
Towards Shielding 5G Control Plane Functions

Sudip Maitra∗, Tolga O. Atalay∗, Angelos Stavrou∗†, Haining Wang∗
∗Department of Electrical and Computer Engineering, Virginia Tech, USA

†Kryptowire, LLC, McLean, VA, USA

Email: {smaitra, tolgaoa, angelos, hnw}@vt.edu

Abstract—Network Functions Virtualization (NFV) enables
flexible and scalable 5G core deployment but it also introduces
new attack vectors into the mobile network ecosystem, especially
when network functions are deployed on public cloud infras-
tructure. To address this issue, Third Generation Partnership
Project (3GPP) standardization body recommends isolating crit-
ical 5G core functionalities inside Hardware Mediated Execution
Enclaves (HMEEs). However, the use of HMEEs can incur
debilitating QoS degradation in control plane functions including
Authentication and Key Agreement (AKA) protocol. In this
paper, we design and implement network slices with HMEE-
enforced isolation for sensitive AKA functions and characterize
their performance. Our findings reveal that the use of HMEE
leads to 1.2 to 1.5× increase in function execution time and 2.2
to 2.9× increase in response time for the isolated containers.
While appearing very large, this overhead is a small fraction of
the end-to-end session setup latency. To evaluate the feasibility
of HMEE, we use a real commercial User Equipment (UE) to
register with the 5G core network through the isolated AKA
functions. Finally, we discuss the role of HMEEs in addressing
the key issues introduced by NFV.

Index Terms—5G Core Security, VNF Security, HMEE, SGX

I. INTRODUCTION

In legacy Long Term Evolution (LTE) networks, mobile

core network functions were packaged as Physical Network

Functions (PNFs) and deployed on proprietary hardware. By

contrast, 5G deployments leverage Network Functions Virtual-

ization (NFV) as a key enabler to deliver a flexible and scalable

infrastructure. In the context of 3GPP networks, NFV refers

to the deployment of softwarized Network Functions (NFs) as

Virtual Network Functions (VNFs) on Commercial Off-the-

Shelf (COTS) hardware. Service-chaining these VNFs leads

to the creation of the network slice [1], a logically isolated

network fragment tailored to accommodate a specific set of

Quality of Service (QoS) requirements.

While NFV is a powerful approach to enabling a high degree

of flexibility in 5G network slicing, it expands the attack

surface of the mobile network ecosystem [2]–[4]. Legacy

deployments rely on discrete physical devices which implicitly

provide security and separation. Consequently, legacy core

network security models assume that threats apply only at

This material is based on research sponsored by Defense Advanced Re-
search Projects Agency (DARPA) under agreement number HR001120C0155.
The views, opinions, and/or findings contained in this article are those of
the author(s) and should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense.

the edge where the network is exposed to external interfaces.

Moreover, unlike PNFs in the legacy core network, VNFs

operate in shared virtualization environments. Therefore, the

legacy security models cannot account for the new threat

vectors introduced by virtualization [5].

As the computational demands of deploying a 5G core

network evolve, network operators, especially smaller Virtual

Network Operators (VNOs), may increasingly need to utilize

cloud infrastructure. This is in addition to larger operators

managing their own virtualization infrastructure, while smaller

VNOs are already inclined towards third-party hosted solu-

tions. Consequently, cloud service providers such as Microsoft

Azure [6] and Amazon Web Services [7] have started partner-

ing with network operators to offer integrated 5G deployments

on top of their infrastructure.

The deployment of 5G core VNFs on such infrastructure

results in the placement of critical functions next to untrusted

third-party applications, which has raised some security con-

cerns [8]. For example, attackers can exploit memory corrup-

tion vulnerabilities to escape virtualization boundaries [9], and

attackers with local admin privileges can use out-of-bounds

write vulnerability to execute code on the host machine [10].

Vulnerabilities in the Linux kernel can be exploited to escalate

privilege and execute arbitrary code in the kernel [11] and gain

root access [12]. Adversaries in a public cloud can utilize

the aforementioned NFV attack vectors to compromise the

confidentiality and integrity of the critical 5G core functions.

To tackle these emerging attack vectors in the 5G core

network introduced as a result of NFV adoption, 3GPP outlines

several Key Issues (KIs) and possible solutions in [5]. One

such solution is the use of Hardware Mediated Execution

Enclaves (HMEEs). According to the European Telecommu-

nications Standards Institute (ETSI), HMEE is defined as a

secure process space hardened against any type of eavesdrop-

ping and data alteration attacks from the rest of the system

environment [13]. This includes privileged entities such as

hypervisors and container engines as well as other kernel-

level modules. HMEE-enabled hosts are marked as higher trust

domains by 3GPP which are designated for the deployment

of critical functions. To that end, Intel Software Guard Exten-

sions (SGX) is a Trusted Execution Environment (TEE) [14]

conforming to the fundamental HMEE requirements set forth

by 3GPP and ETSI. SGX has garnered much interest in

academia [15] and has commercial presences as well [16],

[17]. For secure operation in the SGX framework, any code

302

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00039

�������	

������������
������
�����

���� �	
�	�������

������
����
�

���
��	�
�������

���

�
����������������������
����
�

Fig. 1: Deployment of the 5G core in a cloud environment with each VNF comprised of multiple microservices with certain

critical functionalities

and data belonging to the application of interest is encrypted

by the Central Processing Unit (CPU) and executed inside a

protected memory region denoted as an enclave. However, the

security guarantees come at the cost of performance. SGX

can impose overheads as high as 79% that can ultimately

deteriorate the performance of time-sensitive tasks [18], [19].

To the best of our knowledge, no study has investigated

the cost of deploying and operating critical 5G core functions

inside hardware enclaves. To address this gap, we aim to build

and characterize 5G network slices that offer higher security

assurances through HMEEs and evaluate the feasibility of

such a deployment with real COTS User Equipment (UE).

Characterizing the performance of HMEEs and testing their

feasibility in the context of 3GPP networks is essential. HMEE

is not only offered as one of the solutions by 3GPP to mitigate

NFV attack vectors but also a crucial standardized component

for realizing trust domains in the future 3GPP networks [5].

In Figure 1, we depict a tentative 5G deployment on top

of a cloud infrastructure. The core VNFs comprise multiple

microservices to decentralize the physical deployment of the

5G network. Although each VNF has an indispensable role in

the network slice service chain, 3GPP recognizes that some

functions in the VNFs are more sensitive and require special

security assurances [5]. Within this scope, the 5G Authen-

tication and Key Agreement (AKA) cryptography functions,

secret key materials, and authentication credentials [20] in the

control plane are of the utmost sensitivity. The infiltration of

the 5G-AKA protocol would be detrimental to user privacy as

unauthorized parties can gain access to sensitive credentials.

To characterize the performance of these functions in HMEEs

and evaluate the feasibility of 3GPP’s proposed solution, we

deploy the critical 5G-AKA microservices of the Unified

Data Management (UDM), Authentication Server Function

(AUSF), and the Access and Mobility Management Func-

tion (AMF) in SGX enclaves using Gramine-SGX (formerly

Graphene-SGX [21]). We utilize the OpenAirInterface (OAI)

5G core [22], Radio Access Network (RAN) gNB [23], and

the gNBSIM RAN entity [24] to create our 5G core network

testbed. Our main contributions are summarized below.

• We extract the AKA functions from the three monolithic

OAI 5G core VNFs (i.e., UDM, AUSF, and AMF) into

three container-based microservices.

• The extracted 5G-AKA microservices are encapsulated

inside SGX enclaves to protect them against NFV attack

vectors.

• We provide the first comprehensive performance char-

acterization of a real-life network slice implementation

with HMEE support by conducting mass experiments

with gNBSIM to collect enclave initialization time, oper-

ational latency, and SGX-specific metrics to measure the

overhead introduced as a result of SGX isolation. Our

results show that SGX introduces 2.2 to 2.9× increase

in response time across the three isolated containers.

We compare this overhead with the end-to-end session

setup delay and find that SGX isolation accounts for only

5.58% of the overall session setup delay.

• To evaluate the feasibility of using HMEEs for protecting

sensitive 3GPP functions, we conduct an Over-the-Air

(OTA) test using a Software-defined Radio (SDR) as the

5G gNB and a OnePlus 8 as the UE. We demonstrate that

the UE successfully registers with the 5G core through

the isolated AKA functions.

• Finally, we discuss the SGX attributes that meet the

HMEE requirements in resolving the key issues high-

lighted by 3GPP. We also unveil that HMEEs can partially

resolve some additional issues, for which 3GPP does not

offer any solutions.

