
Stealthy Peers: Understanding Security and Privacy
Risks of Peer-Assisted Video Streaming

1st Siyuan Tang
Indiana University Bloomington

tangsi@iu.edu

2nd Eihal Alowaisheq
King Saud University

ealowaisheq@ksu.edu.sa

3rd Xianghang Mi
University of Science and Technology of China

xmi@ustc.edu.cn

4th Yi Chen
Indiana University Bloomington

chen481@iu.edu

5th XiaoFeng Wang
Indiana University Bloomington

xw7@indiana.edu

6th Yanzhi Dou
Independent Researcher
aaron.yzdou@gmail.com

Abstract—Peer-assisted delivery network (PDN) can signifi-
cantly reduce the bandwidth cost incurred by traditional CDN
services. However, it is unclear whether they have been deployed
extensively and their security implications have never been
investigated thoroughly. In this paper, we report the first effort
to address this issue through an automatic pipeline to discover
real-world PDN services and their customers, and a PDN analysis
framework to test the potential security and privacy risks of these
services. Our results have revealed the extensive adoption of PDN
across the Internet, especially by Chinese video platforms. Most
importantly, our analysis on these PDN services has brought to
light a series of novel security vulnerabilities, i.e., free riding of
PDN services, video segment pollution, and unreported privacy
risks, i.e., resource squatting and extensive leakage of video
viewers’ IPs. We have responsibly disclosed these security risks
to relevant PDN providers which in turn have well acknowledged
our findings.

Index Terms—Peer-assisted delivery network; P2P network;
content pollution; IP leak; security analysis; WebRTC

I. INTRODUCTION

With the ever-expanding footprint of video streaming in

Internet traffic (projected to reach 74% mobile traffic in

2024 [15]), the techniques and infrastructures for effective

and efficient delivery of video content become increasingly

important. Past decades have witnessed the incessant growth of

content delivery networks (CDNs) for distributing and caching

web content across different geolocations, which however is

considered to be expensive for video streaming. Further, CDNs

today have been constrained by their deployment that may

not be adequate for serving video-on-demand (VOD) or live-

streaming users around the world, given that even the largest

CDN provider has only 325K servers located in 1.4K networks

by April 2021 [17]. An answer to these challenges is the emer-

gence of Peer-assisted Delivery Network (PDN) that utilizes

a Peer-to-Peer (P2P) protocol (i.e., WebRTC [12]) to facilitate

video transmission among web browsers. This alternative is

considered to be more scalable and cost-effective: for example,

Peer5, one of the most popular PDN services, claims to be

able to offload 95% bandwidth cost for its customers [27].

* This is a regular paper.

PDNs can be easily integrated into today’s video streaming

infrastructures: a video streaming website simply needs to

subscribe to a PDN service and embed the respective PDN

JavaScript SDK into its video streaming web pages or apps.

Then, an ad-hoc P2P network among their viewers will be

built up, with all coordination and management tasks handled

by the PDN provider behind the scene. On the other hand,

given known weaknesses of other P2P networks [39], [48],

[58], [78], this new content delivery model may have serious

security and privacy implications, which however have never

been fully understood. Specifically, one may ask whether PDN

services can prevent unauthorized use, whether video contents

relayed by untrustworthy peers have been properly protected,

whether user consents are clearly and freely communicated,

whether and to what extent users’ privacy is protected when

involving video viewers in a PDN network.

Challenges and solutions. Answering these questions requires

an in-depth analysis of existing PDN services, which turns out

to have multiple challenges. First, PDN providers tend to hide

their technical mechanisms with few or no publicly available

technical documents as well as heavily obfuscated client-

side PDN libraries, making it challenging to understand and

evaluate existing PDN systems. Second, PDN services take

a hybrid model of combining normal CDN traffic with P2P

traffic, and most PDN activities are mixed with heterogeneous

in-browser web activities, rendering them stealthy and hard to

detect. Making it more complicated is that PDN services are

dynamically loaded when visiting a video website or app, and

a PDN customer may set various preconditions before loading

the PDN services, e.g., the PDN traffic of Douyu TV (a live

streaming platform) is only observable through IP addresses

located in China.

Despite these challenges, we performed the first systematic

study on PDN’s security implications. Our study started by

collecting publicly available PDN providers and their cus-

tomers (e.g., video streaming websites). Specifically, our study

identified 3 most popular public PDN providers as well as

10 private PDN services. For the public PDN providers, we

extracted signatures for fingerprinting PDN SDKs (JavaScript

and Android) and moved to build up a signature-based PDN

324

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00041

customer detector. Our detector led to the discovery of 134

websites and 38 Android apps as the potential PDN customers.

Then, through dynamic analysis, we successfully triggered

PDN traffic for 17 websites and 18 apps, which are considered

as the confirmed PDN customers. Among these confirmed

cases, 9 websites have over 1 million monthly visits, e.g., RT

News (rt.com) and Clarin (clarin.com), while 11 apps have

over 1 million downloads on Google Play, e.g., France TV

(fr.francetv.pluzz) and iFlix (iflix.play). Furthermore, another

10 popular video streaming websites have been confirmed with

proprietary PDN solutions integrated (private PDN services),

among which, 8 are mainstream Chinese video streaming plat-

forms, e.g., Bilibili (bilibili.com), Tencent Video (v.qq.com).

Upon those PDN services and customers, we have conducted

a comprehensive analysis in an attempt to identify fundamental

security risks and privacy concerns. This has been made

possible by a PDN analyzer we built up to automatically run

predefined security tests.

Security discoveries. Our study on PDN services has brought

to light significant security implications of these services,

which have never been reported before. Particularly, we found

that public PDN services are seriously vulnerable, due to not

only misconfigurations on the side of the PDN customer, but

also insufficient protection enforced by the PDN provider.

More specifically, all public PDN services we discovered are

meant to authenticate the peers of a customer using a static

API key that is directly embedded in the customer’s website.

As a result, the attacker could easily retrieve the key to free-

ride the PDN service at the cost of legitimate PDN customers.

Our experiments show that 11 out of 40 API keys extracted

from detected PDN customers did not enforce any protection

against the free riding attack, and all public PDN services are

vulnerable to an advanced free riding attack through domain

spoofing. Furthermore, such a free-riding vulnerability is also

confirmed for a private PDN service which serves a popular

video streaming platform (i.e., Mango TV).

Another security-critical weakness we identified is video

segment pollution: a malicious peer could alter any video

segment it receives and forward it to other benign peers

without being noticed. Although content pollution is a known

threat in traditional P2P networks, previous attacks [39], [51],

[52] rely on understanding of P2P protocols and access to

local storage, which are not applicable to PDN scenarios

since PDN services utilize customized data protocols and store

the downloaded data in the cache under the protection of

browsers. In our research, we proposed a novel attack wherein

the attacker can replace arbitrary video segments without

knowledge of P2P protocols or access to local storage. Our

evaluation results demonstrated the feasibility of the attack

over all public PDN providers and a demo [1] is published

online: https://sites.google.com/view/pdnsec/home/demo.

Also discovered are concerning privacy violations in PDN

services: a PDN service automatically exposes the real IPs

of viewers and consumes their resources without consent. In

our research, we discovered an extensive IP leak caused by

PDN services, exposing viewers’ IPs to untrusted peers. Our

experiments indicated that all existing PDN services, both

public and private ones, do not have sufficient protection in

place to restrain viewers’ IP exposure. For instance, through

watching a single live streaming channel, a peer under our

control collected over 7K distinct IPs of viewers during a one-

week experiment. Furthermore, we found that PDN services

consumed peers’ computing and bandwidth resources without

consent. Our experiments showed that serving as a PDN peer

generally incurs 15% more CPU and 10% more memory

usage. Also, as the number of neighboring peers grows,

the cost of uploading bandwidth increases significantly. Our

further analysis of Peer5 customers revealed that 3 highly

popular apps (i.e., com.bongo.bioscope, com.portonics.mygp,

com.arenacloudtv.android) even allowed the PDN service to

use viewers’ cellular data for both uploading and downloading,

which may incur extra financial cost to viewers.

Mitigation. To mitigate the security risks discovered, we dis-

cussed the limitations of known defense mechanisms and pre-

sented several protection suggestions along with a feasibility

evaluation under a simulated environment. More specifically,

for the service free riding risk, we proposed an authentication

mechanism that utilizes a video-binding and disposable token,

which can effectively demotivate unauthorized use of PDN

services. To address the video segment pollution threat, we

proposed a peer-assisted defense mechanism wherein the PDN

server randomly selects a subset of peers to report and verify

the integrity metadata (IM) for each video segment. This pro-

tection raises the bar for a content pollution attack, which will

only succeed when all randomly selected peers are malicious.

We also discussed the countermeasures for peer privacy risks

(i.e., resource squatting and IP leak) by limiting the resource

consumption for each peer and deploying TURN servers to

relay peer-to-peer traffic.

Contributions. The contributions of the paper are outlined as

follows:

• A large-scale characterization on real-world PDN partici-
pants. Our research reveals the technical mechanisms of PDN

services as well as their prevalence through an automatic

detection framework, leading to the discovery of 3 public PDN

providers with their customers and 10 private PDN services.

• The first study on PDN security. Our study, for the first time,

revealed serious security vulnerabilities (service free riding,

video segment pollution) on all identified public PDN services

and some private ones, and also reported concerning privacy

risks (IP leak, resource squatting) on all PDN services.

