattern || < SEP > || Password || < EOS >

where <BOS> represents the beginning of the sequence,
<SEP> denotes the separator, and <EOS> stands for the
ending of the sequence. In the phase of tokenization, as shown
in Fig. 5, the tokenizer serves two functions: encoding and de-
coding. During encoding, the tokenizer takes the former rule as
input and produces tokenized indexes, while during decoding,
it reverses the process, mapping tokenized indexes back to the
rule. In particular, during the encoding phase, the tokenizer
initially splits the input content into segments, considering
each segment as a token. Each token is then mapped to an
index based on a vocabulary, ensuring that every token has a
unique index. For example, as shown in Fig. 5, the tokenizer
splits the input rule into segments, and each of them is mapped
to an index according to the applied vocabulary, forming
the index list [0, 25, 14, 40, 1, 66, 77, 95, 95, 42, 43, 44, 106, 2].
The applied vocabulary consists of three categories of tokens:
94 visible ASCII character tokens, excluding the space charac-
ter; 5 special tokens (<BOS>, <SEP>, <EOS>, <UNK>,
and <PAD>); and 36 pattern tokens (e.g., L12, S12, and N12),
totaling 136 tokens. <UNK> is a token used to represent an
out-of-vocabulary token, and <PAD> is the padding token
utilized to pad the indexes list.

After tokenization of the training phase, the tokenized
indexes are taken as the input of the embedding process

Input Password Pass123$ Input Pattern L4N3S1

<BOS> N3 S1 <SEP>L4<BOS> N3 S1 <SEP> P a $ <EOS>···L4

Preprocess Preprocess

Fig. 4. The preprocessing operation of tokenizer of PagPassGPT. On the
left side, it shows that during the training phase, the password pattern is
preprocessed and outputs the concatenation of the password pattern and
password with a format, named rule. On the right side, it shows that during
the generation phase, the input of the password pattern is preprocessed into
another short rule that is ready to be embedded.

0 14 40 1 66 77 106 2···25

Tokenization Encode Tokenization Decode

<BOS> N3 S1 <SEP> P a $ <EOS>···L4

Fig. 5. The tokenization process of the tokenizer of PagPassGPT contains two
functions: encode and decode. The encode takes a rule as input and produces
tokenized indexes while decoding reverses the process.

consisting of token embedding and position embedding [49].
The two processes are implemented by two linear layers and
their outputs will be added together.

After that, the embedded result is input to the 12 Trans-
former decoder layers [52] similar to GPT-2 architecture [21].
Finally, through a linear layer named language modeling head,
it outputs a probability distribution over the vocabulary using
the Softmax function which is optimized by reducing the
cross-entropy iteratively during the whole training process.

2) Generation Process: For the generation process, the
input is a pattern. As shown in the right part of Fig. 4, the
input pattern is first transformed into a format as below and

433

then tokenized into indexes by the tokenizer.

< BOS > || Pattern || < SEP >

Particularly, with the encoded initial pattern as input, it pre-
dicts the index recursively based on both the pattern informa-
tion and the history of the generated index. As shown in the
right part of Fig. 3, the initial index list is [0, 25, 14, 40, 1] and
the first predicted index is 66 based on the index list. The auto-
regressive generation mechanism is invoked recursively until
all the indexes are generated. After that, the newly generated
indexes are decoded and output the guessed password. This
approach enables the generation of high-quality passwords,
which aligns with the semantic characteristics of passwords
and password pattern requirements.

C. D&C-GEN

D&C-GEN is proposed to reduce the repeat rate of gen-
erated passwords, inspired by the concept of the divide and
conquer approach. In this section, we detail the D&C-GEN
algorithm in three parts. The first part is to illustrate its im-
plementation and the second part is to analyze its effectiveness.
Finally, we demonstrate its optimization.

1) Design: As shown in Fig. 6, the workflow of the D&C-
GEN starts from a task, and then this task is recursively split
into many subtasks. In addition, a threshold is set to control
the granularity of the division. If the threshold is reached, the
division job is stopped and followed by password generation.
In detail, a pattern is first selected from the pattern space
and then its corresponding probability is read. Based on the
pattern probability, the number of passwords to be generated
is computed by using the total number of guessed passwords
multiplying the probability. If the result is smaller than the
threshold, then the task is executed to generate passwords
under its requirements. Otherwise, the task is added into a
list to prepare for further division. For each element of the
list, it first evaluates whether the number of passwords to be
generated is larger than the threshold. If it is larger than the
threshold, it is executed to generate the following token based
on the current prefix, resulting in subtasks with longer prefixes.
Those newly generated subtasks are added back to the list.

