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Abstract—Unmanned aerial vehicles (UAVs) have gained im-
mense popularity for their versatility and diverse applications.
However, this increased usage has raised concerns about the
safety and security of UAVs, emphasizing the critical role of their
Inertial Measurement Units (IMUs) in ensuring accurate orienta-
tion and position data. IMU faults, including both Accelerometer
faults and Gyrometer faults, can lead to severe consequences,
such as mission failures, collisions, or loss of control. This study
addresses the need to enhance UAV resilience in urban airspace
by exploring the impact of various IMU faults. A comprehensive
fault model is introduced in this paper, covering a range of
faults from hardware malfunctions to external attacks. Through
extensive fault injection experiments in a simulated environment,
the study assesses the effects of different fault types and durations
on mission outcomes, providing valuable insights for developing
resilient and fault-tolerant UAV systems. Evaluation metrics,
including inner and outer bubble violations, missions completed,
flight duration, and distance traveled, offer a comprehensive
understanding of IMU fault impacts in dynamic operational
scenarios. Results reveal that longer injection durations, partic-
ularly at 30 seconds, increase bubble violations and significantly
reduce mission completion rates. Accelerometer faults, such as
“Accelerometer Freeze” and “Accelerometer Random” exhibit
reduced mission completion rates of 42.5% and 5%, respectively.
Gyrometer faults, especially “Gyrometer Minimum” and “Gy-
rometer Random” lead to the lowest mission completion rates
(2.5%). Additionally, IMU faults (where the fault affects both
the Accelerometer and Gyrometer), notably “IMU Minimum”,
“IMU Freeze”, and “IMU Random” result in complete mission
failures, highlighting the importance of understanding specific
fault characteristics. These insights can contribute to developing
fault tolerance mechanisms and resilient UAV systems in complex
and dynamic environments.

Index Terms—UAVs, Flight Controller, IMU, Accelerometer,
Gyrometer, Extended Kalman Filter (EKF), Fault Injection

I. INTRODUCTION

Drones, especially autonomous Unmanned aerial vehicles

(UAVs), have become increasingly popular in recent years

for various applications such as delivery, search and rescue,

surveying and inspection, precision agriculture, aerial photog-

raphy, and hobbies [1]. These vehicles rely on onboard sensors,

like GPS, barometer, and Inertial Measurement Unit (IMU),

to provide essential feedback to the flight controller regarding

Geo-location, attitude, position, air data, and other necessary

flight information.

IMU is particularly crucial for providing attitude and posi-

tion feedback to the flight controller. IMU measures a drone’s

acceleration, rotation, and orientation using a combination

of accelerometers and gyroscopes [2], [3]. In some cases, a

magnetometer is also included, serving as the drone’s compass.

However, for this study, we do not consider the magnetometer.

IMU is able to measure motion by converting the detected

inertia, which are forces created due to an object’s resistance to

changing direction, into output data that describes the motion

of the object. This data is then used by some other system, for

example, to control a vehicle [4]. Therefore, IMUs are crucial

in maintaining stability and providing accurate directional

information for unmanned aerial systems (UAS).

However, recent studies have shown vulnerabilities in com-

monly used IMUs, exposing drones and their systems to

security threats rooted in their physical characteristics [5].

Ensuring the reliability of drones is crucial in U-space (a

European initiative for Unmanned traffic management system

(UTM)) [6], [7], where adherence to separation minima (also

known as “Bubble”, a virtual safety volume around the drone

throughout the mission that the drone should follow for a safe

and conflict-free flight) is the primary risk metric [8], [9]. This

paper presents a simulation-based approach to introduce faults

into IMUs, primarily focusing on one of the most widely used

flight controllers, PX41, and a highly accepted drone simulator,

Gazebo2. We systematically assess the impact of faults on the

safety and reliability of the drone’s overall system. By utilizing

controlled fault scenarios in a simulated environment, we aim

to identify potential vulnerabilities, contributing to the ongoing

efforts to enhance the safety and resilience of the drone’s

overall systems and, consequently, the operations in U-space.

In summary, the paper makes the following contributions:

1) Presents a Fault model that specifies potential vulnerabil-

ities present in IMUs of UAVs.