II. BACKGROUND

Peer-assisted video streaming. Due to the significant benefit

of traffic savings, peer-assisted video streaming has been

adopted by numerous commercial CDNs including Xunlei

Kankan [79], LiveSky [77], Spotify [44], and Akamai [81].

These P2P-CDNs generally require end users to install client-

side software and design ad-hoc protocols for peer-to-peer

communication. It is also a key challenge to integrate P2P

with existing CDN services [77]. As previous P2P-CDNs

discontinued for various reasons [14], PDN services based on

325

WebRTC emerge as the next-generation peer-assisted video

streaming network, which provides a more convenient SDK

and better security mechanisms. These PDN services are

also embedded into web players [4] and enterprise content

delivery network (eCDN) [6] for wide deployment. Regarding

network structures, peer-assisted networks can be classified

into two types: tree-based and mesh-based [43]. Literally,

tree-based networks organize peers in a structure of multiple

trees, selecting some peers as root nodes and others as leaf

nodes. In a mesh-based network, peers dynamically connect

to a subset of random peers based on attributes such as

content/network availability. In our research, PDN takes the

mesh-based network.

Video streaming protocols. A video streaming protocol spec-

ifies how media data is delivered over the Internet. Early

examples of such a protocol include Real Time Streaming

Protocol (RTSP) [70] and Real Time Messaging Protocol

(RTMP) [64]. However, these protocols are either proprietary

or do not support video streaming through HTTP. Thus, in the

past decade, a set of HTTP-based adaptive bit-rate protocols

have emerged and gained popularity, particularly HTTP Live

Streaming (HLS) [3] and Dynamic Adaptive Streaming over

HTTP (MPEG-DASH) [74]. These protocols break a video

into smaller segments that can be downloaded through HTTP.

Such segments are made available at different bitrates, so as to

allow the video client to adapt the video streaming to various

network conditions. A manifest file is also created to trace

these video segments. Among these protocols, WebRTC and

Secure Reliable Transport [8] (SRT) are characterized by new

features such as lower latency, security, P2P support, etc.

III. UNDERSTANDING THE PDN ECOSYSTEM

In this section, we present our understandings of the PDN

ecosystem. We first introduce a typical PDN scenario and its

key players, i.e., PDN providers, PDN customers, and peers

(§III-A). Then we propose our methodology by identifying

a set of representative PDN providers (§III-B) and detecting

PDN customers (both websites and mobile apps) at a large

scale (§III-C). We further analyze the impact of identified PDN

customers (§III-D).

A. Overview

Generally, the PDN ecosystem consists of three key players,

i.e., PDN providers, PDN customers, and peers. Among these

players, PDN providers offer the PDN service and the integra-

tion SDK (e.g., JavaScript API), PDN customers refer to video

streaming services and their apps or websites that subscribe to

the PDN service, and peers denote the video viewers of these

video websites or apps. Figure 1 illustrates a typical traffic

workflow in the PDN ecosystem. In the traditional CDN mode,

1 when a viewer (e.g., Peer A) opens a video website, 2 it

sends an HTTP request to the CDN which stores the specified

video files and 3 downloads the video files before playing

them with a video player. If the PDN service is enabled, 4 the

PDN SDK integrated into the video website will automatically

initiate a WebRTC interface and connect to the PDN server. In

 ICE

JS API

Video website
CDN

Peer BPeer A

Video website

 WebRTC

 HTTP
request

 HTTP request

PDN server

 ICE

 Download
1

2

3

4

5 5

6

Fig. 1: Traffic flows of a typical PDN scenario.

the process of Internet Connectivity Establishment (ICE), 5

Peer A shares the meta data of video files and its network

information (e.g., IP and port) with the PDN server. With

the help of the PDN server, 6 other peers (e.g., Peer B)

can request video segments from Peer A instead of the CDN

network.

PDN distinguishes itself from previous P2P-CDN services

in two aspects: First, PDN services introduce a trusted 3rd-

party, i.e., the PDN server, to manage and control the peer-

to-peer connections, which may introduce new security risks.

Second, the PDN service operates as a plugin to existing

CDN services and therefore the video platform can directly

enable/disable the PDN service with little configuration to

existing CDN services. Such convenience, however, renders

PDN services almost unnoticeable to viewers and significantly

increases the difficulty in detecting the presence of PDN

services.

B. Identifying PDN Providers

To discover PDN providers, we first queried Google Search

with PDN-related keywords like “P2P live streaming” and

“P2P CDN”, which returned both highly-ranked PDN web-

sites as well as market reports [28] covering popular PDN

services. The providers identified were further verified by

contacting them to get their service details. Through manual

communication, we confirmed three popular PDN providers:

Peer5 [22], Streamroot [19], and Viblast [26]. We further

signed up as a customer of the verified PDN services so as

to access their documentation, client-side SDKs as well as

customer portals, which enabled us to gain insights into how

these services work. Based on the new insights, we constructed

a set of robust PDN signatures to help identify potential PDN

customers, and manually verified them to understand their

effectiveness (§III-C). Subscription to the services also allows

us to enable the PDNs on our experimental video streaming

website, through which we captured PDN traffic to study the

PDN protocols and workflows (Figure 1).

326

C. Detecting PDN Customers

In our research, we proposed a novel framework to detect

PDN customers at a large scale, including the websites and

Android apps. Specifically, we first identified websites and

Android apps integrated with PDN services, which we call

potential PDN customers, using a signature-based approach.

We further conducted a dynamic analysis to detect PDN traffic

on those potential PDN customers.

Signature-based detector. Through an analysis on PDN

services (§III-B), we collected a set of robust signa-

tures to fingerprint their customers, which were extracted

from their documentation and source code (js files or

mobile SDK). These signatures consist of URL patterns

(e.g., api.peer5.com/peer5.js?id=*), unique namespaces (e.g.,

com.viblast.android), and meta-data in the Android manifest

file (e.g. io.streamroot.dna.StreamrootKey). All identified sig-

natures are presented in our website [1]. Leveraging these

identified signatures, we built up a scanner to crawl high-

profile websites, in an attempt to find potential PDN cus-

tomers.

Since PDN mainly serves video streaming platforms, our

scanner focused on those popular video-related websites.

Specifically, we first queried the top 300K domains accord-

ing to Tranco Top Sites Ranking [65]. The Tranco ranking

improves upon the shortcomings of existing ranking lists and

turns out to be more stable and resilient to malicious actors.

Then we collected the category information of these top

domains as provided by the 5 category engines in VirusTotal,

i.e., Forcepoint ThreatSeeker, Sophos, BitDefender, Comodo

Valkyrie Verdict, and alphaMountain.ai. For each domain,

if any of the 5 engines returns a category label contain-

ing keywords such as ”tv” or ”media”, we consider it a

video-related domain. In this way, we found 68,713 top

video-related domains through this category filtering. Also,

we queried source code search engines NerdyData [21] and

PublicWWW [23] using PDN signatures as keywords, which

reported 44 potential PDN-related websites. Altogether we

gathered 68,757 domains for our PDN detector.

We then performed a signature-based scan between January

2022 and February 2022 using Selenium [10], a framework for

automatic web application testing. Our scanner dynamically

crawled the website of a given domain by downloading its

HTML files and all JavaScript files if the site contains a

“video” tag on its web page, and then traversed all the

subpages under the same domain until a PDN signature was

found. To limit the depth of searching, our scanner only

examined the subpages within a depth of 3. To avoid non-

negligible overhead to a website, we limited the crawl rate

to 1 webpage per 3 seconds with a timeout of 10 minutes

for a given domain. If any PDN signature was found in these

subpages, the scanner considered the domain as a potential
PDN customer.

We also collected popular apps and their APKs from Andro-

zoo [31], a large repository of Android APKs from multiple

app stores, including Google Play, Anzhi, and AppChina. By

TABLE I: Detected PDN customers.

PDN provider
Confirmed/Potential PDN customers
website # app # APK

Peer5 16/60 15/31 199/548
Streamroot 1/53 3/6 53/68

Viblast -/21 -/1 -/11

Total 17/134 18/38 252/627

June 2022, it contains 19,661,675 different Android APKs

from 7,954,395 apps. Since Androzoo does not provide in-

formation about the app category or downloads, we randomly

sampled 1.5M apps among the 8M apps. Our scanner auto-

matically downloaded the latest APK version of sampled apps

and then unpacked it to search PDN signatures on Android. An

APK is considered as a potential PDN customer if it contains

at least one PDN signature. We further checked all historical

APK versions of detected apps to estimate the scale of different

APK versions.

Our signature-based detector has led to the discovery of

134 websites and 38 apps (with 627 different APK versions)

as potential PDN customers. As shown in Table I, among the

services behind these customers, Peer5 is the most popular

one, with a potential customer base of 60 websites and 31

Android apps. Then, it is Streamroot whose potential PDN

customers consist of 53 websites and 6 Android apps.

Detecting PDN traffic. To further validate whether these

potential PDN customers have actively enabled the respective

PDN services, we designed a dynamic method to detect

PDN traffic. Our approach is based upon the observation that

PDN utilizes the plain-text STUN protocol to exchange IP

information between peers. Then, when dynamically running

a potential PDN customer, we captured its network traffic,

from which STUN binding requests can be easily identified

if available along with IP addresses of candidate peers. As

WebRTC enforces a DTLS handshake between peers [9],

we then checked all the DTLS connections that typically

follow the STUN binding requests. If a DTLS connection is

observed between known candidate peer pairs, we consider the

respective website or app as a confirmed PDN customer.