The above description is detailed in Algorithm 1. It takes the
total number N of password guessing attempts, the threshold
T of dividing a task, and a set Sp of patterns and their
probabilities. For each pattern Pi, we first compute the number
NPi

of passwords to be generated through the total number N
of attempts multiplying the probability Pr(Pi) of the pattern.
After that, the comparison between the number of passwords
to be generated and the threshold is conducted. If the number
of passwords to be generated is smaller than the threshold,
the task is directly executed and outputs the passwords to
a set R. Otherwise, the pattern Pi and the number NPi

of
passwords to be generated conforming to the pattern Pi is
added into a list LPi

. For each element (Prefi, ni) of LPi
,

We first pop it from the list and then compare its number ni

of passwords to be generated with the threshold T . If it is
smaller than the threshold, the task is executed and outputs

TABLE I
THE FREQUENTLY USED NOTATIONS.

Notation Description

R The set of generated passwords
T The threshold of dividing a task
N The total number of guesses
Sp The set of patterns and their probabilities

Tokens
The set of candidate tokens and
their probabilities

Pref The prefix used to generate passwords

NPi

The number of passwords to be generated
conforming to a pattern Pi

n The number of passwords to be generated

Algorithm 1 D&C-GEN
Input: Sp = { Pi, P r(Pi) | i ∈ [1,m]}, T , N

1: R = ϕ

2: for i = 1 to m do
3: NPi = N · Pr(Pi)

4: if NPi
≤ T then

5: Generate NPi
passwords and add them into R

6: else
7: Pref0 =< BOS > || Pi || < SEP >

8: Initialize list LPi

9: Push (Pref0, NPi
) to LPi

10: while LPi
is not empty do

11: Pop an element (Pref i, ni) from LPi

12: if ni ≤ T then
13: Generate ni passwords and add them into R

14: else
15: Get Tokens = { tj , P r(tj) | j ∈ [1, c]}

calculated by model based on Prefi

16: for j = 1 to c do
17: nj = Pr(tj) · ni

18: Pref j = Pref i || tj
19: Push (Pref j , nj) to LPi

20: end for
21: end if
22: end while
23: end if
24: end for
Output: Generated passwords set R

434

Reach
Division Threshold

Auto-regressive
Generation

Generate Passwords

No

Yes

Divide Tasks
by Token Distribution

Divide Task
by Pattern Distribution

Total Generation Task

Fig. 6. The workflow of D&C-GEN’s process. The whole generation task
is first divided into numerous subtasks based on the pattern distribution. If a
subtask reaches the division threshold, it is executed to generate passwords.
Otherwise, it undergoes auto-regressive generation and is further divided by
the new token distribution into more subtasks.

the passwords to R. Otherwise, the model is executed to get
the probability of following c tokens with the current prefix
Pref. c is the number of candidate tokens conforming to the
current pattern requirement. In our setup, the variable c is
assigned different values: 52 for a letter, 10 for a number,
and 32 for a special character, depending on the type of the
next token. After that, for each new token, the number nj

of passwords to be generated is calculated and the current
prefix is concatenated with the new token to form the new
prefix Prefj . Subsequently, the number nj of passwords to
be generated and the new prefix Prefj are added into the list
LPi

. Finally, the algorithm outputs the set R. For clarity, we’ve
included an example in Fig. 7 to illustrate the process of D&C-
GEN.

2) Analysis: From the above description of D&C-GEN, we
can learn that repeated passwords are only possibly generated
in a single small subtask since multiple passwords may be
generated at a time with the same prefix. There are no same
passwords existing in different tasks. If T is small, the chance
of generating duplicate passwords is very low. However, if T
is too small, a large number of tasks will be overloaded. It is
crucial to carefully choose the threshold T , considering both
computational and parallelization capabilities.

3) Optimization: To balance both the quality of generated
passwords and guessing speed, we can optimize D&C-GEN
in the following aspects.

• To reach the best utility of GPUs, T can be set to the
maximum number of passwords that can be generated in

Total Generate Num = 10000 Divison Threshold = 100

Subtask 1.52
Pattern: L1N3
Prefix: L1N3 + "z"
Generation Num: 592

Divide by Pattern Distribution

Divide by Token Distribution

Subtask 1
Pattern: L1N3
Prefix: L1N3
Generation Num: 2872

Subtask 1.52.10
Pattern: L1N3
Prefix: L1N3 + "z0"
Generation Num: 28

Subtask 1.52.1
Pattern: L1N3
Prefix: L1N3 + "z1"
Generation Num: <1

Generate PasswordsDelete

Divide by Token Distribution

···

···

···

Fig. 7. An instance of executing D&C-GEN. In this example, the total
guessing number N is set to 10,000, and the threshold T of task division
is set to 100. The initial task is divided into subtasks by pattern distribution,
and each subtask has its prefix and its generation number (i.e., the number of
passwords to be generated). If the generation number is less than T , this
subtask is executed to generate passwords. If not, this subtask is further
divided by the distribution of the next token. Especially, if the generation
number is less than 1, i.e., the probability of passwords with the current
prefix is almost impossible, the subtask is deleted. It’s worth noting that every
division by token distribution is filtered according to the pattern requirement,
e.g. the subtask 1.52 only has 10 new subtasks because the next token is
expected to be a number.

parallel by a single GPU.
• Before the task is executed, the evaluation of NPi

is
first conducted. If it exceeds the maximum number of
passwords based on the pattern, the value should be reset
to the maximum number. For example, if a pattern is
“N3”, then the maximum number of guesses is 1000.
However, if the computed NPi

is 5000, then it should be
reset to 1000. It reduces the number of useless guesses.