The rest of the paper is organized as follows. Section II pro-

vides background information on 5G AKA protocol and Intel

SGX. The threat model of this work is described in Section III.

We detail the modified AKA message flow and deployment

of critical functions inside SGX enclaves in Section IV. We

present our experimental setup, and evaluation methodology

along with our findings in Section V. Section VI provides a

discussion regarding the role of HMEE in mitigating NFV

attack vectors. Section VII surveys related work, and finally,

Section VIII concludes the paper.

II. BACKGROUND

A. 5G and AKA Overview

The 5G core is comprised of a series of service-chained

VNFs as shown in Figure 2. These VNFs communicate over

service-based interfaces using Representational State Transfer

(REST) APIs standardized by 3GPP according to the Common

API Framework (CAPIF). The VNFs are made up of multiple

microservices, each one responsible for a specific flow within

the control plane. The Unified Data Repository (UDR) serves

as the credential storage unit for the users. Fetching credentials

from the UDR, the Unified Data Management (UDM) interacts

with the Authentication Server Function (AUSF) to generate

the authentication vectors of the 5G- Authentication and Key

Agreement (AKA) procedure in the Home Network (HN).

303

�� ���
��

��

�	
��

�

�
��

���

��

��������

������
����	
�������
����	���������

�
	
����	�
����	
�������	����

�	
������
�
	
����	�

���
���������	
��
��������������

�������

��� ���

��� ��� ���

����������

��

Fig. 2: 5G core service-based-architecture with AKA overview

Moving into the Serving Network (SN), the Access and

Mobility Management Function (AMF) establishes a connec-

tion with the UE and forwards Non-Access Stratum (NAS)

signaling messages between the Access Network (AN) and the

core. The Session Management Function (SMF) and the User

Plane Function (UPF) constitute the data session anchors for

the client. Last but not least, the Network Functions Repository

Function (NRF) stores metadata for each VNF and orchestrates

mutual discovery procedures between them.

5G AKA. The AKA procedure is crucial in establishing

secure communication between the UE and the network. The

UE initiates the AKA procedure by sending an authentication

request along with its Globally Unique Temporary Identity

(GUTI) or Subscription Concealed Identifier (SUCI) to the net-

work. SUCI is the encrypted form of Subscription Permanent

Identifier (SUPI). AUSF verifies the SN authentication service

authorization and forwards the request to UDM, which then

starts the 5G-AKA procedure. If the authentication is success-

ful, the HN issues a GUTI to the UE for the session. In this

paper, our goal is to secure the critical microservices of the 5G-

AKA procedure summarized in Figure 2 and test the feasibility

of such a deployment. When an authentication request from

the UE propagates back to the core, UDM generates the Home

Environment (HE) Authentication Vector (AV) and sends it to

the AUSF. The HE-AV is the concatenation of:

• RAND: random number generated by the core network,

• AUTN: the authentication token sent from the core to the

UE as the mutual authentication challenge,

• XRES*: the expected response for the generated authen-

tication challenge,

• KAUSF: key shared between UDM and AUSF in the

3GPP key derivation hierarchy [20].

Upon receiving the HE AV, AUSF generates and sends the

Security Edge (SE) AV to the AMF, comprised of:

• RAND: random number,

• AUTN: authentication token,

• HXRES*: hashed expected response derived from XRES*.

When the AMF receives the SE AV, it will issue the

challenge to the UE and proceed to establish a secure Non-

Access Stratum (NAS) connection.

B. HMEE and SGX

According to ETSI, HMEE refers to ‘an area of process
space and memory within a system environment within a

computer host which delivers confidentiality and integrity
of instructions and data associated with that enclave. This
enclave is protected from eavesdropping, replay and alteration
attacks as the programs within the enclave are executed’ [5],

[13]. SGX is a hardware-based TEE developed by Intel to

safeguard critical components of an application by utilizing

hardware sandboxes called enclaves. TEE is a tamper-resistant

processing environment within the CPU, providing hardware-

based isolation, code and data integrity, and confidentiality.

A third party can also verify the trustworthiness of the secure

environment through remote attestation. TEE implementations

aim to resist software attacks and physical attacks against

the main memory [14]. SGX trusted computing base (TCB)

only includes the CPU package and the code running inside

the enclave. The attack surface is reduced by considering

the host operating system (OS), hypervisor, BIOS, and other

system software as untrusted. During boot-up, SGX reserves a

portion of the system memory known as Processor Reserved

Memory (PRM), which is further divided into two sections:

enclave metadata storage and user application data and code

storage called Enclave Page Cache (EPC). The contents of the

EPC are encrypted and can only be decrypted when they are

loaded inside the processor at the Last Level Cache (LLC).

This approach prevents any access to the code and data in

EPC by software outside the enclave. Since the OS is not

part of the SGX TCB, applications running inside the enclave

cannot directly issue system calls. Instead, they enter enclaves

by invoking an ECALL and exit the enclave by OCALL. To

issue a system call, the application must issue an OCALL to

exit the enclave and then perform the operation. Once the

system call is served by the OS, the application issues an

ECALL to re-enter the enclave. Before using external data,

shielding code inside the enclave performs verification on the

fidelity of the results [21], [25]. SGX also has provisions for

remote attestation to enable secure deployment of applications

on untrusted cloud infrastructure. To summarize, SGX offers

confidentiality and integrity of the application code and data

by:

• encrypting application code and data when it leaves the

CPU package,

• integrity checking the memory contents of an enclave at

start time,

• providing remote attestation signed by the hardware,

• restricting control flow to specific entry points during

code execution.

Therefore, SGX meets the security attribute requirements of

HMEE set by 3GPP and ETSI. However, SGX offers security

guarantees at the expense of performance degradation. The

SGX design imposes limitations that can result in significant

overhead for applications due to tasks such as data and code

encryption/decryption, integrity checks, and context switching

between enclaves and the untrusted environment [15], [18].

The enclave transitions are especially responsible for the high

overheads as each context switch can cost 10,000 to 18,000

cycles [19] which can produce a negative impact on server-

304

based workloads [18], [26]. So, it is critical to assess the

usability of such a security mechanism in the context of critical

3GPP network functions.

III. THREAT MODEL

The 5G mobile core network is one of the largest ecosys-

tems to be deployed on top of COTS hardware using virtual

components. However, the deployment of 5G core VNFs on

public cloud infrastructure results in the placement of critical

microservices next to untrusted third-party applications. To

understand the security implications in this context, it is critical

to identify the relevant actors and attack vectors targeting the

critical microservices of sensitive 5G functions. Our threat

model is illustrated in Figure 3 highlighting the attack vector

of malicious actors to compromise the 5G-AKA flow.

A. Assumptions

In this threat model, side-channel attacks have not been

taken into account due to the reasonable assumption that this

work employs SGX as an illustrative example of HMEE.

Numerous works have shown that competing HMEE solu-

tion, AMD SEV [27], is also vulnerable to side-channel

attacks [28]–[30]. Indeed, there is no commercial TEE im-

plementation that is completely impervious to side-channel

attacks. It is also worth noting that, over time, these vul-

nerabilities are anticipated to be addressed with architectural

improvements and microcode patches. The scope of this work

excludes denial-of-service (DoS) attacks, as other works have

proposed solutions to address such types of attacks [31]–[33]

and incorporating defenses against it would not introduce any

original contributions and could potentially divert focus from

the primary objectives of this work.

Environment: The deployment environment consists of

COTS hardware on the infrastructure shared with third-party

application providers. Compute resources are offered in the

form of virtual sandboxes where the underlying host is

vulnerable to attacks capable of breaking the virtualization

boundaries [34]–[38]. This includes malicious co-residents ex-

ecuting attacks such as privilege escalation into infrastructure

managing entities and code injections [9]–[12], [39], [40].

Trusted Entities:
• The 5G Radio Access Network (RAN) gNB in charge of

relaying messages between the core and UE.

• Physical host Central Processing Unit (CPU) where

critical microservices are loaded into enclaves.

• Gramine in-enclave bootloader and shielding module.

• Architectural Enclave Service Manager Daemon or

aesmd, provided by Intel’s SGX SDK that manages

enclaves.

Untrusted Entities:
• The virtualization infrastructure managing entities such as

container engines and hypervisors can be compromised.

• Third-party applications deployed next to 5G core VNFs.

• Host OS, BIOS, off-chip hardware, and other system
software of the COTS server.

• Other enclaves running on the same machine.

Virtualization Layer

Physical Resources

NFV Infrastructure

UDM AMF AUSF 3rd party Appppp

1

AKA functions

and keys

2

3

Fig. 3: Attack vector of malicious applications compromising

critical microservices of VNFs involved in 5G-AKA

• Platform Adaptation Layer or pal-sgx, which enables

SGX driver to initialize enclaves.