2) Proposes a 2-layered Bubble system helping to detect and

avoid conflicts and collisions and mitigate IMU errors and

failures.

3) Defines metrics to measure and comprehend the impact

of each fault.

4) Integrates the fault injector into the PX4 flight controller.

5) Conduct simulated flights with and without injected

faults, then analyze the results based on predefined

metrics to assess fault severity and evaluate the flight

controller’s response.

1https://px4.io/
2https://gazebosim.org/home
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II. RELATED WORK

In order to investigate the impact of faults in UAVs, re-

searchers, in [10], utilized a simulation-based environment

to evaluate three subsystems (Navigation, GPS, and Trans-

mission) by injecting two types of faults (failure and signal

strength), resulting in a total of six faults. Their objective was

to identify mitigation strategies and establish recovery mech-

anisms. Another related study [11] conducted using Simulink

identified two common challenges: i) insufficient historical

fault samples for comprehensive UAV fault model coverage

and ii) the impracticality of identifying and studying faults

through test flights. Our paper addresses both challenges by

utilizing simulations for fault injection and incorporating a

comprehensive IMU fault model to study the impact. Addi-

tionally, in [12], the authors explored fault impacts and vali-

dated simulation environments. They developed a custom fault

injection simulator, verifying its accuracy and demonstrating

that fault injection results in simulation models that closely

mirror real-world events, a methodology also applied in our

research.

The Extended Kalman Filter (EKF) algorithm is responsible

for estimating UAV’s position, velocity, and orientation [13].

The importance of EKF in the navigation of UAVs demands

that it be highly reliable and able to withstand faults to ensure

that the mission can continue and be completed even in the

presence of faults. However, in our previous studies [14], [15],

we evaluated the reliability of the PX4 flight controller under

different abnormal GPS conditions, such as GPS malfunctions

and interference in GPS data. We used simulation-based fault

injection to emulate these conditions and monitored the UAV’s

behavior to evaluate the flight controller’s reliability.

Similar to GPS, the IMU is a crucial component for provid-

ing precise flight data, ensuring stability, and optimizing flight

performance. Given its crucial role, the IMU is essential for

the safety assurance of drone operations. The significance of

reliable flight data cannot be overstated, as it is essential for

accurately guiding the drones’ movements. [16], [4].

While the resilience of IMUs has not received signifi-

cant attention from the UAV and drone research community,

there are some available studies, particularly focusing on

the vulnerability of IMUs to malicious attack scenarios. For

example, gyroscopic sensors can be attacked with intentional

sound noise, causing drones to rock [2]. Acoustic injection

attacks can also be used to wage doubt on the integrity of

accelerometers [3]. These studies highlight the importance of

evaluating the IMU in simulation-based faulty conditions, as

proposed in this paper, to assess the impact of such attacks

on the safety, dependability, and reliability of drones and their

systems.

Furthermore, some researchers have emphasized the signifi-

cance of stress testing and performance analysis of orientation

estimation algorithms [17], [18]. This further highlights the

need for evaluating the IMU in faulty conditions to assess

its impact on the performance of orientation estimation algo-

rithms (i.e. Extended Kalman Filter (EKF) in our study) and

the overall system reliability.

III. APPROACH AND EXPERIMENTAL SETUP

The fault model developed in this study includes various

fault types detailed in Table I. We simulate these faults to

assess their impact and tolerance by the Extended Kalman

Filter (EKF) and flight controller. The experiments involve

injecting faults into 10 missions in a Gazebo and PX4 simu-

lated environment. Evaluation metrics, such as inner and outer

bubble violations (see sub-section D), missions completed,

flight duration, and distance traveled, provide a comprehensive

analysis of IMU fault impact on drone performance and safety.

A. Fault Model

In this section, we present a fault model for IMUs used

in drones. To create the fault model, we surveyed the known

faults that may happen in an IMU.The identified faults, along

with their descriptions, references, and the way they can be

coded/represented through fault injection, are listed in Table

I. The proposed fault model is then used to simulate different

fault scenarios to evaluate the impact and the tolerance of these

faults by the EKF and flight controller.