For each potential PDN customer, we randomly selected

3 video links and watched them for 15 minutes so as to

capture the traffic. As a result, we have successfully detected

the PDN traffic for 17 websites and 18 apps. We listed all

these confirmed PDN customers in Table II and Table III.

For other potential PDN customers, we failed to capture any

PDN-related traffic due to the challenges in triggering the

service. Some potential PDN customers (e.g., eon.tv) did not

allow our dynamic analysis server to access their video sources

due to geolocation restrictions or service subscriptions, while

some other customers may set specific constraints (e.g., IP

constraint) to load PDN service or only enable the service for

some subpages which could be missed in our testing.

Impact of PDN customers. We found that most PDN cus-

tomers have a large number of viewers. To measure the

popularity of PDN customers, we checked the monthly vis-

327

its of PDN websites from SimilarWeb [25] and installs of

PDN apps from Google Play. Among the 17 confirmed PDN

websites, 9 were found to have over 1 million monthly

visits, including popular news websites RT News (rt.com),

Clarin (clarin.com) and RTVE (rtve.es). Also, among the

18 confirmed PDN apps, 11 have over 1 million downloads

from Google Play, including iFlix (iflix.play) with over 50

million downloads and 4 apps with over 10 million down-

loads, e.g., France TV (fr.francetv.pluzz) and Red Bull TV

(com.nousguide.android.rbtv).

TABLE II: Confirmed PDN websites

PDN websites PDN provider # Monthly visits

rt.com Streamroot 117M
clarin.com Peer5 69M

rtve.es Peer5 35M
jn.pt Peer5 12M

ojogo.pt Peer5 8M
dn.pt Peer5 6M

servustv.com Peer5 4M
www.popcornflix.com Peer5 1M

tsf.pt Peer5 1M
dinheirovivo.pt Peer5 1M
www.sliver.tv Peer5 –

hdo.tv Peer5 –
www.souvenirsfromearth.tv Peer5 –

www.severestudios.com Peer5 –
www.performancevetsupply.com Peer5 –

www.schoolfordesign.net Peer5 –
9uu.com Peer5 –

TABLE III: Confirmed PDN apps

PDN apps PDN provider
Google Play

downloads

iflix.play Streamroot 50M
fr.francetv.pluzz Streamroot 10M

com.nousguide.android.rbtv Peer5 10M
com.portonics.mygp Peer5 10M

mivo.tv Peer5 10M
com.bongo.bioscope Peer5 5M

tv.fubo.mobile Peer5 5M
com.rt.mobile.english Streamroot 1M
vn.com.vega.clipvn Peer5 1M

com.flipps.fitetv Peer5 1M
vn.com.vega.clipvn Peer5 1M

com.arenacloudtv.android Peer5 500K
com.televisions.burma Peer5 50K
com.totalaccesstv.live Peer5 –

dev.hw.app.tgnd Peer5 –
tv.almighty.apk Peer5 –

com.rvcomx.brpro Peer5 –
com.lts.cricingif Peer5 –

D. Private PDN services

During our detection, we also observed 10 websites are

embedded with HTML or JavaScript code that shares similar

patterns with ones from PDN services, but they are not

customers of either of the three PDN providers nonetheless.

Unlike known PDN providers, these cases do not involve third-

party API keys or external JavaScript APIs, but associate their

own domains (usually their subdomains or relevant domains)

TABLE IV: Confirmed private PDN services

PDN websites PDN server # Monthly visits

bilibili.com hw-v2-web-player-tracker.biliapi.net 911M
ok.ru vm.mycdn.me 662M

douyu.com wsproxy.douyu.com 95M
v.qq.com webrtcpunch.video.qq.com 92M
iqiyi.com broker-qx-ws2.iqiyi.com 82M
huya.com wsapi.huya.com 61M

youku.com ws.mmstat.com 60M
tudou.com ws.mmstat.com 44M
mgtv.com signal.api.mgtv.com 42M

younow.com
signaling.younow-prod.
video.propsproject.com

1M

with the involved PDN servers. Thus we consider them as

private PDN services since they are ad hoc services with each

dedicated to a specific video/live streaming platform.

Specifically, our signature-based detector identified 385

websites matching the general WebRTC-related signatures. We

then conducted our dynamic detection on the top 57 websites

that rank in top 10K websites and detected that 10 of them

has integrated proprietary PDN functionalities (i.e., private

PDN services), including 6 popular video streaming platforms,

e.g., Youku (youku.com), Tencent Video (v.qq.com), and 4 live

streaming platforms, e.g., OK Social Network (ok.ru), Huya

TV (huya.com). We list these popular private PDN services in

Table IV. It is interesting that such private PDN services are

extremely popular in China, covering most top video hosting

and live streaming platforms. One possible explanation is

related to legal concerns since PDN services are similar to

Torrent, which has been forbidden in US and EU. This also

explains why we could only observe PDN traffic in China

for some live streaming platforms (e.g., Douyu TV). Another

possibility could be bandwidth cost. As the bandwidth cost in

China is higher than that in EU/US, video streaming services

in China have more incentives to use PDN services. We also

noticed that 2 adult video platforms, i.e. xhamsterlive.com and

stripchat.com, utilize WebRTC protocols to relay traffic. For

the other 45 cases, we confirmed 3 cases invoking WebRTC

APIs for web tracking. Yet we failed to trigger any PDN traffic

for the remaining 42 cases.

IV. SECURITY AND PRIVACY RISKS IN PDN SERVICES

With an in-depth understanding of the PDN ecosystem

(§III), we move forward to reason about and analyze potential

security and privacy risks introduced by PDN services to

the parties involved, especially the video viewers and PDN

customers. In this section, we first present our threat model

and ethical considerations and then propose a PDN analyzer

framework (§IV-A). Following, we elaborate detailed security

and privacy risks discovered in our research.

The threat model. In our research, we assume that the attacker

is able to participate in the PDN system as a PDN peer, as

well as intercept the traffic between a PDN peer (under his

control) and the PDN server. Specifically, the attacker can

configure the peer with a self-signed root certificate to decrypt

the traffic. In the free riding attack, we assume the attacker is

328

capable of retrieving the access token (which is plain text in

the HTML code or traffic) and integrating PDN services with

its own websites/apps. In the video segment pollution attack,

we assume the attacker has access to the original video files.

Unlike previous works [39], [62], [75], we do not require the

attacker to have any knowledge of PDN protocols, nor does

the attacker need to access the local storage.

Ethical considerations. We carefully designed our methodol-

ogy to minimize any real-world ethical impact. Specifically, we

got IRB approval from our institution and performed all our

experiments under the received guidelines. For experiments

requiring PDN access, we gained permissions from PDN

providers. Also, all controlled experiments were run on our

own test website integrated with PDN services to play a

customized video source. As PDN services group viewers by

the video content they are watching, our settings guarantee

that no real-world viewers would be involved. In the peer

IP leak test, we only collected IPs of viewers connecting

with our controlled peer. Also, we focus on measuring the

coarse-grained geographical distribution of PDN peers, and

have deleted the raw IP addresses given the statistical results

are extracted.

A. The PDN Analyzer

In order to reliably and effectively test the potential risks

imposed by PDNs, we developed an automatic PDN analysis

framework, as illustrated in Figure 2. At a high level, our

PDN analyzer accepts a PDN service and a security test as the

input. For each security test, the PDN control panel sets the

specific parameters of the test, e.g., the number of peers. Then,

it runs each PDN peer as a separate Docker container equipped

with a web driver and a proxy client, which communicates

with a configured proxy server controlled by the PDN control

pane. With the help of the proxy server, the PDN control pane

can intercept and modify the traffic between a peer and the

PDN server. Once the execution finishes, our PDN analyzer

returns the dumped network traffic, the screen recording, as

well as all execution logs, which can be further analyzed to

decide whether the risk under evaluation is triggered. Note

that although most of the security tests and log analysis

are performed automatically by our PDN analyzer, content

integrity tests involve manual effort for verifying the pollution

effect, so do the tests on private PDN services. To simulate

the PDN service in the real world, we integrate PDN services

on our own website (www.test.com) and a customized stream

server connected to a CDN service. Specifically, we rent an

AWS EC2 instance with Wowza Streaming Engine deployed

and set up our own video streaming source. And we utilize

Amazon CloudFront as our CDN service to distribute our

video content.

Monitoring PDN activities. When running PDN peers as

separate containers, we want to monitor PDN activities in

terms of network traffic and resource consumption (e.g., CPU

and memory). To monitor the network traffic, tcpdump [11]

is started to dump incoming and outgoing network traffic

on the default virtual network interface docker0, following

Fig. 2: The architecture of the PDN analyzer.

the creation of the parent container. Furthermore, the PDN

analyzer utilizes Docker Engine APIs [2] to monitor in real-

time the container stats especially the resource consumption

stats such as CPU usage, memory usage, and network I/O.

Tests on PDN services. We made an attempt to uncover

the security and privacy risks of PDN services from their

documentation, previous studies [32], [43], [81], and pre-

liminary experiments. Specifically, previous studies on peer-

assisted networks focus on three fundamental issues, i.e., peer
authentication (§IV-B), content integrity (§IV-C), and peer
privacy (§IV-D). Following these directions, we designed a

series of tests with the help of our PDN analyzer and identified

multiple security and privacy risks, as detailed below.