B. Attacker Model

To explain the attacker model, we walk through a hypo-

thetical attack example as shown in Figure 3. The attacker

could be a malicious third-party application, which has gained

co-residency with the VNO 5G core deployment on a pub-

lic cloud infrastructure. Previous works have shown that an

attacker can achieve co-residency with the target with over

90% success rate [35]. The attack can also originate from

a benign application that is compromised by the attacker

by exploiting software vulnerabilities. After achieving co-

residency, the attacker utilizes a vulnerability in the underlying

container engine or VM monitor to gain root privileges or

orchestrate a VM escape� as shown in [9]–[12]. Once the

attacker has compromised the isolation boundaries and gained

privilege access, it can move horizontally to other VMs or

containers sharing the same virtualization infrastructure�, thus

compromising the confidentiality and integrity of the critical

5G-AKA functions and keys�.

IV. TESTBED OVERVIEW

Ensuring that attackers cannot gain control over the crypto-

graphic functions and access sensitive key materials is crucial

to securing the 5G core services. Our goal for designing the

testbed is to enhance the security of critical functions in the

5G core control plane using SGX and report its performance.

This section details the design elements in our testbed, in-

cluding our approach to isolating AKA functions with SGX

and the modified AKA protocol to accommodate the isolated

functions.

A. Isolation Overview

To secure the 5G-AKA service chain, we start by identifying

the AKA functions in OAI VNFs. These functions were re-

engineered as external modules running inside separate Docker

containers where each module corresponds to its parent VNF.

The testbed overview is illustrated in Figure 4 with the

isolated functions summarized in Table I. Each module is

implemented as an HTTPs server written in C++17 using

OpenSSL and Pistache library. The containers communicate

over TLS using Representational State Transfer (REST) APIs

305

Host OS

Intel CPU

AUSFUDM AMF

EPC

RAM
Docker Engine

gNBSIM

LibOS LibOS LibOS

SGX
Enclaves

eUDM-AKA eAUSF-AKA eAMF-AKA
OAI

docker bridge

Fig. 4: Testbed design overview

via the OAI Docker bridge. The modules expose REST API

endpoints where each AKA function is mapped to an endpoint

handler. The monolithic OAI VNFs (UDM, AUSF, AMF) are

modified so that during UE registration, the VNFs offload

the sensitive functionality to their respective external AKA

modules (i.e., eUDM-AKA, eAUSF-AKA, eAMF-AKA) as

shown in Figure 4. However, containers do not offer sufficient

isolation to thwart attacks described in Section III. Next,

these external modules are deployed inside SGX enclaves to

safeguard the functions against these attack vectors. While

refactoring the VNFs, we notice that some specific protocol

libraries (e.g., Stream Control Transmission Protocol) are not

supported by the Gramine abstraction layer. Thus, we extract

AKA functionalities from the VNFs without including any

dependencies for unsupported protocols. Nevertheless, given

that the 5G core is comprised of software-based components,

porting the critical pieces into SGX enclave does not pose any

5G domain-specific challenges other than working around very

specific libraries that are problematic for SGX implementation.

Overall, this refactoring results in the secure isolation of the

AKA functions, henceforth referred to as Protected-AKA
or P-AKA modules (i.e., eUDM P-AKA, eAUSF P-AKA,

eAMF P-AKA). SGX ensures the confidentiality and integrity

of the P-AKA modules by restricting unauthorized access

to AKA functions and secrets. The details regarding SGX

implementation and deployment are described in Section IV-C.

B. Modified 5G Message Flow

The information flow for registering a UE with the core

network using P-AKA modules is illustrated in Figure 5. It is

important to note that cryptographic parameters are confined

to the same physical host. Thus, they are never sent over

the network. 3GPP requires that long-term keys used for

authentication must remain in the secure environment of the

UDM [20]. Therefore, the P-AKA modules are deployed on

the same host as the corresponding VNFs. Operators must

enforce strict deployment policies to ensure these services are

co-located on the same host. Moreover, before any commu-

nication between VNFs, 3GPP specifications have provisions

for TLS session establishment and mutual authentication [41].

So even within the same host, operators can encrypt the

communication between VNFs and P-AKA modules. In fact,

�� ���
����

����
�����

���
����

���	�
����	��	��
	����������	�����
�
	��

Generate AV

��������������
����	 ��

�����

�����������
���
�����
����������

����������

�����������

��������

�
���
�����
������������
���

�����
Derive KAMF

����

���� ��!��
� !�"�
�#$��#�

Store XRES*

Derive KSEAF

Calculate
HXRES*

���� ��!���%$��!�	�
&�#$��#����	�'�&��(

�����

� ! ��
� !���!���!���

Fig. 5: Modified 5G-AKA message exchange with critical

functionalities offloaded into secure external modules de-

ployed inside SGX enclaves

SGX remote attestation and secret sealing can be utilized to

achieve these measures as we discussed in Section VI.

The parameters that are sent to and from the modules are

summarized in Table I. The OPc is the operator key used in

the cryptographic algorithms. The RAND is a random number

generated by the UDM to ensure that the authentication

messages for the specific instance of 5G-AKA are unique and

up-to-date. The SQN is the sequence number incremented in

each subsequent authentication message exchanged between

the core and the UE, whose purpose is to prevent replay

attacks. The AMFid is the unique identifier of the AMF. All

these parameters are used by the UDM to generate the HE

AV, which is a concatenation of the Authentication Token

(AUTN), Expected Response (XRES*), RAND, and a Message

Authentication Code (MAC). When the HE AV is received by

the AUSF, the XRES* is hashed to create the Hashed Expected

Response (HXRES*). The HXRES* is independently calculated

by both the UE and core, which forms the foundation of the

mutual authentication in 5G-AKA. Comparing the HXRES*
calculated by the UE with its own value, the core can val-

idate the authenticity of the UE. The KAUSF, KSEAF, and

KAMF are different sets of keys in the 5G key derivation

hierarchy [20], each one responsible for securing different

communication links. More details about these parameters and

their roles can be found in [20].

The registration of a UE to the core network using the P-

AKA modules involves the following steps:

1) UE sends an initial authentication request to AMF,

306

TABLE I: 5G-AKA functions and parameters loaded into SGX

enclaves and the relevant enclave input/output as well as the

derivation and/or execution performed inside

P-AKA Enclave Input Enclave Output Derive/
Modules Param. Bytes Param. Bytes Execute

eUDM

OPc 16 RAND 16 f1
RAND 16 XRES* 16 f2345
SQN 6 KAUSF 32 KAUSF
AMFid 2 AUTN 16 AUTN

eAUSF

RAND 16
KSEAF 32 KSEAF

XRES* 16
SNN 2

HXRES* 8 HXRES*
KAUSF 32

eAMF KSEAF 32 KAMF 32 KAMF

which is forwarded to AUSF and ultimately to UDM.

UDM sends the required parameters (i.e., OPc, RAND,
SQN, AMFid) to our isolated eUDM P-AKA module,

that is running inside an SGX enclave. The eUDM P-

AKA module generates the cryptographic parameters

AUTN, XRES*, KAUSF and sends them to UDM.

2) UDM forwards the generated parameters to AUSF,

which in turn calculates the HXRES* and derives KSEAF
within the eAUSF P-AKA module.

3) The AUSF proceeds to send the RAND, AUTN, and

the HXRES* to the AMF, triggering the calculation of

the authentication response within the UE. After the

response is verified by the network, AUSF will forward

KSEAF to the AMF.

4) AMF sends KSEAF to the eAMF P-AKA module where

it is used to derive the KAMF for securing the NAS

signaling with the UE.

5) Finally, AMF mutually authenticates with the UE and

registers it with the core.

It is worth noting that a number of these exchanges depicted

in Figure 5 could be reduced if the P-AKA modules directly

communicated with each other. However, we made a design

decision to restrict the communication of P-AKA modules

only to their parent VNFs. The reason behind this decision is

twofold. Firstly, our goal was to preserve the autonomy of the

P-AKA modules, enabling them to be deployed in accordance

with specific security requirements and scalability demands.

Secondly, we did not want P-AKA modules to alter the regular

UE registration flow significantly so that HMEE capability

could be seamlessly integrated with OAI’s implementation.

C. Deployment in SGX enclave

Applications need to be refactored to deploy inside SGX

enclaves because SGX prohibits system calls inside enclaves.