The identified faulty scenarios used in the fault injection

can be listed as 1) Fixed values (a Random constant value),

2) No updates/Zeros (Zeros as output), 3) Freeze values

(same previous value from the point the injection started),

4) Random value (Random in range values), 5) Min value

(the minimum allowed value that is in negative), 6) Max

value (The maximum allowed value), and 7) Noise (A not

so drastic random value added/subtracted to the current value).

Table I provides references supporting all these types of faulty

scenarios.

B. Experiment Design

In this work, we used 10 missions from a scenario designed

for running the experiments from a U-space perspective [6].

This scenario is framed in an area of high-density controlled

air traffic in the urban center of a Valencia, Spain. The

simulated zone spans 25 km2 with a height restriction of

60 feet. In this specific scenario, each drone is equipped

with distinct specifications, including varying payloads and

velocities (i.e., 2 drones of 5km/h, 1 drone of 10km/h, 3 drones

of 12km/h, 3 drones of 14km/h, and 1 drone of 25km/h). These

missions have different directions; some go from North to

South, East to West, or vice versa. Also, 4 of the missions

include turning points.

The experiment involved injecting the defined 7 faults
types, each tested over 4 durations of 2, 5, 10, and 30

seconds injections. Fault instances were introduced strate-

gically at the 90-second mark after take-off, which placed

the injection within the mission, whether midway between

waypoints, the fault being injected into turning points, or just

before or after reaching the waypoint. For each fault type,

3 test cases were explored: Accelerometer, Gyrometer, and

the entire IMU (i.e., Accelerometer and Gyrometer together),

resulting in a comprehensive 3 experiments per 7 fault types,

leading to 21 experiments per duration. In total, there were

850 cases for study, comprising 10 drone missions with 21
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TABLE I: Fault Model for IMUs Used in Drones.

Fault Description Can be represented by References
Instability This fault is caused by random values and can be due to factors like radiation or

temperature
Random values [19], [20],

[21], [22]
Bias error This fault is caused by noise and can happen due to factors like old sensors or

temperature
Noise [19], [22],

[23], [24]
Gyro drift This fault is a constant error in measurement and can be caused by factors like old

sensors, noise, or bias due to temperature
Noise [19], [20],

[25], [26]
Acc drift This fault is a constant error in measurement and can be caused by factors like old

sensors, noise, or bias due to temperature
Noise [19], [20],

[27], [28]
Constant output This fault is caused by a lag in updating and getting the same frozen values constantly Freeze values [19]
Damaged IMU This fault occurs when the IMU has been damaged due to old age or external factors,

causing failure in all IMU sensors
No updates/zeros [29], [30]

Gyro failure This fault occurs when the gyro sensor has been damaged or has failed No updates/zeros [30], [31],
[32], [33]

Acc failure This fault occurs when the acc sensor has been damaged or has failed No updates/zeros [30], [31],
[34]

Acoustic attack This fault occurs when the drone is attacked by powerful broadband pulsed or
Continuous Wave (CW) acoustic energy or by narrowband CW. It can cause the
drone to lose control and crash

Random values [35], [36]

False data injection This fault occurs when fake series of data are injected Fixed values [37], [38],
[39]

Physical isolation This fault occurs when one or all sensors are attacked to stop responding No updates/zeros [40]
Hardware trojan This fault occurs when the electronic hardware is modified (e.g., tampering with the

hardware circuit, resizing the logic gate, etc.)
Fixed values [41]

Malicious software This fault occurs when the Ground Control Station and the Flight Controller are
prone to malicious software. It can lead to the loss of sensitive data and control of
the operated UAV system

Zeros/Random Values [35]

OS system attack This fault occurs when potential attacks against civilian or military missions happen
through the Flight Controller’s system software

Min/Max/Fixed values [42]

faulty experiments across 4 durations (21x10x4 = 840), plus 10

gold experiments (the experiments without faults as reference

trajectories).

C. Experimental Environment

To execute our experiments, we utilized a simulation envi-

ronment, shown in Figure 1, equipped with all the necessary

components for executing fault injection campaigns, logging

flight data, and generating trajectories for multiple UAVs.

Within this simulated platform, each component was devel-

oped, deployed, and operated in a virtualized environment

using VMware ESXi.