B. Peer Authentication

As discussed in §III-B, public PDN services operate in

a pay-as-you-go model and a PDN customer is charged for

every use under its name. Leveraging our PDN analyzer and

subscriptions to PDN services, we explored whether the use

of a PDN service is well authenticated and whether a PDN

customer can be overcharged for the use incurred by other

parties. It turns out that a persistent access token (API key)

issued by the PDN provider is used to authenticate PDN

customers and PDN peers. Such an access token was found to

be publicly visible to attackers since it is statically embedded

by the PDN customers in either the PDN mobile app or the

video webpages. This allows an attacker (e.g., a misbehaving

video streaming site) to easily steal a legitimate PDN customer

token through either a colluding peer or static analysis of the

respective mobile app if available. It can later utilize the token

to free-ride the PDN service at the cost of the legitimate

customer, or even maliciously consume P2P traffic between

controlled peers to incur extra cost to the targeted PDN

customers. Our evaluation of real-world customers further

confirmed the pervasiveness of the service free riding risk.

Following we elaborate on the service free riding risk and our

findings, under the threat model where an attacker is capable

of retrieving the PDN access token and the domains (origins)

from a legitimate PDN customer.

Peer authentication tests. We find that the service free riding

risk is inherent in PDN services due to the authentication

mechanism they operate. Possibly for the convenience of

integration, PDN providers leverage a static authentication

329

token to authenticate peers, which, however, makes it possible

for the attacker to free-ride the PDN services.

We then design two peer authentication tests to evaluate

the authentication mechanisms of PDN services. In the first

test (cross-domain attack), we first integrate known PDN

SDKs into our own test website (www.test.com) and play a

customized video stream source. To simulate peers’ behaviors,

we run two peer containers and configure the web driver

to open a customized video stream for each peer. We then

analyze the traffic between these containers (peers) and the

PDN server: a successful binding of the peers indicates the

peer passes the authentication process of the PDN server. In

the second test (domain-spoofing attack), we configure the

proxy server to spoof the HTTP headers, i.e., “Origin” and

“Referrer”, between our test website and the PDN server. In

our settings, our test website (www.test.com) integrates the

PDN SDK with an API key retrieved from the victim domain

(www.example.com). When a viewer opens the test website

(www.test.com), the proxy server modifies the HTTP headers

to the victim domain (www.example.com), which deceives

the PDN server that the HTTP requests are initiated from a

legitimate domain. During all the experiments, we disabled

the auto-play function and ensured that no data was actually

transferred between peers, thus no cost was generated for

customers owning these tokens.

Service free riding. We applied for a free trial from all the

3 public PDN providers and evaluated our peer authentication

tests on them. As a result, we found serious free riding risks

on these PDN services. In the default settings, both Peer5

and Streamroot allow arbitrary domains to connect to the

PDN server with the API key. Thus our cross-domain attack

can easily bypass the authentication process. Viblast requires

setting up the domain allowlist before enabling the PDN

service, which is effective against the cross-domain attack.

We then enable the domain allowlist protection for all the 3

PDN services and verify whether the domain spoofing attack

works. As a result, all three PDN services were found to be

vulnerable to the domain-spoofing attack.

To verify the free riding risk in the real world, we also

evaluated the peer authentication tests on detected PDN

customers. From the detected potential PDN customers, we

successfully extracted 44 API keys through regular expres-

sion matching, while others are heavily obfuscated (e.g.,

0x101f38[0x2c4aeb(0x234)]) or dynamically loaded in the

runtime. We tested all of them and found 40 were valid during

our test and the other 4 were expired. Among the 40 valid

API keys, 11 of them were vulnerable to the cross-domain

attack, which means they did not enforce the domain allowlist

protection, and all of them were vulnerable to the domain-

spoofing attack. Our findings prove the prevalence of free

riding risk in the real world.

The free riding risk allows an attacker to abuse the PDN

subscription of a legitimate PDN customer and maliciously

generate peer traffic to increase the cost of the victim PDN

customer. Among the 3 PDN providers, Peer5 and Streamroot

charge their customers based on monthly P2P traffic (e.g.,

TABLE V: Security and privacy risks of PDN services.

Security risks Peer5 Streamroot Viblast Private

Peer Authentication

cross-domain attack 11/361 0/1 0/3 1
domain-spoofing attack � � � 1

Content Integrity
direct content pollution × × × –
video segment pollution � � � –

Peer Privacy
IP leak � � � �

resource squatting � � � �
1 a/b represents # vulnerable API keys / # all valid API keys.

Peer5 charges 500$ for 50TB of P2P traffic), and Viblast is

priced at 0.01$ per concurrent viewer hour. Thus an attacker

could generate a significant volume of P2P traffic or a large

number of concurrent viewers on his/her own website inte-

grated with the victim’s PDN SDKs, which would increase

the PDN cost of the victim customer. In our experiments with

free trial accounts, we successfully increased the PDN service

cost by initiating multiple containers as peers to generate P2P

traffic, which demonstrates the feasibility of such an attack.

Private PDN services. Private PDN services operate in a way

similar to public ones, which assigns a temporary token to

each peer and utilizes the token to authenticate later com-

munications. However, unlike public PDN services, private

PDN services are hidden in the complex source code of

popular video platforms and are usually deeply coupled with

other video streaming modules, making it extremely hard

to integrate them into our own test website and play our

customized video source. This prevents us from performing

our peer authentication tests ethically.

Despite the aforementioned challenges, we managed to hook

the player SDK of one popular private PDN service (i.e.,

Mango TV) after months of effort to analyze its code, and

successfully integrated it into our test website. Particularly, we

observed effective PDN traffic for data transmission between

peers on the test website. This confirms that the attacker can

free-ride such a PDN service with no constraints. Our findings

support that the free riding risk also exists in private PDN

services. Moreover, our further analysis suggests that another

popular private service, i.e., Tencent Video, does not bind the

authentication token with the video source URL, which may

expose it to similar free-riding risks.

C. Content Integrity

Previous pollution attacks on P2P video streaming networks

directly send polluted chunks to other peers [39], [62], [75]

and the feasibility of such attacks is largely dependent on

the speed at which the attacker can modify content [53].

Different from existing P2P networks (e.g., BitTorrent), PDN

enforces protection mechanisms over both the communication

channels and the storage. First, PDN utilizes TLS encryption

to protect ICE communication between peers and the PDN

server (5 in Figure 1). Also, peers in PDN are connected

via WebRTC, which supports video streaming protocols over

330

Malicious
Peer

Fake CDN

Actual CDN

Victim Peer 1
Victim Peer n

Victim Peer 2

1

2 3

45

6

6
6

Proxy

Fig. 3: Illustration of our content integrity attack.

DTLS encryption (6 in Figure 1). Second, PDN caches the

downloaded content in the memory of browsers, which is

protected by the same-origin policy and purged after a short

time. Such protections render existing content pollution attacks

ineffective. Thus PDN providers claim the PDN service is

as secure as traditional CDN services [24]. In our research,

however, we proposed a novel attack to compromise the con-

tent integrity in PDN. Our attack is based on the observation

that the PDN server does not store video segment files and

thus is unable to verify the integrity of a video segment by

itself. Although the other channels are well protected under

the assumptions, the attacker can still download “fake” video

segment files and then spread them to other peers with the

help of a malicious peer. Note we do not require the attacker to

have any knowledge of PDN implementations or protocols, nor

does the attacker need to access the local storage, i.e., cache

of browsers. Instead, we assume that the attacker has access to

the original video files and the corresponding manifest files.

This is practical with the help of existing browser plugins such

as Live Stream Downloader [5].

Our attack. Our idea is to run the proxy server in the middle

of a controlled peer and the real CDN. The proxy acts as a

fake CDN to download video files from the real CDN, and

automatically replaces the video files before forwarding to the

controlled peer. As illustrated in Figure 3, when the malicious

peer under the attacker’s control visits a video website, the

video source URL (pointing to the CDN that stores the target

video) is redirected by a proxy server to a fake CDN. Then

the fake CDN utilizes the video source URL to download the

original video files, and alters video files for pollution. When

the malicious peer downloads the altered video, it deceives

the PDN server and other peers that the original video content

is played. This allows the attacker to propagate the polluted

video files to other peers.

Content integrity tests. As discussed in §II, video streaming

protocols usually split a large video file into small segments

(TS files) and a manifest file (e.g., an M3U8 file) is utilized

to track these segments. To evaluate the content integrity of

PDN services, we first run the direct content pollution attack,

in which the attacker pollutes all the video segments based on

the manifest file. In our PDN analysis framework, we set up

two peer containers to play a customized video stream. The

proxy server redirects one peer’s video stream URL to a fake

CDN and replaces the video files. Then we observe whether

the other peer’s video files are polluted. In the second test

(video segment pollution test), the attacker replaces one or

more video segments (except for the first several ones) and

keeps the other video segments and manifest file unchanged.

Video segment pollution. As mentioned in §IV-B, we lever-

aged free-trial access to all three public PDN services and

performed the content integrity tests. As a result, the direct

content pollution attack failed for all three PDN services.

This is because PDN services utilize a “slow start” strategy

and the first several video segments are directly downloaded

from the CDN. Thus the polluted video segments would cause

inconsistency and be detected by PDN services. However, all

three PDN services were vulnerable to the video segment pol-

lution attack, as shown in our demo [1]. Our findings indicate

PDN services fail to enforce robust integrity verification on

video files and have serious security concerns. During our

experiments on popular PDN customers, we typically observed

over 10 concurrent connections trying to download content

from our controlled peer. As revealed in a recent study [75],

a content pollution attack in a P2P live streaming system will

quickly propagate to 47% of viewers in the initial stage even

when the initial number of polluters is small. Considering the

popularity of PDN customers, the video segment pollution

attack in PDN can easily impact millions of viewers.