• To enhance efficiency, the tasks in the list can be executed
concurrently.

• To reduce the frequency of encoding and decoding, all
prefixes can be stored as tensors.

IV. EVALUATION

In this section, we first introduce the applied datasets and
models. After that, we illustrate the experimental comparison
results with the related work.

435

TABLE II
KEY CHARACTERISTICS OF APPLIED DATASETS.

Name Unique Cleaned Retention rate

RockYou 14,344,391 13,265,184 92.5%
LinkedIn 60,525,521 49,776,665 82.2%
phpBB 255,376 251,283 98.4%
MySpace 37,126 36,369 98.0%
Yahoo! 442,836 436,015 98.5%

A. Datasets

In the experiment, we adopt five datasets: Rockyou [61],
LinkedIn [62], phpBB [63], MySpace [64], and Yahoo! [65].
In total, there are 75,349,874 entries. The applied datasets are
consistent with PassGPT [23], except for the exclusion of the
Hotmail dataset due to its small size. We opt for the Yahoo!
dataset as a replacement, following the recommendation of
Melicher et al. [12]. The details of the adopted datasets are
illustrated in Table II. The first two datasets, LinkedIn and
Rockyou, are utilized for both training and testing purposes,
while the remaining datasets are employed for cross-site
evaluation.

1) Data Cleaning: Aligned with the recommendations
in [18], [23], [48], we conducted data cleaning, excluding
excessively long and short passwords, and retained those with
lengths ranging between 4 and 12 characters. This approach
takes into account both related works and the frequency
analysis of password datasets. Outlier passwords constitute
only a very small proportion of the dataset, and their presence
does not significantly impact the evaluation results. In addition,
we removed all duplicate passwords and the passwords con-
taining Non-ASCII characters and invisible ASCII characters,
retaining only digits, letters, and special characters (excluding
the space character).

2) Data Utilization: The Rockyou and LinkedIn dataset
is divided into training, validation, and test sets in a 7:1:2
ratio, respectively. The training and validation sets are used
for model training, while the test set is reserved exclusively
for evaluation. For the test of pattern guided guessing in
Section IV-C and the test of trawling attack guessing in Section
IV-D, we use Rockyou only. For the test of cross-site attack
in Section IV-E, both Rockyou and LinkedIn are used. The
three remaining datasets are employed entirely for cross-site
evaluation.

3) Ethical Claim: We ensure the ethical foundation of our
work through the following aspects:

• Public data. All datasets are public on the Internet and
we do not share them with others.

• Necessary data. We minimize data usage, utilizing only
what is essential and necessary for the research.

• No additional harm. All data will be utilized solely for
research purposes and will not be employed in practical
real-world applications.

B. Models

1) Our Model: PagPassGPT was trained using a batch size
of 512 for 30 epochs, employing the AdamW optimizer with
an initial learning rate of 5e-5 through the GPT2 library [66].
The training process, conducted on a Linux system with four
GeForce RTX 3080 GPUs, took over 25 hours.

The parameters of our model are demonstrated below:
• Max number of input tokens: 32
• Embedding size: 256
• Number of hidden layers: 12
• Number of attention heads for each attention layer: 8
2) Models for Comparison: In selecting the comparison

model, we choose the most recent and relevant work. Espe-
cially, PassGAN [16] based on GAN, VAEPass [18] based on
VAE, PassFlow [67] based on flow [68], and PassGPT [23]
based on GPT are chosen. All the models for comparison
are trained using the training sets that do not contain any
passwords from the test set and are evaluated on the same
test set. All configurations of models are consistent with the
description of the original papers.

C. Pattern Guided Guessing Test

Given that only PassGPT can perform pattern guided guess-
ing, our comparison evaluates PagPassGPT against PassGPT
in the pattern guided guessing test.

The experiment of pattern guided guessing test is designed
in five steps. The initial step involves computing the proba-
bility distribution of extracted patterns from passwords in the
test set and categorizing them based on different numbers of
segments. Each segment represents a format for organizing
characters.

For example, the pattern of “password123” is “L8N3” and
this pattern is classified into the category with two segments
(i.e., “L8” and “N3”). The second step is to select the target
patterns. In our experiment, we choose the twenty-one most
frequent patterns within each category1. There are a total
of twelve categories, ranging from one segment to twelve
segments since the maximum length of a password is twelve
after data cleaning. The third step is to run the model and
output the generated passwords. In our setting, following the
configuration of trawling attacks [2], [23], [67], we execute
PassGPT and PagPassGPT to generate 100,000 passwords for
each target pattern. The last step is to calculate the hit rate.
In particular, we evaluate both the hit rate HRs of a category
with s segments and the hit rate HRP of a specific pattern P
as below.