The fault injection campaigns were managed by a dedicated

tool, which was responsible for introducing predefined faults

into the UAVs’ flight controller (i.e., by corrupting sensor data

output) or the communication network (though the latter was

not utilized in this study).

Operating within this simulated environment with Gazebo

and PX4, multiple UAVs were deployed, and their behaviors

were simulated using dedicated machines. Additionally, a

tracking system comprising a tracker, core brokers, and edge

brokers was deployed to facilitate communication with U-

space for future studies. The platform records all flights, cap-

turing data from both fault-injected and fault-free scenarios.

D. Evaluation Metrics

We propose a two-layered Bubble concept for U-space [6],

consisting of a static inner alert bubble and a dynamic outer

safety bubble, as can be seen in Figure 2. The outer safety

Bubble is akin to the concept of separation minima in U-

space, and our study also suggests a possible formula for the

outer bubble that can serve as a separation minima. The inner

Fig. 1: Detailed View of the Fault Injection Environment.

Fig. 2: Visualization of the virtual Bubble layers.

bubble is designed to detect and alert issues in the drone,

functioning as an alert bubble to notify the pilot and U-space

of potential threats. The proposed concept aims to enhance

separation management in U-space, particularly for unmanned

air systems (UAS) flying in very low-level airspace (VLL).

Moreover, besides the bubble violations, 3 more metrics are

considered in this study and are defined as follows:
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1) Number of Inner Bubble Violations: The inner bubble

size is a static calculation, as shown in Equation 1. In this

equation, all values are first converted into meters. Do repre-

sents the dimensions of the drone, encompassing the wingspan.

Ds reflects the recommended safety distance provided by the

manufacturer, while Dm indicates the maximum distance the

drone can cover at its top speed between two tracking in-

stances. It is important to note that Dm is constant throughout

the mission but varies across drones and missions. This value

does not necessarily come from the gold run but is obtained

from the drone’s specifications. To determine the inner bubble

size, we choose the greater value between Ds and Dm and

add it to Do in the formula. This approach ensures that the

inner bubble calculation considers the appropriate distance, ac-

counting for either the manufacturer’s safety recommendation

or the drone’s maximum travel distance.

(1)Bubbleinner = Do +max(Ds, Dm)

2) Number of Outer Bubble Violations: Each drone is

assigned a separation volume around it during a flight mission

according to separation minima and its dimensions, which can

be called Bubble (space around a drone at a specific position)

or Volume (space around a drone along with a mission).

The definition of Separation Minima (Bubble’s or Volume’s

size) depends on many factors [43] according to U-space,

including i) The size and weight of the drone; ii) The

instantaneous velocity of the drone; iii) Performance of the

drone navigation system; iv) Performance of communication

with UTM/U-space; v) Performance of the UTM/U-space

surveillance function; vi) Risk of aggravating the hazard of any

collision coming from features of the drone (e.g., high mass,

flammable fuel), its cargo or the presence of passengers; vii)

The risk of aggravating the hazard of any collision associated

with the ground being overflown or other airspace users

flying below; viii) The weather conditions. However, there is

no predefined separation minima (Bubble’s radius) formula

provided for the drones in urban airspace. Thus, we need to

define it for the drones included in this study.

As shown in Formula 2, represents the calculation of the

dynamic outer bubble, Sa(tn) represents the current Airspeed,

Sa(tn−1) represents the previous Airspeed, D(tn−1) repre-

sents the last distance covered by the drone, which represents

the current speed of the drone. Utilizing these parameters

enables the computation of the anticipated distance to be

covered at time tn.

(2)D(tn) = D(tn−1) ∗ Sa(tn)

Sa(tn−1)

The relative alteration in the anticipated distance covered

(expressed in Formula 2), caused by the alteration in the

Airspeed, allows us to compute the additional space allocation

required for each drone beyond the inner bubble radius. It

is crucial, however, to ensure that the inner bubble radius

consistently remains the minimum value.

Finally, as can be seen in Formula 3, to calculate the

radius of the outer bubble at time t, the result of the pre-

vious calculation is first multiplied by Bubbleinner and then

by R, which is representing the risk associated with flying

in the given airspace conditions. Indeed, R is an outcome

computed by multiple factors, encompassing current airspace

density, weather conditions, communication quality, U-space

surveillance performance, and the age of the drone. R should

have a value equal to or higher than 1. In this study, to simplify

the environmental conditions, we opted for a value of 1 for R.