Private PDN services. As mentioned in §IV-B, we were

unable to conduct our content integrity tests directly on private

PDN services due to ethical concerns. Thus we evaluated

our content integrity tests on the private PDN service of

Mango TV, which we successfully extracted and integrated

into our test website with a customized video source. From our

tests, the private PDN service of Mango TV can prevent the

direct content pollution attack. Regarding the video segment

pollution attack, although we observed consistent DTLS data

transmission between the malicious peer and the victim peer,

we failed to observe the polluted video segments being played.

This is probably because private PDN services maintain access

control on all the existing video sources (e.g., digital rights

management (DRM)) and our customized video source is

not registered. Note an attacker could conduct our attacks

on the original video sources to bypass such constraints. We

acknowledge it as our limitation.

D. Peer Privacy

In this section, we study whether viewers are well aware of

and able to disable the PDN service, and how significant the

potential IP leak and extra resource consumption caused by

PDN services.

User consent. A previous study involving large-scale

users [81] reveals that only around 30% of all video viewers

opt-in to participate in P2P video streaming networks. Thus it

is significant to ask for consent when recruiting a video viewer

into PDN, otherwise, it is a compromise of privacy. As a PDN

participant, a viewer should be informed that the potential risks

and costs of joining the PDN network and be able to disable

331

the PDN service. We manually checked all the potential PDN

customers (including the 134 websites, 38 Android apps, and

10 private cases) detected in our study and manually inspected

their services and public documentation. The results showed

that none of them provide any pop-up windows to ask for

viewers’ consent or communicate with their viewers the P2P

network they are about to join through “Terms of Use” or

other web content. Therefore, we believe that their viewers

are completely left in the dark about the price, both in terms

of potential privacy leaks and the extra resource consumption.

Also, none of the PDN providers we studied allow viewers to

turn off the PDN function.

In the absence of user consent, we further design two

privacy tests to evaluate the extent of potential IP leak and

extra resource consumption caused by both public and private

PDN services.

IP leak test. To verify the IP leaks in public PDN services,

we initiated two remote peers (one located in the US and

the other in China) that watched the same video stream on

our test website. PDN services utilize STUN protocols in

the WebRTC API [68], which is designed for NAT traversal

to exchange IP addresses. To collect the peer IP exchange,

we write a Wireshark script to automatically extract the IP

exchange requests and responses in STUN protocols. In our

experiments, we successfully collected the other peer’s IP for

all three PDN services, which implies the extensive IP leak.

IP leak in the wild. To measure the extent of peer IP leaks in

the real world, we selected two popular PDN customers: RT

News app integrated with the Streamroot service, and Huya

TV website integrated with a private PDN service. During

the experiments, our tests collected only IP addresses of

viewers communicating with our controlled peer, which were

removed immediately after generating the aggregated statistics.

Specifically, we collected two-hour traffic from a controlled

peer in a live channel for each of the two customers lasting

for one week. Altogether, our PDN analyzer gathered 7,740

unique peer IP addresses, including 7,055 from Huya TV and

685 from RT News. We then further queried IPInfo [20] for

these addresses’ IP WHOIS information (e.g., geolocations)

and found that 7,159 of these IPs are public IPs, along with

581 as bogons [18]. Among these bogon IPs, 543 are in private

networks, 33 are for NAT [76]), and the other 5 are reserved

IPs. These IPs (private, NAT, reserved) were returned probably

due to the errors in the NAT traversal process, which replied

with unreachable IPs to our controlled peer. Also, among

the public IPs, 98% of Huya TV are in China, while IPs

from RT News distribute across 259 cities in 56 countries,

with United States (35%), Britain (17%), and Canada (13%)

being the top 3 countries. The results are consistent with the

distribution of viewers for these two PDN customers. We also

performed the same experiment on all the 10 private PDN

services. The results are similar to Huya TV except for ok.ru,

in which we only collected 8 Russian IPs possibly due to

geolocation constraints. Our experiments demonstrated that all

PDN services expose viewers’ real IPs extensively with few

protections. This enables an attacker to harvest viewers’ IPs

and link them to the content of the videos being watched.
Resource squatting tests. We further estimate the extra

resource consumed for supporting PDN services. In our PDN

analyzer, we run a set of peer containers and configure their

web drivers to open our test website simultaneously. On top of

these containers, the monitor records through Docker Engine

APIs the status of each container per second, including the

CPU usage, memory statics and network I/O.

Fig. 4: Resource consumption of serving as a PDN peer.

Figure 4 shows our test results on the Peer5 PDN service,

including the CPU and memory usage and download/upload

bytes measured under two peers, Peer A and Peer B, together

with no peer, which means viewers directly request the video

from CDN. As we can see, the utilization of the Peer5 PDN

service incurs non-negligible overhead for both peers, at a cost

of an additional 15% CPU and 10% memory compared with

no peer. This is mainly caused during the process of data

encryption and decryption to transmit the video segments.

Fig. 5: Bandwidth consumption of serving multiple peers.

We also measured the resource consumption of Peer A with

the existence of multiple peers. When adding the number of

peers (up to 3 peers other than Peer A), we found that the

CPU, memory, and download traffic do not have significant

differences, mainly due to the scalability of WebRTC proto-

cols. However, the upload traffic increases significantly (up

to 200% of the download traffic with 3 peers) as the number

of peers grows, as shown in Figure 5. Due to the limit of

our network bandwidth, adding more peers (over 5 peers) will

significantly lower the download traffic of peers and thus affect

our experiment results.

332

Our results show that PDN services incur extra resource

consumption (i.e., CPU, memory, bandwidth) for video view-

ers without their consent, which may have legal concerns.

Similar to cryptojacking [40], PDN services unauthorizedly

exploit viewers’ resources for monetization. PDN services

also expose viewers’ IP addresses to untrusted peers and thus

compromise their privacy. Moreover, such resource squatting

behavior has also motivated viewers to disable or filter PDN

services. For example, viewers have utilized AdblockPlus to

block the domain of PDN servers to disable these services [16].

Resource squatting in the wild. We further analyzed how

real-world video platforms configure the PDN service run-

ning in their viewers’ browsers. This was made possible

by our observation that Peer5 included in its JavaScript

code an unprotected variable specifying the configurations.

Through analysis of these configurations, we identified 3

Android apps, i.e., com.bingo.bioscope, com.portonics.mygp,

com.arenacloudtv.android, allowed the use of cellular data for

both uploading and downloading. As shown from our resource

squatting tests, such settings may increase traffic consumption

significantly for their viewers and generate extra costs. The

other customers were in leech mode, i.e., consuming cellular

data for downloading only. Our measurement shows that some

PDN customers consume peers’ cellular data for uploading

data, and 3 popular Android apps (with over 15 million Google

Play downloads in total) are under such configuration, which

may generate extra cellular data cost to their viewers.

V. RISK MITIGATION SUGGESTIONS

In this section, we provide several suggestions for mitigating

the risks of service free riding (§V-A), video segment pollution

(§V-B), and peer privacy (§V-C).

A. Mitigating the Risk of Service Free Riding

Existing authentication mechanisms. As discussed in §IV-B,

the existing domain allowlist defense can be easily bypassed

through a spoofing attack. OAuth [45] is a widely used authen-

tication framework proposed to authorize third-party access

without providing credentials. Compared with a persistent

API key, OAuth utilizes a temporary authentication token and

thus can reduce the risk of exposing the credentials (API

keys). However, for the service free riding attack, an attacker

can perform a man-in-the-middle (MITM) attack to redirect

viewers’ requests to a legitimate PDN customer and get valid

tokens to access the PDN service. To defend against the MITM

attack, existing mechanisms (e.g. Token binding [49]) are

based on the trust of clients, which is unfortunately not the

case for peers in PDN services.

Disposable and video-binding token. To address the chal-

lenges above, we suggest to implement a disposable and

video-binding authentication token that binds to valid video

streams on legitimate PDN customers. In this case, the attacker

cannot utilize these tokens to offload the traffic of its own

video streaming, which significantly reduces the economic

motivations for a service free riding attack. Also, we suggest

to add usage time limits and TTL in a token to prevent a replay

attack. Listing 1 illustrates an example of the token. Firstly,

customer id is a string designed for uniquely identifying each

PDN customer, which should be assigned from the PDN

provider. Then, the PDN customer server can assign each PDN

peer a unique identifier, namely, pdn peer id. Also included

is a video ids field to identify the set of videos to be streamed

in the current page. There are multiple options to compose a

video identifier, e.g., utilizing the full-qualified video URL.

Following are the token issuance time (a Unix timestamp)

and a ttl field to denote the time to live in seconds since

issuance. The timestamp and ttl jointly decide whether the

token is expired or not. Another field usage limit is defined

to constrain the number of usage limit for this token.

Listing 1: The token structure.

"customer_id": "xx.yy",
"pdn_peer_id": "1",
"video_ids": [

"https://xx.yy/zz.m3u8",
"https://xx.yy/hh.m3u8"

],
"timestamp": 1619814238,
"ttl": 60,
"usage_limit": 1

To implement this token, we use JSON Web Token

(JWT) [50], an open industry standard for authentication, to

transmit the token and its digital signature. In our experiment,

the example token along with its HMAC-SHA256 signature

will result in a encoded JWT of 283 bytes. Our evaluation

shows that this defense incurs acceptable extra transmission

bytes during generation, transmission and verification, which

is aligned with previous works on JWT applications [66], [73].