HRs = NHs/TC
test
s (4)

HRP = NHP /TC
test
P (5)

where NH denotes the number of hits, TCtest
s and TCtest

P

represent the total number of passwords from the test set con-
forming to a certain category with s segments and conforming
to a specific pattern P respectively.

1The reason why we decided twenty-one is that the category with the least
patterns has only twenty-one patterns.

436

Fig. 8. Compare HRs of PassGPT and PagPassGPT, s ∈ [1, 12]. The
vertical axis represents the hit rate HRs, while the horizontal axis represents
categories with different numbers of segments.

As shown in Fig. 8, with an increasing number of pattern
segments, PagPassGPT consistently outperforms PassGPT. For
instance, when the number of segments is 1, the distinction
between PagPassGPT and PassGPT is less pronounced. As the
number of segments increases to 5, the gap reaches its peak,
with the hit rates (HRs) of 13.00% for PassGPT and 40.54%
for PagPassGPT. When the number of segments exceeds 9, the
hit rate of PassGPT approaches zero. However, PagPassGPT
continues to demonstrate its utility. We further illustrate the
details of the hit rate of each pattern in Fig. 9. For the
convenience of presentation, we only show the top 5 patterns
of each category from the first segment to the sixth segment.
PagPassGPT demonstrates a higher hit rate (HRP) for almost
all patterns compared to PassGPT. Particularly, PagPassGPT
is capable of guessing passwords with challenging patterns,
while PassGPT fails to make any correct guesses.

To illustrate the disparity in pattern guided guessing be-
tween PassGPT and PagPassGPT, we randomly select ten
passwords generated by each model, adhering to the “L5N2”
and “L5S1N2” patterns, as outlined in Table III. From the
table, it is evident that passwords generated by PassGPT tend
to exhibit word truncation, particularly when English words
are involved. For example, in the password “polic#10”, the
word “police” lacks the letter “e” because PassGPT must insert
a special character in its subsequent token to adhere to the
pattern requirement when the generation process reaches “e”.
In contrast, PagPassGPT rarely encounters such issues since it
considers not only the pattern requirement but also the model
prediction.

D. Trawling Attack Test

To assess the performance of PagPassGPT in trawling
attacks, we compare them with recent and relevant works,
including PassGAN, VAEPass, PassFlow, and PassGPT. In
particular, PagPassGPT employed two approaches for gener-
ation. The first one is that the input is only a single token
<BOS>. All subsequent content, containing the pattern and
the password, is autonomously generated by the model itself.

TABLE III
PASSWORDS GENERATED IN PATTERN GUIDED GUESSING TEST BY

PASSGPT AND PAGPASSGPT

PassGPT PagPassGPT

L5N2 L5S1N2 L5N2 L5S1N2

stlad10 polic#10 Sissi11 sweet@74
matth10 kimmy@90 Panda51 shock-22
taken11 SexyB@20 manan83 deivi 23
Calis31 summe 23 tammy04 loveu.18
sexyb32 lovef$45 venus19 cheer 11
myboo54 missl!12 Homie04 devan+12
veraj19 boxer’20 DANNY32 faces$25
djuju69 trees-27 green02 sweet!21
plesn11 mayho{19 Lucky15 shock-22
poonk92 gordi 21 brick22 ilove$32

TABLE IV
HIT RATES OF DIFFERENT MODELS IN TRAWLING ATTACK TEST.

Guess Num 106 107 108 109

PassGAN 0.80% 3.11% 8.24% 16.32%
VAEPass 0.49% 2.24% 6.24% 12.23%
PassFlow 0.26% 1.62% 7.03% 14.10%
PassGPT 0.73% 5.60% 21.43% 41.93%
PagPassGPT 1.00% 7.68% 27.23% 48.75%
PagPassGPT-D&C 1.05% 8.48% 31.38% 53.63%

Another approach is assisted by D&C-GEN and the threshold
T of D&C-GEN is set to 4,000 determined based on the
parallelism capability of the applied GPU. For convenience in
subsequent discussions, we use PagPassGPT-D&C to denote
PagPassGPT equipped with D&C-GEN.

1) Hit Rate: The hit rate is the ratio of passwords generated
by the model that match with passwords in the test set
to the total number of passwords in the test set. Both the
generated passwords and the passwords in the test set undergo
a deduplication process, ensuring that duplicates are eliminated
before evaluating the hit rate. This metric is a key indicator
for evaluating the performance of a password guessing model.

As depicted in Table IV, PagPassGPT demonstrates a su-
perior hit rate compared to other deep learning-based pass-
word guessing models. Furthermore, D&C-GEN enhances this
advantage, achieving a hit rate of 53.63% at 109 guesses,
approximately 12% higher than PassGPT.