However, refactoring existing applications to run inside an

SGX enclave requires considerable engineering expertise,

time, and effort [42], [43]. AMD SEV [27] on the other hand,

provides hardware-isolated VMs without requiring any special

changes to the target application. Intel has also developed

their version of hardware-isolated VMs called Trust Domain

Extensions (TDX) [44] for major cloud service providers.

��������	
��
�������	

��������	

������
�������

��������	����������������������	���

������������

���	��������!

��!�"��#����$��#$�%��

���������

����

&'
 ���������(&�

�)������%

*���������	��

*��������

�

Fig. 6: P-AKA microservices deployed in SGX enclaves using

Gramine

Therefore, it is reasonable to assume that vendors will be

reluctant to refactor existing software just for SGX. However,

secure VMs like SEV and TDX have large TCB and may po-

tentially increase the attack surface, rendering them unsuitable

for certain applications [45]. An optimal solution would be to

combine the best of both worlds, easing the development and

deployment process while keeping the TCB small.

In order to reduce the development costs and effort associ-

ated with SGX development, researchers have proposed shim

layers and library operating systems (LibOS) [46] that can

execute unmodified binaries on SGX, such as GrapheneSGX

(now Gramine-SGX) [21], Panoply [47], and SCONE [48].

Introducing another such software layer further increases the

TCB and performance overhead. However, it has been shown

that a carefully partitioned application using such abstraction

layers may not contribute to significant performance costs

compared to native SGX port of the application. Thus, the

overhead introduced by such intermediate layers is justified

by the reduction in development and verification effort [21],

[48]. Moreover, one of the design goals for our testbed is

to be compatible with different TEE implementations so that

one HMEE instance can be easily replaced with another.

Furthermore, deploying containers inside the enclave enables

us to extend the role of HMEEs in mitigating NFV attack

vectors as discussed in Section VI. Hence, we opted to use

Gramine to deploy our modules. Out of the available solutions,

we chose Gramine because it is open source, faster than

Panoply [47], and more feature-rich than the closed source

SCONE libc [21].

The detailed overview of the P-AKA module implementa-

tion is illustrated in Figure 6. Gramine shielded containers or

GSC CLI tool transforms regular Docker images to run inside

SGX enclaves using Gramine LibOS. A config and manifest

file has to be prepared before using the GSC build tool. The

config file contains information regarding the base image,

Gramine repository, and SGX driver. The manifest file is a

JSON file that specifies configurations of the LibOS and other

SGX-related settings and features, dependencies, and trusted

files. The GSC signer tool is used to sign the image with a

user-provided key.

The P-AKA modules were built using

GSC v1.4-1-ga60a499 with preheating enabled

307

(sgx.preheat_enclave=true), four allowed threads

(sgx.max_threads=4), and 512MB of EPC size. To

collect SGX-related statistics reported by Gramine, we

enabled the stats option in the manifest file and built the

image with the debug option enabled. Enabling preheat
option directs Gramine to pre-fault all heap pages during

initialization, which results in an initial delay when deploying

the server. However, it shifts the cost of EPC page faults to

the initialization phase, which is beneficial when a server is

expected to start and receive connections after some time [49].

The rationale for selecting the number of threads and EPC

size are explained in Section V-B2.

V. PERFORMANCE CHARACTERIZATION

In this section, we first describe the experimental setup

and methodology for characterizing the performance the P-

AKA modules. Then we present our findings and analyze the

results. Finally, we test the feasibility of P-AKA modules by

conducting an OTA test using a real UE.

A. Experimental Setup and Methodology

1) Experimental Setup: For our experiments, we used a

Dell PowerEdge R450 server with two SGXv2 capable Intel

Xeon Silver 4314 CPUs with 32 physical cores running at

2.40GHz. The server has 512GB of DDR4 RAM, and 16GB

of combined EPC size. The experiments are carried out on

Ubuntu 20.04 using the 5.15.0-67-generic Linux kernel with

the in-kernel SGX driver. We modified the OAI 5G core

v1.5.0 VNFs to accommodate P-AKA modules. For the actual

deployment, docker-compose version 1.29.2 and containerd

runtime version 1.5.11 are used. We utilized gNBSIM to

establish mass gNB-UE connections with core on a large scale

to conduct our experiments. During the OTA proof-of-concept,

the COTS OnePlus 8 UE is connected to a Universal Software

Radio Peripheral (USRP) x310 acting as the OAI gNB.

2) Methodology: The deployment and metrics collection

were carried out using automation scripts for maximum consis-

tency and repeatability. We devised the following experiments

for a comprehensive evaluation of P-AKA modules:

1) Enclave load time: Measures time for P-AKA modules

to become operational. This experiment provides insight

into the overhead of the initial deployment but has no

bearing on the operational performance of the P-AKA

modules.

2) Number of threads and EPC size: Determines the opti-

mum number of threads and EPC size required for the

proper operation of the P-AKA modules.

3) Functional and total latency: Quantifies the latency

overheads introduced by SGX compared to container

deployment. The functional latency (LF) measures the

execution time of the 5G AKA functions while the total

latency (LT) accounts for the network overhead (LN)

as well (i.e., LT = LF + LN).

4) End-to-end response latency: Measures the duration

from when a request is sent to the P-AKA module (i.e.,

from the OAI VNF) until the reception of a response.

Fig. 7: Enclave load time for the P-AKA modules

5) SGX-specific metrics: We register 1 to 10 UEs for

100 iterations and gather SGX-related metrics, including

EENTER, EEXIT, and AEX instructions. EENTER and

EEXIT are low-level instructions for ECALL and OCALL
system calls. The processor issues asynchronous enclave

exit (AEX) instructions to service in-enclave exceptions,

faults, and interrupts [25]. We especially focus on EEN-

TER and EEXIT instructions as these incur the highest

performance penalty on server-based applications [18].

These metrics can serve as a platform-agnostic basis for

comparison with other proposed solutions. We register

UEs back to back and measure the number of SGX-

related operations. Taking the difference in the number

of ECALLs and OCALLs for consecutive registrations,

we get the occurrence of SGX-related operations per UE

registration.

6) OTA test: Finally, we register a real UE to our testbed

through the P-AKA modules (i.e., the isolated AKA

functions operating from within the SGX enclaves) to

test the feasibility of HMEEs in 3GPP networks.

To ensure the reliability and validity of our collected data,

we repeated each experiment 500 times, unless specified oth-

erwise. We noted less than 5% outliers in our measurements.

B. Results and Performance Analysis

1) Slice creation time: For the first experiment, we focus

on the enclave load time of the P-AKA modules. When a P-

AKA module is first deployed, Gramine and glibc initialize by

opening and reading the manifest file, trusted files, and load-

ing shared libraries. The initialization of Gramine and glibc

invokes several hundred OCALLs which introduce added delay

to the enclave deployment. This is especially noticeable when

using GSC as it appends the majority of the root directory files

(excluding some platform-specific directories e.g., /boot,
/dev, /etc/mtab, /proc, /sys) to the trusted list in

the manifest file. This is due to a design decision made by the

Gramine team to achieve generality. Moreover, the P-AKA

images were built with the pre-heat option enabled, which

pre-faults all heap pages during initialization, thereby, further

increasing the enclave load time. The enclave load times for

the P-AKA modules are presented in Figure 7, where it can

be seen that the modules take almost a minute to become

308

Fig. 8: Effect of varying the number of threads and EPC size

on eUDM P-AKA module

operational. However, it is important to note that this delay

does not affect the operational performance of the P-AKA

modules. This delay only occurs when a new slice is created or

migrated to a new host. Therefore, this metric is important to

take into account when considering slice creation or migration

time. Although enclave load time may not contribute to the

latency of the P-AKA services, it is a crucial metric in under-

standing the deployment characteristics of an HMEE-enabled

service. Unlike AKA services, this is particularly important for

ephemeral services that are redeployed frequently. The enclave

load time of such services may affect the feasibility of using

HMEEs for those services.

2) Impact of Threads and EPC size: For the second ex-

periment, we varied the maximum number of threads allowed

inside the enclave and the EPC size. Figure 8 presents the

functional and total latency overhead as a result of using the

eUDM P-AKA module running inside the SGX enclave. The

functional latency (LF) is the amount of time it takes for the

UDM-specific 5G AKA function to execute. The total latency

(LT) is the duration between receiving a request from the

UDM VNF and sending back a corresponding response. There-

fore, LT accounts for the network overhead in addition to LF .

More details on LF and LT are discussed in Section V-B3.