B. Mitigating the Risk of Video Segment Pollution

Existing content pollution defenses. Previous studies [39],

[42], [62], [82] require the video source to distribute every

video chunk with an extra integrity attribute (e.g., hash-based

chunk signature) for verification. However, such defenses may

lead to higher CDN bandwidth costs for PDN customers

since all the viewers (even those not in PDN) download these

integrity attributes from CDN. Although it is possible to reduce

the bandwidth cost by signing multiple chunks, this means

the viewer has to wait for the arrival of multiple chunks for

verification, which incurs longer delays. Also, PDN, as a third-

party service, is required to minimize the changes to existing

video streaming services. Motivated by previous defenses and

the unique natures of PDN, we proposed a peer-assisted

integrity-checking that incurs no extra CDN bandwidth cost

and is compatible with existing streaming infrastructures.

Peer-assisted integrity checking. Similar to [82], our mech-

anism randomly selects PDN peers to calculate the integrity

metadata (IM, e.g., cryptographic hash) for a video segment.

However, our mechanism differs by utilizing the trusted PDN

server, which is used to resolve IM conflicts and blacklist

malicious peers. In our mechanisms, these calculated IMs are

333

TABLE VI: Evaluation for IM checking.

Browser PDN IM checking CPU Memory Latency

Chrome No No 1 1 -
Chrome Yes No 1.11 1.21 67ms
Chrome Yes Yes 1.14 1.24 140ms

reported to the PDN server, and the PDN server consider

an IM is authentic if all selected peers report the same

IM. Since malicious peers can report fake IMs, the PDN

server downloads the specified video segment from CDN and

calculate the authentic IM if an IM conflict was detected. Peers

reporting falsified IMs will be blacklisted. As long as there
are benign peers reporting IMs, the peer-assisted integrity
checking can help identify the authentic one. The authentic IM

will be further signed by the PDN server, resulting in signed

integrity metadata (SIM). The SIM for each video segment

will be distributed to peers for integrity checking. Note a peer

will report the IM only when the respective video segment

is downloaded directly from the CDN, and a video segment

downloaded from other peers must be verified using its SIM.

To ensure the integrity of video content, the integrity

metadata should be robust to the replay attack. Specifically,

an attacker may record a legitimate video segment along with

its SIM, masquerade it as another video segment, send it to the

victim peers, and thus disrupt the video delivery. Also, such

a replay attack can occur across videos. Therefore, the IM

should also be able to verify which video a segment belongs

to as well as its position in the manifest file. In our design,

the IM is calculated as the cryptographic hash of the tuple of

video segment content, the video identifier, and the position

of the video segment in the manifest file.

The peer blacklist. Since the PDN server will download a

video segment from CDN when a conflict occurs, the attacker

may keep sending fake IMs to increase the server overhead

and traffic cost for the CDN. It is necessary for the PDN

server to track peers and maintain a peer blacklist. Specifically,

the PDN server assigns a unique ID to each peer at the start

of the session. The ID should bind to the peer’s public IP

address and port or other information for tracking. If a peer is

detected to have involved in suspicious behaviors (e.g., sending

a fake IM), it will be blacklisted and removed from the peer

candidates. Note this ID should only be visible to the PDN

server in case other peers may abuse the ID for tracking.

Evaluation. We set up a simulation environment to evaluate

the feasibility and performance of our peer-assisted integrity

checking mechanism. Given the absence of any open-source

PDN system, we built our simulation based upon PeerJS [7],

an open-source WebRTC library. We first developed a custom

signaling server and a PDN JavaScript SDK, along with

a website integrating this SDK. Then we implemented our

defense and evaluated the performance with our PDN analyzer.

It shows our defense successfully detected polluted segments

in the existence of malicious peers. We further evaluated the

performance overhead, specifically profiling the resource con-

sumption in IM calculation and verification. This is achieved

through three groups of control experiments. In each group,

we specified 6 peers, with 3 as the senders and the other 3

as the receivers. Each receiver peer requests from the senders

a typical video segment with a length of 10 seconds, lasting

for a total of 600 seconds. Different groups are set based on

settings including whether to do P2P video segment delivery,

and whether to do IM calculation for the sending peers and IM

verification for the receiving peers. During the experiments,

we use Docker API to measure peers’ resource consumption,

and the latency of IM checking is calculated by the time

difference of Trecv −Tsend, where Trecv is the receiving time

after IM verification and Tsend means the sending time before

IM calculation. As shown in Table VI, our defense will incur

negligible CPU and memory consumption on peers. And the

latency incurred by IM checking is less than 80ms for a video

segment of 3MB size.

C. Mitigating the Risk on Peer Privacy

Existing peer privacy defenses. Previous works [38], [71]

have proposed various mechanisms to protect users’ stream

privacy in peer-assisted video streaming networks. These

defenses distribute fake streams to prevent attackers from

inferring the real stream that users are watching. However,

such solutions significantly change the existing video stream

infrastructure and cannot prevent the peer IP leak risk.

Peer privacy risk mitigation. Although existing video stream-

ing infrastructure cannot prevent peer privacy risks, we suggest

potential countermeasures to restrain these risks. To mitigate

the resource squatting risk, PDN providers and customers

should inform viewers of the existence of PDN services

and allow viewers to disable PDN services and control the

resources consumed for P2P purposes, such as limiting the

maximum uploading bandwidth.

Regarding the IP leak risk, a straightforward solution is

to limit the number of candidate peers that exchange IPs

with each other. Specifically, the PDN server can retrieve the

real IP of peers and query the information of these IPs such

as geolocation and ISP. Based on the information, the PDN

server can configure candidate peers to those sharing the same

country or ISP. Such countermeasures can prevent unnecessary

IP exposure effectively. From the test results in §IV-D, the

number of leaked peer IPs will decrease significantly, i.e., only

35% leaked IPs from RT News are in the same country as our

controlled peer, and none of the leaked IPs from Huya TV

will be visible to our controlled peer.

Although the heuristic method above mitigates the IP

exposure to some extent, an attacker can still bypass this

defense through a proxy peer. Also, constraining the number

of candidate peers may affect the QoS of PDN services. A

fundamental solution provided by WebRTC is to relay traffic

between peers through TURN servers [13]. TURN servers

act as proxy servers between peers and can be utilized to

circumvent network censorship [33]. With the existence of

TURN servers, peers do not communicate directly and thus

prevent the peer IP leak risk. As mentioned in §III-C, we

observed two adult video platforms (xhamsterlive.com and

334

stripchat.com) utilized TURN servers to relay traffic. This

is probably designed to protect the viewers’ privacy since

watching adult videos is privacy-sensitive. However, peer

communications in PDN can incur a large volume of network

traffic and thus cause huge overhead to TURN servers, which

is not feasible in a large-scale PDN system.

VI. DISCUSSION

Microsoft eCDN. As Microsoft eCDN acquired Peer5, we

further measured whether the identified risks still exist in the

Microsft eCDN service, which can be integrated into Microsoft

Stream and Teams to offload traffic for live events. From the

documentation [6], Microsoft eCDN utilizes Microsoft tenant

ID as the API key, which is shared across the enterprise and

no longer publicly visible. Thus it prevents the free riding

attack. Regarding content integrity, we conducted our tests on

the silent simulator provided by Microsoft eCDN, which runs

peers in headerless browsers to transmit data. In the direct

content pollution test, no peer connection is observed; in the

video segment pollution test, we observed the polluted video

segments being transmitted from the malicious peer to the

victim peer. Our results indicated that Microsoft eCDN also

suffers from our video segment pollution attack.

Limitations. Our detection of PDN customers (§III-C) may

miss cases when the signature-based detector failed to capture

the web pages that dynamically load the signatures, or when

the dynamic analysis failed to trigger the PDN traffic due to

various real-world constraints. Also, while the PDN ecosys-

tem is found to be vulnerable to serious security risks, we

failed to evaluate some of our security tests on most private

PDN services due to ethical concerns. In our future work, we

plan to work together with private PDN providers and explore

how to mitigate such risks in real-world PDN activities.

Responsible disclosure. We have responsibly reported the

aforementioned security risks to relevant parties, including

all public PDN providers, Microsoft eCDN, and Mango TV.

Both Peer5 and Viblast have responded to our disclosure and

acknowledged the disclosed risks, and we are waiting for

others’ responses. Specifically, for the service free riding risk,

Peer5 acknowledged that non-browser clients could spoof the

origin and incur extra costs to the customers. And regarding

the video segment pollution attack, both Peer5 and Viblast

acknowledged the security vulnerability. Peer5 also claimed

that they provide premium features to check the integrity of

video segments, which requires a custom HTTP delivery. Vi-

blast mentioned that they provide a player plugin to implement

an MD5 segment hash checking, which requires a server to

compute the MD5 value of each video segment. Both solutions

require changes of existing infrastructure and thus are not

feasible for PDN customers. In terms of user consent, both

Peer5 and Viblast argued that they suggest their customers

inform users of the potential resource consumption and not

use cellular traffic for uploading.

Data and code release. Relevant datasets and source code

have been released online [1]. We have open-sourced most of

our study infrastructure, including our PDN customer detector

and PDN analysis framework.