2) Repeat Rate: The repeat rate reflects the percentage
of duplicate passwords among those generated by a model.
For the generated passwords and the passwords in the test
set are all deduplicated, generating passwords that have been
generated will not increase the hit rate. Therefore, when the
generation number has been set, a high repeat rate diminishes
the effective diversity of generated passwords, potentially
impacting the model’s hit rate. Thus, monitoring the repeat
rate is crucial in the context of trawling attacks.

437

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Compare HRP of PassGPT and PagPassGPT, s ∈ [1, 6] and P from Top 5. The vertical axis represents the hit rate HRP , while the horizontal axis
represents different patterns.

438

Fig. 10. Repeat rates of passwords generated by different models.

As shown in Fig. 10, as the number of generated passwords
increases, our model shows a slower increase in repeat rate
compared to other models. With the assistance of D&C-GEN,
PagPassGPT-D&C achieves a repeat rate of 9.28% with 109

generated passwords. In contrast, PassGPT exhibits a repeat
rate of 34.5%, approximately 25% higher than PagPassGPT-
D&C. All the remaining models have higher repeat rates than
PassGPT.

3) Length Distribution and Pattern Distribution: To pro-
vide a more comprehensive understanding of PagPassGPT’s
effectiveness in terms of password quality, we conduct a
detailed analysis of the length distribution and pattern distribu-
tion of the generated passwords. A closer alignment with the
characteristics of the test set indicates superior performance.

In particular, following the configuration of PassGPT [23],
we compare the length distribution and pattern distribution of
108 passwords generated by various models, including Pass-
GAN, VAEPass, PassFlow, and PagPassGPT. PagPassGPT-
D&C, as it requires patterns as input and generates passwords
guided by patterns, is excluded from the comparison.

The variance of distributions is assessed using both length
distance and pattern distance. Both metrics are computed
through the Euclidean distance between the distributions of
generated password lengths and patterns and those found in
the test set.

Dlength =

(
12∑
i=4

(Prtest(Li)− Prmodel(Li))
2

)1/2

(6)

Dpattern =

(
150∑
i=1

(Prtest(Pi)− Prmodel(Pi))
2

)1/2

(7)

For length distance, as defined in (6), we consider passwords
with 4 to 12 characters, which aligns with the data cleaning
process. Prtest represents the probability distribution from
the test set, and Prmodel represents the distribution from the
model output. For pattern distance, as illustrated in (7), we
focus on the distribution of the top 150 common patterns

TABLE V
LENGTH DISTANCES AND PATTERN DISTANCES BETWEEN PASSWORDS

GENERATED BY DIFFERENT MODELS AND THE TEST SET.

Model Length Distance Pattern Distance

PassGAN 9.20% 6.00%
VAEPass 5.84% 5.75%
PassFlow 50.61% 13.62%
PassGPT 8.49% 4.16%
PagPassGPT 4.78% 2.79%

Fig. 11. Length distances and pattern distances of PagPassGPT.

in the test set, as their cumulative probability exceeds 90%
and effectively represents the overall pattern distribution of
generated passwords. Similarly, we conduct the same analysis
on the passwords generated by the models.

As illustrated in Table V, PagPassGPT exhibits its dis-
tribution closest to the test set when compared with other
models. The length distance of PagPassGPT is 4.78%, roughly
half of the length distance of PassGPT. Similarly, the pattern
distance of PagPassGPT is 2.79%, compared to PassGPT’s
pattern distance of 4.16%. To better understand PagPassGPT,
we conducted a further analysis of the length distances and
pattern distances on different numbers of passwords generated
by PagPassGPT. As illustrated in Fig. 11, both distances
increase with the growing number of passwords. Especially,
the distances increase significantly from 1e7 to 1e8 due to the
rise of the repeat rate.

E. Cross-Site Attack Test

To evaluate the generality of the proposed model, we
conduct a cross-site attack test. We first train the most recent
PassGPT and the proposed PagPassGPT on Rockyou and
LinkedIn independently. Then we evaluate them by testing the
hit rates of 108 passwords on other datasets and the result of hit
rates is shown in Table VI. PassGAN, VAEPass, and PassFlow
are excluded from the comparison since their hit rates show a
significant gap with PassGPT and PagPassGPT at 108 guesses
in the trawling test. Specifically, their hit rates are less than
10% while the hit rates of both PassGPT and PagPassGPT are
over 20% as shown in Table IV.

439

TABLE VI
HIT RATES OF DIFFERENT MODELS IN CROSS-SITE ATTACK TEST.

Trained on Rockyou

Model phpBB MySpace Yahoo!

PassGPT 31.30% 43.13% 28.79%
PagPassGPT 40.13% 53.79% 36.72%
PagPassGPT-D&C 43.48% 56.76% 39.47%

Trained on LinkedIn

Model phpBB MySpace Yahoo!