As shown in Figure 8, the number of threads was increased

from 4 to 50 and the EPC size was increased from 512MB

to 8GB (maximum for a single CPU in our experimental

setup). We observed that setting the thread count below 4

and EPC size below 512MB causes the P-AKA modules to

behave inconsistently. This is because Gramine uses 3 helper

threads to facilitate inter-process communication, implement

timer and asynchronous events, and the TLS handshake for

new pipe creation. Therefore, a minimum of four threads is

required for the P-AKA modules to perform consistently.

In this experiment, P-AKA modules are single-threaded

applications and we register one UE at a time. Increasing the

number of concurrent clients without impacting the perfor-

mance of the modules would require changing the maximum

allowed number of threads. Given the single-threaded P-AKA

(a)

(b)

Fig. 9: (a) Functional (LF) and (b) Total (LT) latency of the

P-AKA modules

servers, results in Figure 8 show that increasing the number

of threads and EPC size beyond 4 and 512MB respectively,

does not improve the performance of the module for a given

client. In this case, the maximum number of threads denotes

the number of threads the enclave is allowed to spawn at a

time. It is not surprising that the performance did not improve

by increasing the number of threads as the server would only

spawn new threads in response to more UE registration flows.

The EPC size depends on the application, the shared li-

braries, and other dependencies. Increasing the EPC size from

512MB to 2GB does not have any effect on the performance of

the modules. However, increasing the EPC size to 8GB results

in a slight decrease in performance and a wider interquartile

range, suggesting greater variability compared to smaller EPC

sizes. This is due to the increase in paging which is the process

of moving contents between EPC and main memory [25],

[50]. Identical behavior was observed in the eAUSF P-AKA

and eAMF P-AKA modules in response to increasing the

thread count and EPC size. Based on these observations, we

configured the enclaves with 4 threads and 512MB of EPC for

the remaining experiments.

3) Overheads introduced by SGX: We observe that the

difference in latency between non-SGX container deployment

and monolithic deployment is negligible. Therefore, we focus

on the functional (LF) and total (LT) latency of the external

309

TABLE II: SGX overhead across the isolated modules

Module LF LT RC → RSGX
S RSGX

S → RSGX
I

eUDM 1.2 1.86 2.2 19.04
eAUSF 1.3 2.15 2.5 18.37
eAMF 1.5 2.43 2.9 21.42

(a)

(b)

Fig. 10: (a) Stable (RSGX
S) and (b) Initial (RSGX

I) response

time of the external P-AKA modules

modules and compare them to the non-SGX container de-

ployments of the same modules. Figure 9 shows that SGX

incurs a 1.2× overhead for LF and around 1.86× overhead

for LT , relative to the unprotected eUDM-AKA module. The

overheads for the other modules are summarized in Table II.

It is worth noting that the eUDM P-AKA module exchanges

the highest number of bytes (described in Table I) among the

three and therefore, introduces the highest latency followed

by eAUSF and eAMF P-AKA modules. The table shows that

the overhead for LF across all three modules is within 1.2 to

1.5 times compared to the unprotected deployment, while the

overhead for LT is higher and more variable. This is because

LT depends on the size of data sent and received by the P-

AKA modules. Furthermore, the network overhead is much

more pronounced in SGX than local computations. Network

I/O operations introduce overheads due to processing required

for data encryption and decryption. They involve untrusted

operations and therefore trigger OCALLs and ECALLs to

transfer data from the untrusted environment to the enclave and

vice versa. Last but not least, the Pistache HTTP server uses

TABLE III: SGX specific operational statistics for the external

P-AKA modules

P-AKA Modules # of UEs EENTERs EEXITs AEXs

eUDM
3 1689 1595 140370
2 1599 1505 140371
1 1508 1414 140320

eAUSF
3 1721 1627 140496
2 1630 1536 140336
1 1539 1445 140380

eAMF
3 1720 1626 140630
2 1629 1535 140426
1 1537 1443 140354

Empty workload - 762 680 49674

epoll_wait system calls to monitor sockets for incoming

requests, incurring more overhead.

4) Response Time of the P-AKA Modules: In this experi-

ment, we focus on the response time of the P-AKA modules

from the VNF perspective. Stable response latency (RSGX
S) is

compared with the response latency of unprotected container

deployments of the 5G-AKA modules (RC). The overheads

are summarized in Table II, where it can be seen that the

RSGX
S varies from 2.2× to 2.9× across the P-AKA modules

when compared to RC . Although the overheads appear large,

we measure that end-to-end UE session setup time in our

testbed is around 62.38 ms. The cumulative delay added due

to SGX isolation is around 3.48 ms, which is only 5.58% of

the overall session setup latency. Figure 10 shows the stable

(RSGX
S) and initial response latency (RSGX

I) of the P-AKA

modules. As seen in Table II, RSGX
I is around 20× that of

the RSGX
S , because when a module is first deployed in an

enclave, the initial request coming from a VNF invokes several

OCALLs and ECALLs to load drivers and other network

stack dependencies. Once these have been cached, subsequent

requests are served faster.

5) SGX specific metrics: In this experiment, we analyze

the SGX-specific metrics reported by the P-AKA modules.

As described in Section V-A, we registered one to ten UEs

(each 100 times) and recorded the number of EENTER and

EEXIT instructions. For the sake of brevity, a sample of up to

three UE registration statistics is shown in Table III, where we

can see the total number of EENTERs and EEXITs reported

by P-AKA modules. The majority of these are due to OCALLs
invoking an EEXIT instruction to exit the enclave and EEN-

TER instruction to re-enter the enclave. We observe that the

number of AEX instructions is not affected by the number

of UE registrations, while the total number of EENTERs is

higher than EEXITs. This is the result of ECALL handling by

Gramine as it performs a single ECALL for the whole process

and one per new thread [21]. It is worth noting that if an

application exits the enclave through AEX instruction, it does

not re-enter the enclave using the EENTER but the ERESUME

instruction. Therefore, AEX instructions do not contribute to

the number of EENTERs. Taking the difference of subsequent

registrations of up to ten UEs, we observe that the number

of EENTERs and EEXITs for registering one UE is around

90. We were able to confirm that the local computation of

310

(a) 5G core server (b) OAI gNB (c) Connection

Fig. 11: OTA testbed with USRP x310 the OAI gNB and a

OnePlus 8 UE

TABLE IV: Hardware and Software Used for Testbed; Mobile

Country Code (MCC), Mobile Network Code (MNC), Physi-

cal Resource Blocks (PRBs)

Server Configuration
2 x Intel Xeon Silver 4314 CPUs MCC - 001
512GB DDR4 RAM - 16GB EPC MNC - 01

Ubuntu 20.04 OS PRBs - 106
5.15.0-67-generic kernel Frequency - 3.6192 GHz

gNB Radio Unit COTS UE
USRP x310 OnePlus 8 - Android 11

[51] OAI develop branch Oxygen 11.0.11.11.IN21DA

the 5G AKA functions does not contribute to the number of

OCALLs and ECALLs and these calls are only invoked during

network I/O operations. Therefore, we see a similar number of

EENTERs and EEXITs across all three modules. This implies

that the performance of the P-AKA modules can be improved

by optimizing network operations. Table III also shows the

SGX-specific statistics for an empty workload, which can be

considered the cost of using GSC. Subtracting the cost of an

empty workload, we observe that deploying the Pistache server

inside an SGX enclave contributes to around 650 EENTER and

EEXIT instructions.

6) HMEE feasibility test with OTA: To collect data at

a large scale for the performance characterization of the

isolated modules, our primary experimental setup described in

Section V-A relied on the gNBSIM entity to simulate the RAN.

In the OTA experiment, we construct the testbed illustrated

in Figure 11 using an SDR serving as the OAI gNB and a

OnePlus 8 device as the UE.

We use the same Dell PowerEdge R450 described in Sec-

tion V-A and shown in Figure 11a to host OAI 5G core.

Connected to this server is the Universal Software Radio

Peripheral (USRP) x310 in Figure 11b acting as the OAI

gNB. An OpenCells SIM card is programmed to the test

Public Land Mobile Network (PLMN) 00101 to ensure that

the COTS UE can detect the OAI as an operator. We observed

that if custom mobile country or network codes were used, the

device would be unable to detect the OAI gNB. Furthermore,

the specific Android Oxygen OS version in Table IV had to

be installed onto the OnePlus 8 for a successful end-to-end

connection. For other commercial UE models, different OS

versions may be required. Despite the overheads introduced

by the use of HMEE, the OnePlus 8 COTS mobile phone

in Figure 11c successfully establishes a data session with

the gNB after registering with 5G core network utilizing P-

AKA modules, resulting in the Test1-1 – OpenAirInterface
connection. The relevant software and hardware configuration

information for successfully connecting this phone to the OTA

testbed is summarized in Table IV.
7) Optimizations and future of SGX in securing network

services: While the overhead introduced by SGX is accept-

able, there are several potential optimizations that can further

improve the performance.