(3)Bubbleouter(t) = R ∗ (Bubbleinner ∗Max(1, D(tn))

3) Missions Completed: This metric shows the percentage

of missions completed (i.e., nor crashed neither failsafe is

enabled) out of all faulty missions executed. As total of

640 faulty experiments were executed, this metric is crucial

to identify the risk of the specific fault leading to mission

completion.

4) Flight Duration: This metric holds significant impor-

tance, not only because precise timing is essential for manag-

ing drone flights effectively within UTM/U-space but also due

to the limited battery capacity of small drones. Any impact on

flight duration can directly affect the drone’s ability to fulfill its

designated mission. In critical situations, such as time-sensitive

missions like blood delivery or firefighting, this impact can

have detrimental consequences.

In our study, we calculate this metric by subtracting the take-

off start time from the time the vehicle successfully lands and

disarms. In instances where the drone crashes, the crash time

is recorded as the endpoint.

5) Distance Traveled: Similar to flight duration, the dis-

tance a drone is expected to cover in a flight, measured through

the estimated position, which is the output from the EKF, is

a crucial metric. It helps gauge the effectiveness of EKF and

flight controllers in filtering anomalies caused by IMU. This

metric is calculated by summing the differences between the

positions of drones as estimated by the EKF.

IV. RESULTS AND ANALYSIS

The results of the fault injection experiments with 10

simulated UAVs, 4 injection durations, and 21 fault types,

provide valuable insights into the relationship between fault

types, injection durations, and UAV mission outcomes. The

experiments showed that longer injection durations generally

lead to more severe consequences, but the specific behaviors

associated with each fault type play a crucial role in deter-

mining the extent of their impact. The findings serve as a

foundation for developing resilient UAV systems, capable of

mitigating specific faults and ensuring mission success across

diverse scenarios.

A. Injection Duration Analysis

We first examined the impact of different injection du-

rations on mission outcomes, as summarized in Table II,

where each row represents the average of all missions for

all faults, grouped by injection duration (i.e., 210 missions

average for each injection duration and 10 missions average

for the Gold runs). The table is sorted by mission completion

percentage. The reference/baseline mission, represented by

the “Gold Run”, which covered a distance of 3.65 km in

491.26 seconds on average (of the 10 missions). However,

319



as the injection duration increased, a noticeable trend can

be seen. Longer durations resulted in more inner and outer

bubble violations, and leading to a notable decline in mission

completion percentages. For instance, the 30-second injection

duration exhibited the highest average inner and outer bubble

violations, with a mission completion rate of 10.47%.

B. Fault-Specific Analysis

Table III provides a detailed breakdown of fault injection

experiments, categorizing faults based on their types and

showing the average of all missions and for all durations of

injection (i.e., 40 missions average for each fault type and

10 missions average for the Gold runs). The table is sorted

by mission completion percentage for each component. The

various fault types show a comparable impact, with some faults

causing a significant impact to the extent that no drones can

successfully complete the mission, results also seem to vary

based on the type of the fault. Whereas, some faults permit

the completion of over 60% of missions.

1) Accelerometer Faults:

• Acc Freeze and Acc Random: These faults caused

fewer violations, but mission completion rates of 42.5%

and 5%, respectively. This could be because these faults

interfere with the hardware of the accelerometer, causing

the UAV to be unable to return to its normal state.

• Acc Zeros and Acc Noise: In contrast, these faults

showed relatively high inner and outer bubble violations,

and mission completion rates of 67.5% and 60%, respec-

tively. For these faults, the increased violations correlated

with a high mission success, as the drones in most

missions, deviated from the trajectories but were able to

stabilize.

A visual example of Accelerometer faults is shown in Figure

3, where a fault “Fixed value” (in which a random but constant

value is injected) is introduced into the accelerometer of the

fastest drone (drone with 25km/h) at the midpoint between two

waypoints. It can be seen that the drone went off its trajectory

and later crashed.

Fig. 3: Random Value injected in Acc for 30 sec - crash.