PassGPT 28.45% 35.69% 28.94%
PagPassGPT 35.38% 45.20% 35.81%
PagPassGPT-D&C 44.16% 50.30% 39.13%

From Table VI, it is evident that PagPassGPT demon-
strates better generalization compared to PassGPT. Moreover,
PagPassGPT-D&C is able to further enhance the performance
by 3% to 10%. Compared to PassGPT, PagPassGPT-D&C
achieves an 11% to 16% higher hit rate.

V. LIMITATIONS AND DISCUSSION

In this section, we will discuss the limitations of the
proposed models and insights about the password generation
algorithm.

Limitations. The present version of PagPassGPT exhibits
limitations in diversity for pattern guided guessing, solely sup-
porting patterns extracted by PCFG. In addition, in the context
of trawling attacks, PagPassGPT generates passwords within
a restricted length range, capped at 12 characters. Owing to
the use of position encoding in GPT, the input window size
and the acceptable output text length are predetermined once
the training parameters are set. Nevertheless, training a new
model for generating longer passwords is a straightforward
process, accomplished by extending the input window. Simi-
larly, if we need to extend the search space, a new model for
accepting more characters should be trained just by adding
new characters into the vocabulary of the tokenizer. Finally,
while D&C-GEN has improved performance and reduced the
repeat rate, it also extends the required time for division. A
small threshold for dividing a task leads to more divisions of
guessing tasks and a lower repeat rate. Taking into account
memory consumption and the maximum available threads, we
can establish the maximum number of parallel subtasks and
determine the optimal threshold accordingly.

Insights. We believe that an effective password guessing
model can be considered as two parts: password knowledge
extraction and password generation using obtained knowledge.
These two components are complementary to each other.
In prior research, attention was primarily directed towards
the first part of the password modeling, often overlooking
the significance of the second part. Without a well-designed
second part, the extracted knowledge cannot be fully utilized
to generate passwords.

VI. CONCLUSIONS

In this paper, we introduced PagPassGPT, a password guess-
ing model, and D&C-GEN, a password generation algorithm.
PagPassGPT excels in producing high-quality passwords with
pattern requirements, and when coupled with D&C-GEN, our
model demonstrates outstanding performance in both pattern
guided guessing, trawling attack guessing, and cross-site attack
guessing, showcasing higher hit rates and lower repeat rates.
Furthermore, we discussed the limitations of our solutions and
underscored the significance of the generation algorithm in
password guessing, identifying it as a possible focal point for
future research.

REFERENCES

[1] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proceedings of the 12th ACM conference
on Computer and communications security, 2005, pp. 364–372.

[2] F. Yu and M. V. Martin, “Gnpassgan: improved generative adversarial
networks for trawling offline password guessing,” in 2022 IEEE Eu-
ropean Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 2022, pp. 10–18.

[3] D. Florêncio, C. Herley, and P. C. Van Oorschot, “An {Administrator’s}
guide to internet password research,” in 28th large installation system
administration conference (LISA14), 2014, pp. 44–61.

[4] R. Morris and K. Thompson, “Password security: A case history,”
Commun. ACM, vol. 22, no. 11, p. 594–597, nov 1979. [Online].
Available: https://doi.org/10.1145/359168.359172

[5] M. Weir, S. Aggarwal, B. De Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in 2009 30th IEEE
symposium on security and privacy. IEEE, 2009, pp. 391–405.

[6] R. Hranickỳ, L. Zobal, O. Ryšavỳ, D. Kolář, and D. Mikuš, “Distributed
pcfg password cracking,” in Computer Security–ESORICS 2020: 25th
European Symposium on Research in Computer Security, ESORICS
2020, Guildford, UK, September 14–18, 2020, Proceedings, Part I 25.
Springer, 2020, pp. 701–719.

[7] S. Houshmand, S. Aggarwal, and R. Flood, “Next gen pcfg password
cracking,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 8, pp. 1776–1791, 2015.

[8] W. Han, M. Xu, J. Zhang, C. Wang, K. Zhang, and X. S. Wang,
“Transpcfg: transferring the grammars from short passwords to guess
long passwords effectively,” IEEE Transactions on Information Foren-
sics and Security, vol. 16, pp. 451–465, 2020.

[9] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” Annual Information Security Symposium,Annual Information
Security Symposium, Mar 2014.

[10] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A. Chaabane,
“Omen: Faster password guessing using an ordered markov enumer-
ator,” in Engineering Secure Software and Systems: 7th International
Symposium, ESSoS 2015, Milan, Italy, March 4-6, 2015. Proceedings 7.
Springer, 2015, pp. 119–132.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] W. Melicher, B. Ur, S. Komanduri, L. Bauer, N. Christin, and L. Cranor,
“Fast, lean, and accurate: Modeling password guessability using neu-
ral networks,” USENIX Annual Technical Conference,USENIX Annual
Technical Conference, Jan 2017.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” Journal of Japan Society for Fuzzy Theory and Intelligent
Informatics, p. 177–177, Oct 2017. [Online]. Available: http:
//dx.doi.org/10.3156/jsoft.29.5 177 2

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” Advances in neural information
processing systems, vol. 30, 2017.