• As noted in [52], much of the overhead introduced

by SGX can be reduced by optimizing SGX-specific

libraries.

• System call overhead can be reduced by including

user-level TCP stack (mTCP) [53] in the enclave, and

DPDK [54] can improve packet processing performance

as shown in [55]. While using a user-level socket API

pulls in more functionality inside the enclave, which fur-

ther increases the TCB, we recognize its potential benefits

in improving the performance of P-AKA modules.

• Gramine supports exitless feature that offloads OCALL

execution to an untrusted helper thread that performs

system calls on behalf of the enclave thread, thereby

improving OCALL performance [56], [57]. However, if

this feature is enabled, the helper threads are occupied

listening for OCALL requests from the enclave thread.

Moreover, this feature is insecure for production usage

as of now.

• Since our design is microservice-based, it inherently

supports horizontal scaling. Therefore, network operators

can scale the enclave worker nodes and SGX-capable host

pools on demand to secure more services.

Intel continues to support SGX in their latest 5th Gen

Intel Xeon Scalable Processors [58]. Intel has partnered with

Fortanix to ease the deployment of services into SGX for net-

work operators [59], [60]. As of Release 18, the standardized

definition of sensitive functions and sub-functions within a

virtualized environment is a work in progress [5], [20]. 3GPP

recommends deploying services in appropriate trust domains

based on the sensitivity of workloads, risk appetite, and use

case. The physical hosts are categorized into trust domains

based on the security features of a host [5]. Once the definition

of sensitive services is standardized in future releases, we

expect SGX and HMEEs as a whole, to play a crucial role

in securing future generations of cellular networks.

VI. DISCUSSION

3GPP outlines several Key Issues (KIs) arising from NFV

and possible solutions in [5]. The KIs relevant to this work

are depicted in Table V and the KI identifiers and descriptions

are taken directly from [5]. 3GPP recommends HMEE as a

311

TABLE V: Key Issues Summary (�: HMEE applicable KIs

identified by 3GPP; �: full and �: partial solutions)

KI # Description Solution
2 Confidentiality of sensitive data �
5 Data location and lifecycle �
6 Function isolation �
7 Memory introspection �
11 Where are my keys and confidential data �
12 Where is my function �
13 Attestation at 3GPP function level �
15 Encrypted data processing �
20 3rd party hosting environments �
21 VM and hypervisor breakout �
25 Container security �
26 Container breakout �
27 Secrets in NF container images �

solution for KIs 6, 7, 15, and 25 (marked with � in the

table). However, we believe HMEE has the potential to have

a bigger impact in solving NFV attack vectors. In fact, we

argue that HMEE can play a crucial role in resolving KI
20, 21, 26, and 27, for which 3GPP offers no solution. To

that end, we identified nine additional KIs that can be either

fully (marked with �) or partially (marked with �) mitigated

with HMEE. Some of the KIs are marked as partially solved

with HMEE because the full mitigation strategy for these

KIs are contingent on additional security requirements that

are out of scope. In this section, we briefly explain the SGX

attributes that meet the HMEE requirements in mitigating the

KIs identified by 3GPP. We also present our arguments to

explain why the HMEE-based solution is applicable for nine

KIs, in addition to the four noted by 3GPP.

KI 6. When NFs share resources (e.g., hypervisor, com-

pute, and memory) secure protocols are reduced to protect-

ing information traversing different memory locations in a

single memory block [5]. To thwart such attack vectors,

3GPP recommends providing confidentiality protection for

information traveling between different memory locations. In

SGX framework, the data and code stored in the memory are

encrypted, thereby providing confidentiality.

KI 7. An attacker who has access to the hypervisor or

container management engine, may inspect and manipulate

the memory of other functions. KI 15 is an extension to KI 7,

where sensitive key material could be stolen by an attacker

through memory introspection in an insecure environment.

3GPP requires that data-in-use should be inaccessible by other

VNFs and the virtualization layer, and the sensitive functions

should be executed in HMEE. With SGX, the hypervisor or

other co-residents cannot access EPC as it is encrypted and

only decrypted inside LLC of the CPU. Therefore, the attacker

with privileged access cannot gain any sensitive information

by inspecting the memory of functions protected by SGX.

KI 25. NFV implementations are recently moving towards

container-based architecture due to swifter deployment and

resource efficiency compared to VMs. However, containers do

not provide the same level of isolation that VMs offer. With

SGX and Gramine, we were able to deploy the containerized

AKA functions in the SGX enclave, which provides hardware-

based isolation for the containers.

KI 2. NFV introduces new attack vectors to the 5G core

network and a level of assurance is required to store sensitive

cryptographic keys in the virtualized environments [61]–[63].

The security-critical data could be stolen by an attacker with

access to the virtualization layer. 3GPP requires the increased

assurance that sensitive information should not be exposed

through the virtualization layers. This requirement can be met

by processing sensitive information in an HMEE-enabled host

infrastructure.

KI 5. One of the issues described in this KI stems from

the fact that virtual functions can be moved to other hosts

for efficient resource utilization. However, privacy-sensitive

data may be exposed when storage resources are reused in

a cloud environment. 3GPP requires all privacy-sensitive data

to be encrypted at rest and in transit and the resources used

by a VNF to be cleared when it is moved or terminated.

SGX partially mitigates KI 5 as it ensures the sensitive

cryptographic materials are encrypted when they leave the

CPU package, and the cache should be flushed once the

enclave is torn down.

KI 11. VM or container’s view of the physical resources

are abstracted by the hypervisor or the container engine.

Certain NFs may require tamper-proof hardware key-storage

and an attacker may present a virtual key-storage instance to

the NF and compromise cryptographic keys. 3GPP requires

a mechanism to ensure that VNFs can trust the security

provisions offered by the host environment. KI 12. NFs might

be instantiated or migrated to less secure hosts. To address

this issue, 3GPP requires that the deployment of NFs should

be preceded by a validation process utilizing secure hardware-

backed attestation to verify the security posture of the hosting

environment. KI 13. Without attestation rooted in hardware,

VNFs have limited means of verifying the trustworthiness of

other VNFs or the underlying infrastructure.

Hardware-based remote attestation can partially (i.e., KI 11,

12) or fully (i.e., KI 13) address these issues. SGX remote

attestation can be used to verify the authenticity and integrity

of a remote enclave. Virtual security resources (e.g., key

storage) can be implemented inside SGX enclave and NFs

requiring specific hardware security resources can verify the

attestation report before deployment. SGX can also be used

to generate and verify attestation reports that span from the

hardware to the 3GPP function level.

KI 20. Sensitive information can be leaked if VNFs are

hosted by a third party. Smaller VNOs do not possess the

financial backing to build their own network infrastructure and

will instead use 3rd party hosting environments for deploying

their services. However, since the infrastructure is shared with

other applications, sensitive information may be compromised

by malicious co-tenants. To partially resolve this issue, 3GPP

requires the infrastructure operator to provide confidentiality to

the sensitive information of the virtualized NFs. As discussed

earlier, HMEE can provide a secure enclave for confidentiality,

which can be verified using attestation reports.

KI 21 and 26. Integrity of a virtual NF can be compro-

312

mised by an attacker orchestrating Hyperjacking [63], VM or

container breakout [34], [39], [40]. Although HMEE can not

prevent these exploits, it can minimize the impact of such a

breach. These exploits enable attackers to traverse the virtual-

ization layer and steal sensitive information or manipulate the

functions. The use of HMEE can prevent attackers from doing

so because the code and data in an enclave are confidentiality

and integrity protected.

KI 27. Container or VM images may contain credentials

that are used for authentication purposes to create secure

communication channels between NFs. However, attackers

can gain copies of these images and extract or manipulate

the secrets, thereby compromising the trustworthiness of the

credentials. 3GPP requires the critical information in VNF

images to be properly protected. The secrets in VNF images

can be securely stored with the use of secret-sealing and

attestation mechanisms offered by SGX [64]. Instead of storing

plaintext secrets in the image, an encrypted secret can be

provisioned to the NF image, which can only be unsealed when

the enclave environment can be verified with an attestation

report.

In Section III, we outline a potential attack scenario where

an attacker gains co-residency with the VNFs involved in the

5G-AKA procedure. The attacker can gain root privileges and

escape the virtualization boundary by exploiting vulnerabilities

in the underlying software and infrastructure. The attacker

then can exfiltrate sensitive user credentials (e.g., subscriber

SUPI) or tamper the AKA primitives, thereby compromising

the communication between the UE and the 5G network. SGX

offers hardware-based isolation mechanisms such that any

entity other than the CPU cannot access or manipulate the data

and code residing in an enclave. Given that the AKA services

are deployed in SGX enclaves as discussed in IV-C, the

attacker cannot access or tamper the cryptographic parameters

or functions, thus preventing such an attack scenario.