VII. RELATED WORKS

P2P video streaming. Multiple large-scale measurements

have been explored to leverage residential peers for video

streaming services, called P2P-CDNs, including Xunlei

Kankan [79], LiveSky [77], Akamai [81] and Spotify [44]. All

these P2P-CDNs require users to install client-side software

and user consent to enable P2P services. Another set of work

explored utilizing residential gateway devices such as Wi-Fi

hotspots and cellular base stations [54], [55]. More recent

research aims to get rid of client-side software or devices

through WebRTC. Typical examples include Hive.js [69] and

Maygh [80], which are similar to the paradigm under our

study but not compatible with existing CDN infrastructures.

Moving forward, [36] explores how to utilize edge nodes to

fulfill privacy-preserving video streaming. Our research, for

the first time, systematically measures the security risks of the

emerging PDN ecosystem built upon WebRTC, which reveals

serious vulnerabilities.

Security risks in P2P streaming. P2P streaming networks

have been proven vulnerable to various attacks [35], [46],

[51], [72]. Prithula Dhungel et al. [39] performed the first

content pollution attack in a commercial P2P live stream by

mixing bogus chunks to degrade the quality of a video stream.

William Conner et al. [35] investigated selfish and malicious

behaviors such as DoS attacks in P2P media systems. Maya

Haridasan et al. [46] first proposed the concept of collusion

attacks in which the attacker compromises a subset of nodes

in P2P live streaming networks. To address these risks, a lot of

works [35], [46], [53] proposed defense mechanisms in P2P

streaming networks. Roverli P. Ziwich et al. [82] proposed a

distributed diagnosis of content pollution in P2P live streaming

networks based on a comparison among all neighboring peers,

which inspires our mitigation for the video segment pollution

attack. Our work revealed a new attack in the PDN system,

i.e., the free riding attack, and a novel method to perform the

pollution attack through the collusion of a fake CDN and a

malicious peer.

IP leak in P2P networks. It has been known that P2P

networks leak peers’ information and can be abused to com-

promise anonymity [57], [61]. To constrain the IP leaks,

previous P2P networks deploy P2P overlays on top of physical

IP layers to protect peers’ IP addresses [56]. Recently, a

series of studies [30], [41], [47], [67] investigated the IP

leaking concerns caused by WebRTC, which reveals users’

real IP addresses through WebRTC API. And De Groef et al.

[37] studied the identity authenticity of communicate peers

and proposed several attack scenarios to compromise peers’

identity authenticity.

Resource squatting. A line of works [34], [40], [63] have re-

vealed cryptojacking wherein device computing resources are

abused by miscreants for cryptocurrency mining. In addition,

another abuse scenario is the unauthorized monetization of

335

residential and mobile devices into web proxies to relay third-

party network traffic [59], [60]. Natalie Silvanovich of Project

Zero Team [29] also reported a series of important CVEs

in WebRTC-based voice calls, such as initiating silent calls

without user consent. Moving forward from these studies, we

reveal for the first time how PDN services expose viewers’ IPs

and consume viewers’ extra resources without user consent.

VIII. CONCLUSIONS

In this paper, we carried out the first empirical study on

the security risks of PDN ecosystem. Our study revealed that

PDN services have been deployed in many real-world ser-

vices, especially in Chinese video platforms. Through a PDN

analysis framework, we uncovered and evaluated significant

security risks, i.e., service free riding, video segment pollution,

and unreported privacy violations, i.e., IP leak, and resource

squatting, which may affect millions of video viewers. Upon

a solid understanding of these security and privacy risks, we

proposed several defense options to mitigate the risks.

IX. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their

insightful comments. This work is supported in part by NSF

CNS-1801432. Xianghang Mi is supported by NSFC through

award 62302473 and by USTC through the Innovation Fund

for Young Investigators.

REFERENCES

[1] Attack demo on content pollution. https://sites.google.com/view/pdnsec
/home.

[2] Develop with Docker Engine API. https://docs.docker.com/engine/api/.
[3] HTTP Live Streaming. https://tools.ietf.org/html/rfc8216.
[4] JW Player - Hybrid Peer-to-Peer Delivery. https://demos.jwplayer.com

/peer-accelerated-delivery/.
[5] Live Stream Downloader. https://chrome.google.com/webstore/detail/li

ve-stream-downloader/looepbdllpjgdmkpdcdffhdbmpbcfekj?hl=en.
[6] Microsoft eCDN Documentation. https://learn.microsoft.com/en-us/ec

dn/.
[7] PeerJS - Simple peer-to-peer with WebRTC. https://peerjs.com/.
[8] Secure Reliable Transport. https://tools.ietf.org/html/draft-sharabayko-s

rt-00.
[9] Security Considerations for WebRTC. https://www.rfc-editor.org/rfc/rf

c8826.txt.
[10] SeleniumHQ Browser Automation. https://www.selenium.dev/.
[11] TCPDUMP/LIBPCAP public repository. https://www.tcpdump.org/.
[12] WebRTC. https://webrtc.org/.
[13] WebRTC TURN server. https://webrtc.org/getting-started/turn-server.
[14] Spoify removes peer-to-peer technologyy from its deskop client. https:

//techcrunch.com/2014/04/17/spotify-removes-peer-to-peer-technolog
y-from-its-desktop-client/, 2014.

[15] Streaming video – from megabits to gigabytes. https://www.ericsson
.com/en/reports-and-papers/mobility-report/articles/streaming-video,
November 2018.

[16] douyu-p2p-block. https://github.com/jmz331/douyu-p2p-block, 2019.
[17] Akama network deployment. https://www.akamai.com/us/en/about/fac

ts-figures.jsp, 2021.
[18] Bogon Filtering. https://en.wikipedia.org/wiki/Bogon filtering, Apr.

2021.
[19] Content Delivery Network:CDN Mesh Delivery—Lumen. https://www.

lumen.com/en-us/edge-computing/mesh-delivery.html?utm source=St
reamroot&utm medium=link&utm campaign=Streamroot-transition,
2021.

[20] IPinfo.io: Comprehensive IP address data, IP geolocation API and
database. https://ipinfo.io/, 2021.

[21] NerdyData.com: Search The Web’s Source Code. https://www.nerdydat
a.com/, 2021.

[22] Peer5. https://www.peer5.com/product/, 2021.
[23] PublicWWW.com: Search Engine for SourceCode. https://publicwww.

com/, 2021.
[24] Security - Peer5 P2P Docs. https://docs.peer5.com/security/, 2021.
[25] SimilarWeb - SimilarWeb Traffic Analysis. https://www.similarweb.c

om/, 2021.
[26] Viblast PDN. https://viblast.com/pdn/enterprise/, 2021.
[27] Web archive for Peer5’s homepage on March 5th, 2021. http://web.ar

chive.org/web/20210305133908/https://www.peer5.com/, 2021.
[28] Commercial P2P CDN. https://www.marketresearch.com/Global-Indus

try-Analysts-v1039/Commercial-P2P-CDN-33963948/, 2023.
[29] Project Zero. https://googleprojectzero.blogspot.com/2018/12/adventure

s-in-video-conferencing-part-1.html, 2023.
[30] Nasser Mohammed Al-Fannah. One leak will sink a ship: WebRTC IP

address leaks. In 2017 International Carnahan Conference on Security
Technology (ICCST), pages 1–5. IEEE, 2017.

[31] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Androzoo: Collecting millions of android apps for the research commu-
nity. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), pages 468–471. IEEE, 2016.

[32] Nasreen Anjum, Dmytro Karamshuk, Mohammad Shikh-Bahaei, and
Nishanth Sastry. Survey on peer-assisted content delivery networks.
Computer Networks, 116:79–95, 2017.

[33] Diogo Barradas, Nuno Santos, Luı́s Rodrigues, and Vı́tor Nunes. Poking
a Hole in the Wall: Efficient Censorship-Resistant Internet Communi-
cations by Parasitizing on WebRTC. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, pages
35–48, 2020.

[34] Hugo LJ Bijmans, Tim M Booij, and Christian Doerr. Inadvertently
making cyber criminals rich: A comprehensive study of cryptojacking
campaigns at internet scale. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1627–1644, 2019.

[35] William Conner and Klara Nahrstedt. Securing peer-to-peer media
streaming systems from selfish and malicious behavior. In Proceedings
of the 4th on Middleware Doctoral Symposium, pages 1–6, 2007.

[36] Simon Da Silva, Sonia Ben Mokhtar, Stefan Contiu, Daniel Négru,
Laurent Réveillère, and Etienne Rivière. Privatube: Privacy-preserving
edge-assisted video streaming. In Proceedings of the 20th International
Middleware Conference, pages 189–201, 2019.

[37] Willem De Groef, Deepak Subramanian, Martin Johns, Frank Piessens,
and Lieven Desmet. Ensuring endpoint authenticity in WebRTC peer-
to-peer communication. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pages 2103–2110, 2016.

[38] Jérémie Decouchant, Antoine Boutet, Jiangshan Yu, and Paulo Esteves-
Verissimo. P3LS: Plausible deniability for practical privacy-preserving
live streaming. In 2019 38th Symposium on Reliable Distributed Systems
(SRDS), pages 1–109. IEEE, 2019.

[39] Prithula Dhungel, Xiaojun Hei, Keith W Ross, and Nitesh Saxena.
The pollution attack in p2p live video streaming: measurement results
and defenses. In Proceedings of the 2007 workshop on Peer-to-peer
streaming and IP-TV, pages 323–328, 2007.