2) Gyrometer Faults:

• Gyro Max and Gyro Random: These faults exhibited

the lowest inner and outer bubble violations, with a

mission completion rate of 2.5% each. These faults also

seem to impact the hardware more, causing the drone to

crash or fail-safe immediately.

• Gyro Freeze and Gyro Noise: In contrast, these faults

resulted in higher violations, with mission completion

rates of 15% and 10%, respectively.

An example to show the behaviour of injecting fault in

Gyrometer is presented in Figure 4, where Random Values

are injected for 30 seconds just before a waypoint. While the

drone was able to reach the waypoint, it could not stabilize

itself for the turn and had to enable failsafe.

Fig. 4: Random Values injected in Gyro for 30 sec - failsafe.

3) Inertial Measurement Unit (IMU) Faults:
• IMU Min, IMU Freeze, and IMU Random: These

faults resulted in a complete mission failure, even when

faults were injected for only 2 seconds, with a 0%

completion rate. The severity of these faults emphasizes

their potential to compromise the overall system.

• Other IMU Faults: The remaining IMU faults, including

IMU Max, IMU Zeros, IMU Noise, and IMU Fixed

Value, exhibited varying degrees of violations and mis-

sion completion rates. Understanding the specific charac-

teristics that each fault is crucial for developing strategies

for fault mitigation.

Figure 5 shows the impact of injecting Random Values in

the whole IMU (i.e. Accelerometer and Gyrometer together)

for 30 seconds, and a few seconds before a waypoint. The

drone crashes very quickly and seems be be very forcefully,

this could be because both the accelerometer and gyrometer

were not responding to stabilize the drone.

Fig. 5: Random Values injected in IMU for 30 sec - crash.

C. Mission Failure and Failsafe Rates

Digging deeper into the metric of missions completed, Table

IV shows the average mission failure rates for each injection

duration as well as each component (i.e., Accelerometer,

Gyrometer, or both together (IMU)) in which the faults are
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TABLE II: Average summary of all missions for all faults, grouped by injection duration.

Injection Duration Inner Bubble Violations (#) Outer Bubble Violations (#) ↓ Missions Completed (%) Duration (sec) Distance (km)
Gold Run 0 0 100% 491.26 3.65
2 seconds 18.30 17.81 20% 188.87 0.98
5 seconds 20.16 16.79 15.23% 146.07 0.81

10 seconds 20.97 19.16 11.42% 151.90 0.69
30 seconds 24.47 21.65 10.47% 154.70 0.75

TABLE III: Average summary of all missions and for all durations of injection, grouped by fault.

Injection Type Inner Bubble Violations (#) Outer Bubble Violations (#) ↓ Missions Completed (%) Duration (sec) Distance (km)
Gold Run 0 0 100% 491.26 3.65
Acc Zeros 23.36 17.5 67.5% 338.67 2.45
Acc Noise 25.23 13.48 60% 306.11 2.22
Acc Freeze 23.40 15.82 42.5% 244.09 1.80

Acc Random 20.13 16.34 5% 110.76 0.55
Acc Min 20.57 24.25 5% 137.18 0.51
Acc Max 41.32 35.32 2.5% 103.35 0.73

Acc Fixed Value 40.30 36.51 2.5% 103.99 0.75
Gyro Zeros 18.88 18.15 40% 223.21 1.20

Gyro Fixed Value 17.51 15.90 17.5% 159.57 0.49
Gyro Freeze 19.11 21.5 15% 145.92 0.98
Gyro Noise 16.01 20.67 10% 156.43 0.52

Gyro Random 16.75 16.36 2.5% 169.28 0.47
Gyro Max 16.32 14.13 2.5% 135.50 0.44
Gyro Min 19.73 14.86 0% 104.41 0.47
IMU Max 14.19 17.34 17.5% 212.30 0.46
IMU Zeros 18.17 16.55 2.5% 104.43 0.52
IMU Noise 21.19 17.61 2.5% 143.73 0.48

IMU Random 16 15.03 2.5% 104.66 0.53
IMU Fixed Value 15.67 14.28 2.5% 110.45 0.53

IMU Min 18.63 17.61 0% 155.08 0.46
IMU Freeze 18.03 16.71 0% 98.93 0.46

TABLE IV: Mission failure analysis.