In addition to the KIs discussed above, HMEE can play

a crucial role in realizing trust domains in the future 3GPP

networks. Although nearly all 5G NFs contain sensitive infor-

mation, some of them require additional security assurances.

HMEE-enabled NFVIs offer superior security assurances and

can be utilized to establish higher trust domains for the

deployment of sensitive NFs. The relevance of HMEE in

establishing trust domains is exemplified by the fact that 3GPP

assesses the trustworthiness of an NFVI based on its HMEE

capabilities.

VII. RELATED WORK

A multiple mobile network operator (MNO) cooperation

scheme using SGX was proposed in [65]. An implementation

was presented to evaluate the proposed scheme, where UE

belonging to one operator is registered to another MNO while

preserving user privacy. The reported overhead introduced

by SGX for UE registration varied from 5 to 10×. To the

best of our knowledge, this is the only study that employed

an SGX-based scheme to protect 5G services. However, the

focus of this work is on establishing a trusted and secure

communication channel between collaborating MNOs, while

our focus is to secure the sensitive microservices within the

5G core VNFs. In [66], the authors discussed using TEEs

to securely offload critical 5G services to third-party infras-

tructures. They compared several isolation mechanisms and

proposed SCONE as a TEE-as-a-Service (TEEaaS) solution

for securing 5G services. However, the framework was not

implemented or assessed in terms of performance. SGX remote

attestation services can be utilized to verify the integrity of the

P-AKA modules before deployment as demonstrated in [67],

[68], which address the issue of key provisioning and TLS

session establishment.

The majority of the relevant studies in hardware-based

isolation are generic frameworks for securing network func-

tions. SafeBricks [69] presents a system to protect network

functions in untrusted cloud environments by utilizing SGX.

To avoid inter-enclave communication penalties inherent in

VNF service-chaining, Safe-Bricks deploys multiple VNFs in

the same enclave while maintaining isolation. LightBox [70]

and ShieldBox [71] pursue a similar premise and present

frameworks for deploying network traffic processing VNFs

using SGX. SafeLib [55] provides a framework for adopt-

ing stateful VNFs to be securely outsourced to third-party

service providers using SGX. The proposed solution adapts

libVNF [72] to ease VNF development and Gramine to avoid

expensive enclave transitions. However, it is challenging to

measure the effectiveness of their solution, due to the limited

scope of their evaluation strategy. Trusted Click [52] presents

an architecture for integrating SGX into NFV application

models to enhance application data privacy. The solution

is evaluated by extending Click, a modular router [73], to

perform secure packet processing inside an SGX enclave.

Another similar solution is presented in [31] to protect VNFs

from DDoS attacks by deploying elements of Click inside

SGX enclaves.

VIII. CONCLUSION

NFV has enabled flexible and efficient deployment of 5G

network functions on COTS hardware. But deployment of

VNFs on cloud infrastructure exposes them to various co-

tenancy attacks. Although HMEE can offer confidentiality and

integrity protection to sensitive 3GPP functions and secrets,

it can impose significant performance penalties which may

degrade the QoS of sensitive control plane functions. We

characterize the performance of HMEE isolated AKA func-

tions and observe 1.2 to 1.5× overhead for function execution

time and 2.2 to 2.9× overhead in overall response latency.

However, the overhead introduced due to HMEE accounts for

only 5.58% of the overall UE session setup delay. Despite the

overheads, we successfully register a real UE to the 5G core

network through the isolated AKA functions. While discussing

the role of HMEE as highlighted by 3GPP, we discover that

HMEE as a solution can have a bigger impact in mitigating

the key issues of NFV.

313

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, 2018.

[2] R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, “A Survey on
Security and Privacy of 5G Technologies: Potential Solutions, Recent
Advancements, and Future Directions,” IEEE Communications Surveys
& Tutorials, vol. 22, no. 1, pp. 196–248, 2020.

[3] J. H. Park, S. Rathore, S. K. Singh, M. M. Salim, A. Azzaoui, T. W. Kim,
Y. Pan, and J. H. Park, “A Comprehensive Survey on Core Technologies
and Services for 5G Security: Taxonomies, Issues, and Solutions,” Hum.-
Cent. Comput. Inf. Sci, 2021.

[4] S. Lal, T. Taleb, and A. Dutta, “NFV: Security Threats and Best
Practices,” IEEE Communications Magazine, vol. 55, no. 8, pp. 211–
217, 2017.

[5] 3GPP, “Study on Security Impacts of Virtualisation (Release 18),” 3rd
Generation Partnership Project (3GPP), TR 33.848 V18.0.0, Sep. 2023.

[6] Microsoft, “Azure Private 5G Core – Manage 5G Networks — Microsoft
Azure,” https://azure.microsoft.com/en-us/products/private-5g-core,
2023, (accessed November 30, 2023).

[7] AWS, “Wavelength Zone Locations,” https://aws.amazon.com/wavelen
gth/locations/, 2023, (accessed November 30, 2023).

[8] Y.-L. Huang, B. Chen, M.-W. Shih, and C.-Y. Lai, “Security Impacts of
Virtualization on a Network Testbed,” in 2012 IEEE Sixth International
Conference on Software Security and Reliability. IEEE, 2012, pp. 71–
77.

[9] “CVE-2022-31696,” https://nvd.nist.gov/vuln/detail/CVE-2022-31696,
August 2022, (accessed November 30, 2023).

[10] “CVE-2022-31705,” https://nvd.nist.gov/vuln/detail/CVE-2022-31705,
December 2022, (accessed November 30, 2023).

[11] “CVE-2021-31440,” https://nvd.nist.gov/vuln/detail/cve-2021-31440,
May 2021, (accessed November 30, 2023).

[12] “CVE-2020-14386,” https://nvd.nist.gov/vuln/detail/CVE-2020-14386,
September 2020, (accessed November 30, 2023).

[13] ETSI, “Network Functions Virtualisation (NFV);NFV Security;Report
on use cases and technical approaches for multi-layer host administra-
tion,” ETSI, GS NFV-SEC 009 V1.1.1, Dec. 2015.

[14] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution En-
vironment: What it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/Ispa, vol. 1. IEEE, 2015, pp. 57–64.

[15] N. C. Will and C. A. Maziero, “Intel software guard extensions appli-
cations: A survey,” ACM Computing Surveys, 2023.

[16] M. Russinovich, “Azure Confidential Computing,” https://azure.micros
oft.com/en-us/blog/azure-confidential-computing/, May 2018, (accessed
November 30, 2023).

[17] Fortanix. Intel and Fortanix Confidential Computing Manager - Joint
Solution Brief. [Online]. Available: https://resources.fortanix.com/intel
-and-fortanix-confidential-computing-manager-joint-solution-brief

[18] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with
HotCalls: A fast interface for SGX secure enclaves,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 2, pp. 81–93, 2017.

[19] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber,
and D. Hagimont, “Everything You Should Know about Intel SGX
Performance on Virtualized Systems,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 3, no. 1, pp.
1–21, 2019.

[20] 3GPP, “Security Architecture and Procedures for 5G System,” 3rd
Generation Partnership Project (3GPP), TS 33.501 V18.1.0 , Mar. 2023.

[21] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A Practical Library
OS for Unmodified Applications on SGX.” in USENIX Annual Technical
Conference, 2017, pp. 645–658.

[22] OAI, “5G Core Network – OpenAirInterface,” https://openairinterface.o
rg/oai-5g-core-network-project/, 2023, (accessed November 30, 2023).

[23] ——, “5G RAN - OpenAirInterface5g,” https://gitlab.eurecom.fr/oai/op
enairinterface5g, (accessed November 30, 2023).

[24] Rohan, “Rohan - gnbsim - gitlab,” https://gitlab.eurecom.fr/kharade/gn
bsim, 2023, (accessed November 30, 2023).

[25] V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology ePrint
Archive, 2016.

[26] P.-L. Aublin, F. Kelbert, D. O’Keffe, D. Muthukumaran, C. Priebe,
J. Lind, R. Krahn, C. Fetzer, D. Eyers, and P. Pietzuch, “TaLoS: Secure

and transparent TLS termination inside SGX enclaves,” Imperial College
London, Tech. Rep., 2017.

[27] AMD, “AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More,” White Paper, January, vol. 53, pp. 1450–1465,
2020.