[40] Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, and Jeremy
Clark. A first look at browser-based cryptojacking. In 2018 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW),
pages 58–66. IEEE, 2018.

[41] Alexandros Fakis, Georgios Karopoulos, and Georgios Kambourakis.
Neither Denied nor Exposed: Fixing WebRTC Privacy Leaks. Future
Internet, 12(5):92, 2020.

[42] Attilio Fiandrotti, Rossano Gaeta, and Marco Grangetto. Simple coun-
termeasures to mitigate the effect of pollution attack in network coding-
based peer-to-peer live streaming. IEEE Transactions on Multimedia,
17(4):562–573, 2015.

[43] Gabriela Gheorghe, Renato Lo Cigno, and Alberto Montresor. Security
and privacy issues in P2P streaming systems: A survey. Peer-to-Peer
Networking and Applications, 4(2):75–91, 2011.

[44] Mikael Goldmann and Gunnar Kreitz. Measurements on the spotify
peer-assisted music-on-demand streaming system. In 2011 IEEE Inter-
national Conference on Peer-to-Peer Computing, pages 206–211. IEEE,
2011.

[45] Dick Hardt. The OAuth 2.0 authorization framework. Technical report,
2012.

[46] Maya Haridasan and Robbert van Renesse. SecureStream: An intrusion-
tolerant protocol for live-streaming dissemination. Computer Commu-
nications, 31(3):563–575, 2008.

336

[47] Mohammadreza Hazhirpasand and Mohammad Ghafari. One Leak
Is Enough to Expose Them All. In International Symposium on
Engineering Secure Software and Systems, pages 61–76. Springer, 2018.

[48] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
Eclipse attacks on Bitcoin’s peer-to-peer network. In 24th USENIX
security symposium (USENIX security 15), pages 129–144, 2015.

[49] Ping Identity and W Denniss. OAuth 2.0 Token Binding. 2017.

[50] Michael B Jones. The emerging JSON-based identity protocol suite. In
W3C workshop on identity in the browser, pages 1–3, 2011.

[51] Jian Liang, Rakesh Kumar, Yongjian Xi, and Keith W Ross. Pollution
in P2P file sharing systems. In Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies.,
volume 2, pages 1174–1185. IEEE, 2005.

[52] Jian Liang, Naoum Naoumov, and Keith W Ross. The Index Poisoning
Attack in P2P File Sharing Systems. In INFOCOM, pages 1–12.
Citeseer, 2006.

[53] Eric Lin, Daniel Medeiros Nunes de Castro, Mea Wang, and John
Aycock. Spoim: A close look at pollution attacks in p2p live streaming.
In 2010 IEEE 18th International Workshop on Quality of Service
(IWQoS), pages 1–9. IEEE, 2010.

[54] Ge Ma, Zhi Wang, Miao Zhang, Jiahui Ye, Minghua Chen, and Wenwu
Zhu. Understanding performance of edge content caching for mobile
video streaming. IEEE Journal on Selected Areas in Communications,
35(5):1076–1089, 2017.

[55] Ming Ma, Zhi Wang, Ke Su, and Lifeng Sun. Understanding content
placement strategies in smartrouter-based peer video CDN. In Pro-
ceedings of the 26th International Workshop on Network and Operating
Systems Support for Digital Audio and Video, pages 1–6, 2016.

[56] Apostolos Malatras. State-of-the-art survey on P2P overlay networks in
pervasive computing environments. Journal of Network and Computer
Applications, 55:1–23, 2015.

[57] Pere Manils, Chaabane Abdelberri, Stevens Le Blond, Mohamed Ali
Kaafar, Claude Castelluccia, Arnaud Legout, and Walid Dabbous. Com-
promising Tor anonymity exploiting P2P information leakage. arXiv
preprint arXiv:1004.1461, 2010.

[58] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-Resource
Eclipse Attacks on Ethereum’s Peer-to-Peer Network. IACR Cryptol.
ePrint Arch., 2018:236, 2018.

[59] Xianghang Mi, Xuan Feng, Xiaojing Liao, Baojun Liu, XiaoFeng Wang,
Feng Qian, Zhou Li, Sumayah Alrwais, Limin Sun, and Ying Liu.
Resident Evil: Understanding residential ip proxy as a dark service. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1185–1201.
IEEE, 2019.

[60] Xianghang Mi, Siyuan Tang, Zhengyi Li, Xiaojing Liao, Feng Qian, and
XiaoFeng Wang. Your Phone is My Proxy: Detecting and Understanding
Mobile Proxy Networks. 2021.

[61] Prateek Mittal and Nikita Borisov. Information leaks in structured
peer-to-peer anonymous communication systems. ACM Transactions
on Information and System Security (TISSEC), 15(1):1–28, 2012.

[62] Guillaume Montassier, Thibault Cholez, Guillaume Doyen, Rida Kha-
toun, Isabelle Chrisment, and Olivier Festor. Content pollution quan-
tification in large P2P networks: A measurement study on KAD. In
2011 IEEE International Conference on Peer-to-Peer Computing, pages
30–33. IEEE, 2011.

[63] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck.
Thieves in the Browser: Web-based Cryptojacking in the Wild. In Pro-
ceedings of the 14th International Conference on Availability, Reliability
and Security, pages 1–10, 2019.

[64] H Parmar and M Thornburgh. Adobe’s real time messaging protocol.
Copyright Adobe Systems Incorporated, pages 1–52, 2012.

[65] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczyński, and Wouter Joosen. Tranco: A Research-Oriented
Top Sites Ranking Hardened Against Manipulation. In proceedings of
the Network and Distributed System Security Symposium, 2019.

[66] A Rahmatulloh, R Gunawan, and FMS Nursuwars. Performance com-
parison of signed algorithms on JSON Web Token. In IOP Conference
Series: Materials Science and Engineering, volume 550, page 012023.
IOP Publishing, 2019.

[67] Andreas Reiter and Alexander Marsalek. WebRTC: your privacy is at
risk. In Proceedings of the Symposium on Applied Computing, pages
664–669, 2017.

[68] J. Rosenberg. RFC 5389 - Session Traversal Utilities for NAT (STUN).
https://tools.ietf.org/html/rfc5389, 2008.

[69] Roberto Roverso and Mikael Högqvist. Hive. js: Browser-based dis-
tributed caching for adaptive video streaming. In 2014 IEEE Interna-
tional Symposium on Multimedia, pages 143–146. IEEE, 2014.

[70] Henning Schulzrinne, Anup Rao, and Robert Lanphier. Real time
streaming protocol (RTSP), 1998.

[71] S Da Silva, S Ben Mokhtar, S Contiu, N Daniel, R Laurent, and R Eti-
enne. PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming. In
international middleware conference, pages 189–201, 2019.

[72] Atul Singh, Miguel Castro, Peter Druschel, and Antony Rowstron.
Defending against eclipse attacks on overlay networks. In Proceedings
of the 11th workshop on ACM SIGOPS European workshop, pages 21–
es, 2004.

[73] Prajakta Solapurkar. Building secure healthcare services using OAuth
2.0 and JSON web token in IOT cloud scenario. In 2016 2nd
International Conference on Contemporary Computing and Informatics
(IC3I), pages 99–104. IEEE, 2016.

[74] Thomas Stockhammer. Dynamic adaptive streaming over http– standards
and design principles. In Proceedings of the second annual ACM
conference on Multimedia systems, pages 133–144, 2011.

[75] Haizhou Wang, Xingshu Chen, Wenxian Wang, and Mei Ya Chan.
Content pollution propagation in the overlay network of peer-to-peer
live streaming systems: modelling and analysis. IET Communications,
12(17):2119–2131, 2018.

[76] Jason Weil, Victor Kuarsingh, Chris Donley, Christopher Liljenstolpe,
and Marla Azinger. IANA-reserved IPv4 prefix for shared address space.
IETF Request for Comment, 6598, 2012.

[77] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu, Chuang
Lin, Hui Zhang, and Bo Li. Livesky: Enhancing cdn with p2p.
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), 6(3):1–19, 2010.

[78] Wei Yu, Corey Boyer, Sriram Chellappan, and Dong Xuan. Peer-to-
peer system-based active worm attacks: Modeling and analysis. In IEEE
International Conference on Communications, 2005. ICC 2005. 2005,
volume 1, pages 295–300. IEEE, 2005.

[79] Ge Zhang, Wei Liu, Xiaojun Hei, and Wenqing Cheng. Unreeling Xunlei
Kankan: Understanding hybrid CDN-P2P video-on-demand streaming.
IEEE Transactions on Multimedia, 17(2):229–242, 2014.

[80] Liang Zhang, Fangfei Zhou, Alan Mislove, and Ravi Sundaram. Maygh:
Building a CDN from client web browsers. In Proceedings of the 8th
ACM European Conference on Computer Systems, pages 281–294, 2013.

[81] Mingchen Zhao, Paarijaat Aditya, Ang Chen, Yin Lin, Andreas Hae-
berlen, Peter Druschel, Bruce Maggs, Bill Wishon, and Miroslav Ponec.
Peer-assisted content distribution in akamai netsession. In Proceedings
of the 2013 conference on Internet measurement conference, pages 31–
42, 2013.

[82] Roverli P Ziwich, Elias P Duarte Jr, and Glaucio P Silveira. Distributed
mitigation of content pollution in peer-to-peer video streaming networks.
IET Communications, 2020.

337