Injection Type Total Missions Failed (%) Crash (%) Failsafe (%)
Gold Run 0% 0% 0%
2 seconds 80% 73% 27%
5 seconds 84.77% 73% 27%

10 seconds 88.58% 70% 30%
30 seconds 89.53% 34% 66%

Acc 73.22% 77.2% 22.8%
Gyro 87.5% 63.1% 36.9%
IMU 96.08% 47.2% 52.8%

injected. It also provides percentages for crashes and failsafe

activation for the missions that failed.

As illustrated in Table IV, when faults are injected for 2

seconds, the mission failure rate is 80%, with a significant

73% resulting in crashes. However, as the duration of faults
extends to 30 seconds, the mission failure rate increases to
approximately 90%.

Moreover, the Accelerometer, Gyrometer, and IMU exhibit

varying outcomes in terms of failure, crash, and failsafe rate.

Injecting faults into Accelerometer results into a mission

failure rate of 73.22%, while injecting faults into gyrometer

results into an increased failure rate of 87.5%. And when the

faults are injected in both components (faults into the entire

IMU), it poses the most formidable threat to mission success,

with a failure rate exceeding 96% and a crash rate of 47.2%.

In addition to the mission failure and crashes, it is crucial to

examine the role of failsafe activations by the flight controller.

The correlation between fault duration and failsafe activation

rates, shown in Table IV, indicates an increase in failsafe

activation as the injection duration increases. For instance,

when faults are injected for shorter durations, such as 2

seconds, the failsafe activation rate is only 27%. However,

as fault duration extends to 30 seconds, the failsafe activation

rate increases to 66%, indicating that the failsafe mechanism
takes longer to activate.

Furthermore, the failsafe activation appears to work dif-
ferently when faults are injected into different components.

For Accelerometer, failsafe activation is 22.8% and for Gyrom-

eter is 36.9%. In case of Accelerometer, the failsafe detection

thresholds are not defined in flight controller, relying instead

on the factors such as vehicle specifications and airspeed. In

contrast, for Gyrometer, the default failsafe detection threshold

is set at 60deg/s (configurable in the flight controller settings).

Regarding the IMU, failsafe is activated in 52.8% of instances,

as it can be triggered by either of the thresholds [44].

By default (although these settings are configurable, we

have maintained default settings for simplicity in this study),

the failsafe module initially attempts isolation by deactivating

the primary sensor and activating redundant sensors (typically

two more redundant sensors, whereas in this study, the fault

is assumed to affect all redundant sensors) before enabling

failsafe. In our study, failsafe takes a minimum of 1900ms;

however, the exact time is not defined and may depend on

multiple factors such as sensor calibration and sensor health.

This different impact of fault injection in these components

(i.e. Accelerometer, Gyrometer and IMU) can be because of

their roles in modulating drone navigation and control systems.

Acceleration faults, disrupt velocity estimates and trajectory

calculations, making drones to deviate from trajectory. While

these faults can lead to compromised navigation, their effects

may be less pronounced compared to faults in orientation

measurements provided by Gyrometer. As a result, failsafe

activation triggered by acceleration faults occur at a relatively
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lower rate, also reflected by the lower mission failure.
In contrast, Gyrometer faults impacts orientation measure-

ments, thereby hindering stability and control responsiveness.

This can lead to more immediate and severe deviations from

the intended trajectory and also impacts the sensor calibration

(which for Gyrometer is very crucial) as also reflected by a

high overall failure rate. This could also be resulting in higher

failsafe activation in comparison to Accelerometer.
IMU faults, representing faults in both Acceleration and

Gyrometer, shows the most profound implications for mission

success, because of it’s high influence on navigational and

control systems. The combined impact of faulty Accelerometer

and Gyrometer amplifies the risk of mission failure, as it com-

promises both navigation and stability control. Consequently,

IMU faults has the highest rate of failsafe activation, because

of the high risk involved as it also shows to have the highest

failure rate associated.

D. Discussion
These are some crucial observations from the results, em-

phasizing the need to enhance IMU and flight controller

resilience in urban UAV operations:

• IMU Resilience in Urban UAV Operations: The vary-

ing impacts of different IMU faults on mission outcomes

highlight the need for a thorough understanding of each

fault characteristics and impact to develop effective strate-

gies for fault mitigation, especially software-based miti-

gation techniques in addition to hardware redundancies.