[28] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “{CIPHERLEAKS}:
Breaking constant-time cryptography on {AMD}{SEV} via the ci-
phertext side channel,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 717–732.

[29] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth, R. Teodorescu, and
Y. Zhang, “A Systematic Look at Ciphertext Side Channels on AMD
SEV-SNP,” in 2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 2022, pp. 337–351.

[30] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted Execution Envi-
ronments: Properties, Applications, and Challenges,” IEEE Security &
Privacy, vol. 18, no. 2, pp. 56–60, 2020.

[31] J. Wang, S. Hao, Y. Li, C. Fan, J. Wang, L. Han, Z. Hong, and H. Hu,
“Challenges Towards Protecting VNF with SGX,” in Proceedings of
the 2018 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization, 2018, pp. 39–42.

[32] S. Fei, Z. Yan, W. Ding, and H. Xie, “Security vulnerabilities of sgx and
countermeasures: A survey,” ACM Computing Surveys (CSUR), vol. 54,
no. 6, pp. 1–36, 2021.

[33] D. Gong, M. Tran, S. Shinde, H. Jin, V. Sekar, P. Saxena, and M. S.
Kang, “Practical verifiable in-network filtering for ddos defense,” in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 1161–1174.

[34] H. Zhao, Y. Zhang, K. Yang, and T. Kim, “Breaking Turtles All the Way
Down: An Exploitation Chain to Break out of {VMware}{ESXi},” in
13th USENIX Workshop on Offensive Technologies (WOOT 19), 2019.

[35] S. Shringarputale, P. McDaniel, K. Butler, and T. La Porta, “Co-
residency Attacks on Containers are Real,” in Proceedings of the 2020
ACM SIGSAC Conference on Cloud Computing Security Workshop,
2020, pp. 53–66.

[36] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. La Porta, P. McDaniel,
and L. Marvel, “Malicious co-residency on the cloud: Attacks and
defense,” in IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, 2017, pp. 1–9.

[37] X. Gao, B. Steenkamer, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang,
“A Study on the Security Implications of Information Leakages in
Container Clouds,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 1, pp. 174–191, 2021.

[38] Z. Wang, R. Yang, X. Fu, X. Du, and B. Luo, “A Shared Memory based
Cross-VM Side Channel Attacks in Iaas Cloud,” in 2016 IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS),
2016, pp. 181–186.

[39] “CVE-2016-3134,” https://nvd.nist.gov/vuln/detail/CVE-2014-4699,
April 2016, (accessed November 30, 2023).

[40] “CVE-2014-4699,” https://nvd.nist.gov/vuln/detail/CVE-2014-4699,
July 2014, (accessed November 30, 2023).

[41] 3GPP, “Network Domain Security (NDS); IP network layer security,”
3rd Generation Partnership Project (3GPP), TS 33.210 V17.1.0 , Sep.
2022.

[42] A. Hasan, R. Riley, and D. Ponomarev, “Port or Shim? Stress Testing
Application Performance on Intel SGX,” in 2020 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2020, pp.
123–133.

[43] J. Han, S. Kim, J. Ha, and D. Han, “SGX-Box: Enabling Visibility on
Encrypted Traffic using a Secure Middlebox Module,” in Proceedings
of the First Asia-Pacific Workshop on Networking, 2017, pp. 99–105.

[44] Intel, “Intel Trust Domain Extensions,” Intel, White Paper, Feb. 2023.
[45] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A Comparison Study of Intel

SGX and AMD Memory Encryption Technology,” in Proceedings of the
7th International Workshop on Hardware and Architectural Support for
Security and Privacy, 2018, pp. 1–8.

[46] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from an
Untrusted Cloud with Haven,” ACM Transactions on Computer Systems
(TOCS), pp. 1–26, 2015.

[47] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
Linux Applications with SGX Enclaves.” in NDSS, 2017.

[48] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
Linux Containers with Intel SGX,” in 12th USENIX Symposium on

314

Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, Nov. 2016, pp. 689–703.

[49] Gramine, “Manifest syntax - Gramine documentation,” https://gramine.
readthedocs.io/en/stable/manifest-syntax.html, (accessed November 30,
2023).

[50] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A Performance
Analysis Tool for Intel SGX Enclaves,” in Proceedings of the 19th
International Middleware Conference, 2018, pp. 201–213.

[51] “OAI - OpenAirInterface5G,” https://gitlab.eurecom.fr/oai/openairinter
face5g, 2023, (accessed November 30, 2023).

[52] M. Coughlin, E. Keller, and E. Wustrow, “Trusted Click: Overcoming
Security issues of NFV in the Cloud,” in Proceedings of the ACM
International Workshop on Security in Software Defined Networks &
Network Function Virtualization, 2017, pp. 31–36.

[53] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mTCP: a Highly Scalable User-level TCP Stack for Multicore
Systems,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), 2014, pp. 489–502.

[54] “DPDK - Data Plane Development Kit,” https://www.dpdk.org/, 2023,
(accessed November 30, 2023).

[55] E. Marku, G. Biczók, and C. Boyd, “SafeLib: A Practical Library for
Outsourcing Stateful Network Functions Securely,” in 2021 IEEE 7th
International Conference on Network Softwarization (NetSoft). IEEE,
2021, pp. 244–252.

[56] Gramine. Gramine Exitless Feature. [Online]. Available: https:
//gramine.readthedocs.io/en/stable/performance.html#exitless-feature

[57] S. Kim, “An Optimization Methodology for Adapting Legacy SGX
Applications to Use Switchless Calls,” Applied Sciences, vol. 11, no. 18,
p. 8379, 2021.

[58] Intel. Intel Processors Supporting Intel SGX. [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-technology/
software-guard-extensions-processors.html

[59] ——. Confidential Computing for 5G Networks. [Online]. Available:
https://www.intel.com/content/www/us/en/wireless-network/5g-technol
ogy/confidential-computing.html

[60] ——. Migrate to a 5G Core (5GC) Network. [Online]. Available:
https://www.intel.com/content/www/us/en/wireless-network/core-netwo
rk.html

[61] F. Reynaud, F.-X. Aguessy, O. Bettan, M. Bouet, and V. Conan,
“Attacks against network functions virtualization and software-defined
networking: State-of-the-art,” in 2016 IEEE NetSoft Conference and
Workshops (NetSoft). IEEE, 2016, pp. 471–476.

[62] I. Farris, T. Taleb, Y. Khettab, and J. Song, “A Survey on Emerging SDN
and NFV Security Mechanisms for IoT Systems,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 1, pp. 812–837, 2018.

[63] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and A. Meddahi, “Nfv
security survey: From use case driven threat analysis to state-of-the-art
countermeasures,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 3330–3368, 2018.

[64] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology
for CPU based Attestation and Sealing,” in Proceedings of the 2nd
international workshop on hardware and architectural support for
security and privacy, vol. 13, no. 7. ACM New York, NY, USA,
2013.

[65] J. Y. Muhammad, M. Wang, Z. Yan, and F. Khan, “Trusted Network
Slicing among Multiple Mobile Network Operators,” in 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE, 2020, pp. 1135–1140.

[66] J. M. J. Valero, P. M. S. Sánchez, A. Lekidis, P. Martins, P. Diogo, M. G.
Pérez, A. H. Celdrán, and G. M. Pérez, “Trusted Execution Environment-
Enabled Platform for 5G Security and Privacy Enhancement,” Security
and Privacy Preserving for IoT and 5G Networks: Techniques, Chal-
lenges, and New Directions, pp. 203–223, 2022.

[67] N. Paladi and L. Karlsson, “Safeguarding VNF credentials with Intel
SGX,” in Proceedings of the SIGCOMM Posters and Demos, 2017, pp.
144–146.

[68] E. Norberg, “Evaluation of using secure enclaves in virtualized radio
environments,” 2019.

[69] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “SafeBricks: Shielding
Network Functions in the Cloud,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), 2018, pp.
201–216.

[70] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren, “Light-
Box: Full-stack Protected Stateful Middlebox at Lightning Speed,” in

Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2351–2367.

[71] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“ShieldBox: Secure Middleboxes using Shielded Execution,” in Pro-
ceedings of the Symposium on SDN Research, 2018, pp. 1–14.

[72] P. Naik, A. Kanase, T. Patel, and M. Vutukuru, “libVNF: Building
Virtual Network Functions Made Easy,” in Proceedings of the ACM
symposium on cloud computing, 2018, pp. 212–224.

[73] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click Modular Router,” ACM Transactions on Computer Systems
(TOCS), vol. 18, no. 3, pp. 263–297, 2000.

315