[15] S. Nam, S. Jeon, and J. Moon, “A new password cracking model with
generative adversarial networks,” in Information Security Applications:
20th International Conference, WISA 2019, Jeju Island, South Korea,
August 21–24, 2019, Revised Selected Papers 20. Springer, 2020, pp.
247–258.

440

[16] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Passgan:
A deep learning approach for password guessing,” in Applied
Cryptography and Network Security: 17th International Conference,
ACNS 2019, Bogota, Colombia, June 5–7, 2019, Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2019, p. 217–237. [Online]. Available:
https://doi.org/10.1007/978-3-030-21568-2 11

[17] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1382–
1399.

[18] K. Yang, X. Hu, Q. Zhang, J. Wei, and W. Liu, “Vaepass: A
lightweight passwords guessing model based on variational auto-
encoder,” Computers & Security, vol. 114, p. 102587, Mar 2022.
[Online]. Available: http://dx.doi.org/10.1016/j.cose.2021.102587

[19] D. Biesner, K. Cvejoski, B. Georgiev, R. Sifa, and E. Krupicka,
“Generative deep learning techniques for password generation.” arXiv:
Learning,arXiv: Learning, Dec 2020.

[20] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[22] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[23] J. Rando, F. Perez-Cruz, and B. Hitaj, “Passgpt: Password modeling
and (guided) generation with large language models,” arXiv preprint
arXiv:2306.01545, 2023.

[24] S. Riley, “Password security: What users know and what they actually
do,” Usability News, vol. 8, no. 1, pp. 2833–2836, 2006.

[25] C. Kuo, S. Romanosky, and L. F. Cranor, “Human selection of mnemonic
phrase-based passwords,” in Proceedings of the second symposium on
Usable privacy and security, 2006, pp. 67–78.

[26] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek,
L. Bauer, N. Christin, and L. F. Cranor, “Encountering stronger password
requirements: user attitudes and behaviors,” in Proceedings of the sixth
symposium on usable privacy and security, 2010, pp. 1–20.

[27] J. Bonneau and E. Shutova, “Linguistic properties of multi-word
passphrases,” in International conference on financial cryptography and
data security. Springer, 2012, pp. 1–12.

[28] R. Shay, S. Komanduri, A. L. Durity, P. Huh, M. L. Mazurek, S. M.
Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor, “Can long
passwords be secure and usable?” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2014, pp. 2927–
2936.

[29] Wikipedia contributors, “Divide-and-conquer algorithm — Wikipedia,
the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Divide-and-conquer algorithm&oldid=1173528752, 2023, [Online;
accessed 20-October-2023].

[30] J. Bonneau, “The science of guessing: Analyzing an anonymized
corpus of 70 million passwords,” in 2012 IEEE Symposium
on Security and Privacy, May 2012. [Online]. Available: http:
//dx.doi.org/10.1109/sp.2012.49

[31] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, Oct 2016. [Online]. Available: http://dx.doi.org/10.1145/
2976749.2978339

[32] Y. Li, H. Wang, and K. Sun, “Personal information in passwords and
its security implications,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 10, pp. 2320–2333, 2017.

[33] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-
security: understanding passwords of chinese web users,” in 28th
USENIX security symposium (USENIX security 19), 2019, pp. 1537–
1555.

[34] Wikipedia contributors, “Data breach — Wikipedia, the free encyclo-
pedia,” https://en.wikipedia.org/w/index.php?title=Data breach&oldid=
1187974960, 2023, [Online; accessed 3-December-2023].

[35] L. Whitney, “Billions of passwords leaked online from
past data breaches,” https://www.techrepublic.com/article/
billions-of-passwords-leaked-online-from-past-data-breaches/, 2021.

[36] Wikipedia contributors, “Personal data — Wikipedia, the free en-
cyclopedia,” https://en.wikipedia.org/w/index.php?title=Personal data&
oldid=1184949923, 2023, [Online; accessed 6-December-2023].

[37] D. Wang and P. Wang, “The emperor’s new password creation policies:
An evaluation of leading web services and the effect of role in resisting
against online guessing,” in Computer Security–ESORICS 2015: 20th
European Symposium on Research in Computer Security, Vienna, Aus-
tria, September 21-25, 2015, Proceedings, Part II 20. Springer, 2015,
pp. 456–477.

[38] Wikipedia contributors, “Markov chain — Wikipedia, the free en-
cyclopedia,” https://en.wikipedia.org/w/index.php?title=Markov chain&
oldid=1179889677, 2023, [Online; accessed 20-October-2023].

[39] “Hashcat: Advanced password recovery,” https://hashcat.net/hashcat/.
[40] Openwall, “John the ripper password cracker,” https://www.openwall.

com/john/.
[41] E. Charniak, “Statistical parsing with a context-free grammar and word

statistics,” AAAI/IAAI, vol. 2005, no. 598-603, p. 18, 1997.
[42] C. Buck, K. Heafield, and B. Van Ooyen, “N-gram counts and language

models from the common crawl.” in LREC, vol. 2, 2014, p. 4.
[43] Wikipedia contributors, “N-gram — Wikipedia, the free encyclopedia,”

https://en.wikipedia.org/w/index.php?title=N-gram&oldid=1188371904,
2023, [Online; accessed 6-December-2023].