• Critical Role of IMUs in Stability: Fault scenarios like

“IMU Min”, “IMU Freeze”, and “IMU Random” led to

complete mission failures, emphasizing the critical role

IMUs play in the overall system stability. These faults

simulated scenarios where IMUs would experience real

abnormal conditions, such as system attacks, constant

output, instability acoustic attacks, and malicious soft-

ware, resulting in the UAVs losing control or crashing.

• Impact of Fault Duration: Prolonged fault injection,

especially at durations of 10 and 30 seconds, intensifies

the severity of IMU faults, leading to increased inner and

outer bubble violations crucial for maintaining safe flights

and significantly reducing mission completion rates.

• Need for Detection and Resilience Mechanisms: This

study emphasizes the importance of developing inher-

ently resilient flight controllers capable of withstanding

abnormal conditions in IMUs or other critical components

like GPS. Effective fault detection and correction mech-

anisms, particularly in Extended Kalman Filters (EKFs)

and flight controllers, are essential to mitigate the impact

of prolonged faults, as the overall failsafe activation rate

was 62.5% for the failed missions, which still make the

IMU very prone to crashes.

• Criticality of Gyrometer in UAV Safety: Gyrometer

faults, with their high failure rate of 87.5%, shows that

the Gyrometer plays a more critical role in UAV Safety

in comparison with Accelerometer. Faults in Gyrometer

directly impacts the UAV’s capability to sustain stable

flight, resulting in more immediate and severe deviations

from the intended trajectory or in many cases a crash.

• Criticality of Accelerometer in UAV safety: Accelerom-

eter faults on the contrary have both higher Inner and

Outer Bubble violations. This could be because Ac-

celerometer can push the drones outside the assigned

bubbles relatively faster than Gyrometer faults can. This

shows that from a U-space perspective, Accelerometer

might be more critical for safety in presence of faults, as

it may cause collisions with other UAVs.

In addition to above, an interesting observation is related to

the fault injection duration within the range of 0-2 seconds,

which should be further explored, as 80% of the missions
failed when the faults were injected only for 2 seconds. This

also leads to the importance of quick detection and tolerance

techniques. Also surprisingly, Zeros were better handled by
the flight controller in comparison with the Min and Max
values, although all three are constant fixed value injections,

when Min value was injected in Gyro for even 2 seconds, the

drones were never able to complete the mission.

V. THREATS TO VALIDITY AND FUTURE WORKS

While our experiments offer valuable insights into IMU

fault impacts on UAVs, several limitations must be acknowl-

edged. The accuracy of fault simulations relies on the realism

of the fault model and on the coverage of such a set of

fault types, potentially missing unexplored fault scenarios.

Moreover, the study’s focus on fault injection and simulation

neglects potential hardware variations in commercial UAV

systems (for example, the age and weight of different com-

ponents). Therefore, while our findings are insightful, it is

crucial to be cautious about applying them directly to real-

world situations. Further research can be performed in real-

world experiments to validate our findings.
Moreover, this study opens the door for future research

to conduct in-depth mathematical evaluations of the flight

controllers and EKF, aiming to better understand the effects

caused by these faults and vulnerabilities and define more

effective mitigation strategies.

VI. CONCLUSION

Unmanned aerial vehicles (UAVs) have become increasingly

popular in recent years due to their versatility and wide range

of applications. However, as the use of UAVs becomes more

widespread, concerns about their safety and security have

also increased. This research has investigated the resilience

of drones against Inertial Measurement Unit (IMU) faults

in simulation. Our fault model covered a large spectrum of

faults, from hardware failures to software vulnerabilities to

external attacks, and extensive fault injection experiments were

conducted on 10 drone missions.
This comprehensive analysis of fault injection experiments

highlights the intricate relationship between fault types, injec-

tion durations, and UAV mission outcomes. Longer durations

generally lead to more severe consequences, but the specific

behaviors associated with each fault type play a pivotal role in

determining the extent of the impact. These findings provide

valuable insights for developing resilient UAV systems capable

of mitigating specific faults and ensuring mission success in

diverse scenarios.
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