[44] P. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, p. 1550–1560, Jan 1990. [Online].
Available: http://dx.doi.org/10.1109/5.58337

[45] Wikipedia contributors, “Autoencoder — Wikipedia, the free encyclo-
pedia,” https://en.wikipedia.org/w/index.php?title=Autoencoder&oldid=
1185816731, 2023, [Online; accessed 30-November-2023].

[46] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf,
“Wasserstein auto-encoders,” in International Conference on
Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=HkL7n1-0b

[47] D. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv:
Machine Learning,arXiv: Machine Learning, Dec 2013.

[48] M. Xu, J. Yu, X. Zhang, C. Wang, S. Zhang, H. Wu, and
W. Han, “Improving real-world password guessing attacks via
bi-directional transformers,” in 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, Aug.
2023, pp. 1001–1018. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity23/presentation/xu-ming

[49] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North, Jan 2019. [Online].
Available: http://dx.doi.org/10.18653/v1/n19-1423

[50] A. Cremers and S. Ginsburg, “Context-free grammar forms,” Journal of
Computer and System Sciences, vol. 11, no. 1, pp. 86–117, 1975.

[51] “Openai,” https://openai.com/, 2023.
[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” Neural
Information Processing Systems,Neural Information Processing Systems,
Jun 2017.

[53] Wikipedia contributors, “Autoregressive model — Wikipedia,
the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Autoregressive model&oldid=1183431794, 2023, [Online; accessed
7-November-2023].

[54] M. Xu, C. Wang, J. Yu, J. Zhang, K. Zhang, and W. Han, “Chunk-level
password guessing: Towards modeling refined password composition
representations,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 5–20.

[55] D. Florêncio, C. Herley, and P. C. Van Oorschot, “Pushing on string:
The’don’t care’region of password strength,” Communications of the
ACM, vol. 59, no. 11, pp. 66–74, 2016.

[56] J. Tan, L. Bauer, N. Christin, and L. F. Cranor, “Practical recommenda-
tions for stronger, more usable passwords combining minimum-strength,
minimum-length, and blocklist requirements,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1407–1426.

[57] Wikipedia contributors, “Flow-based generative model — Wikipedia,
the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Flow-based generative model&oldid=1172203906, 2023, [Online;
accessed 4-December-2023].

[58] G. H. de Rosa and J. P. Papa, “A survey on text generation
using generative adversarial networks,” Pattern Recognition, vol. 119,

441

p. 108098, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320321002855

[59] S. Islam, H. Elmekki, A. Elsebai, J. Bentahar, N. Drawel,
G. Rjoub, and W. Pedrycz, “A comprehensive survey on applications
of transformers for deep learning tasks,” Expert Systems with
Applications, vol. 241, p. 122666, 2024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0957417423031688

[60] M. Ji, R. Fu, T. Xing, and F. Yin, “Research on text summarization gen-
eration based on lstm and attention mechanism,” in 2021 International
Conference on Information Science, Parallel and Distributed Systems
(ISPDS), 2021, pp. 214–217.

[61] Wikipedia contributors, “Rockyou — Wikipedia, the free ency-
clopedia,” https://en.wikipedia.org/w/index.php?title=RockYou&oldid=
1154686206, 2023, [Online; accessed 25-September-2023].

[62] ——, “2012 linkedin hack — Wikipedia, the free encyclope-
dia,” https://en.wikipedia.org/w/index.php?title=2012 LinkedIn hack&
oldid=1180726322, 2023, [Online; accessed 6-December-2023].

[63] g. Daniel Miessler, Jason Haddix, “Seclists is the security tester’s
companion,” https://github.com/danielmiessler/SecLists/blob/master/
Passwords/Leaked-Databases/phpbb.txt, 2019.

[64] S. Khandelwal, “427 million myspace passwords leaked in
major security breach,” https://thehackernews.com/2016/06/
myspace-passwords-leaked.html, 2016.

[65] Wikipedia contributors, “Yahoo! data breaches — Wikipedia, the free
encyclopedia,” https://en.wikipedia.org/w/index.php?title=Yahoo! data
breaches&oldid=1147596368, 2023, [Online; accessed 25-September-
2023].

[66] “GPT2 Hugging Face,” 2023. [Online]. Available: https://huggingface.
co/gpt2/tree/main

[67] G. Pagnotta, D. Hitaj, F. De Gaspari, and L. V. Mancini, “Passflow:
Guessing passwords with generative flows,” in 2022 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2022, pp. 251–262.

[68] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent
components estimation,” arXiv preprint arXiv:1410.8516, 2014.

442

