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Abstract—Advanced persistent threat (APT) cyberattacks are
serious threats to corporations and governments. The prolong
dwell time associated with APTs significantly increase the dif-
ficulty on detecting them in provenance graphs. To reduce the
detection complexity, some works have demonstrated the effec-
tiveness of employing pattern matching on provenance graphs
in conjunction with APT lifecycle models to pinpoint short-
duration attack steps, also known as ”tactics, techniques, and
procedures” (TTPs). However, when dealing with more complex
TTPs, particularly those involving graph-based and partial or-
dering, few tools can incrementally and efficiently handle them.
In this paper, we present IPMES1, a tool that has been publicly
released to address this gap. By leveraging specific optimizations,
it provides efficient incremental matching for those TTPs, and
can handle practical system audit event streams. Experiments
conducted on synthetic and real-world data demonstrated the
practical feasibility of IPMES in TTP detection.

Index Terms—TTP detection, graph pattern matching, incre-
mental pattern matching, system audit event

I. INTRODUCTION

Advanced persistent threats (APTs) are one of the most

serious challenges faced by enterprises and governments.

Several APT lifecycle models have been developed to describe

these prolonged and sophisticated cyberattacks. Mandiant [1]

revealed several steps that are typically followed in these tar-

geted attacks. The MITRE ATT&CK Framework [2], created

by MITRE in 2013, further classified attacks based on their

intention and technique as “tactics, techniques, and proce-

dures” (TTPs). For example, an attacker exploits common

vulnerabilities and exposures (CVEs) on external servers to

gain initial access to a victim system through the network.

Subsequently, the attacker penetrates the system by installing

a backdoor shell, moving laterally through the network, and

gaining further access. Eventually, an attacker achieves a goal,

such as exfiltrating critical data or destroying a victim system.

These models enable researchers to focus on detecting each

short-duration attack step rather than viewing the whole APT.

*Research Center for Information Technology Innovation
1https://github.com/littleponywork/IPMES

In response to security incidents, analysts typically use

system audit events and provenance graphs constructed from

these events because of the abundant information contained

in them. Each system audit event describes a subject (e.g.,

process) that performed some operation on an object (e.g., file)

at some point in time. These events are usually recorded by the

audit system in an operating system (OS) (such as the audit

system events in Windows [3] or the audit log in Linux [4]).

For advanced analysis, a provenance graph constructed from

these events can provide a whole view of the events and the

relations between involved subjects and objects. Some works

[5]–[7] have demonstrated that using pattern matching on

provenance graphs in combination with APT lifecycle models

to identify short-duration attack steps (or TTPs) is a effective

technique for APT detection.

As far as we know, there are very few tools specifically

designed to incrementally detect TTP patterns from system

audit event streams. This is because several challenges need

to be overcome: (1) Generally, a TTP can be described by

a graph-based pattern with partial ordering that captures the

relationships among the programs and resources involved, as

well as the temporal order in related events. Tools must be

able to match such complex patterns. (2) Although incremental

matching does not require storing the entire provenance graph,

it does require maintaining all intermediate match states.

Therefore, it necessitates efficient data structures and effective

pruning mechanisms to reduce searching time and unnecessary

matching states.

Apache FlinkCEP [8], Siddhi [9], and Esper [10] are

existing complex event processing (CEP) tools that can in-

crementally analyze and correlate multiple streams of event

data to detect complex patterns and relationships based on

predefined rules. However, in our use experience, CEP tools

are not suitable for matching graph-based patterns with partial

ordering. For example, a CEP pattern usually represented by

a sequence of event patterns (like A → B → C). When

we want to describe partial ordering (i.e., ea → eb → ec
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and ea → ec → eb are both acceptable), we need write

either extra rules (A → C → B) or a looser rule (A →
(B or C) → (B or C)) with post filtering for incorrect

instances (ea → eb1 → eb2 ). Obviously, both of these methods

lack scalability. In addition, those CEP tools are designed

for general purposes; they do not have specific optimizations

for subgraph matching by exploiting graph-structured features,

such as shared entity relation. This limitation becomes more

pronounced in audit event stream with more complex patterns.

[Contributions] To address the above challenges, we

present IPMES, a specialized tool for TTP detection, catering

to the needs of cybersecurity professionals, incident respon-

ders, and organizations aiming to enhance their real-time threat

detection capabilities over system audit event streams. Its fea-

tures includes following: (1) Adopting the idea from [11], [12],

IPMES first divides a graph-based pattern with partial ordering

into multiple sequence patterns with total ordering, and then

joins the results, which can effectively increase efficiency.

(2) IPMES incorporates specific optimizations such as lazy

windowing and arranging join order to significantly enhance

efficiency. (3) IPMES can handle events with same timestamps

and interval timestamps (i.e., 〈start, end〉) which are common

in practical system audit event streams. IPMES is evaluated on

the synthetic and real-world data, and the experiment results

show its feasibility in practical TTP detection.

II. RELATED WORK

A. APT detection

Based on the APT lifecycle models, Holmes [5] and Rap-

Sheet [13] develop effective misuse detection architectures for

APT detection by matching instances with smaller patterns

(TTPs or indicator of compromises [IOCs]) on provenance

graphs and by correlating the matched instances to construct

a complete APT detection. Each of their patterns for TTPs

or IOCs constitutes only a single event rather than multiple

events. Their matchings are very efficient but could lead to

excessive false positives. Holmes leverages a normal model

learned from benign data to reduce false positives. RapSheet

reduces false positives by checking if an alert event is causally

dependent on the others through the construction of prove-

nance subgraphs. In contrast, IPMES uses complex patterns

to model attacks more precisely to reduce false positives.

SIGMA [14] is a universal security rule format used to

describe security events and threat detection rules. Its aim is

to make rules portable, allowing them to be utilized across

different existing security information and event management

systems such as IBM Security QRadar [15] and Splunk

Enterprise Security [16]. However, due to rule simplicity,

SIGMA may not intuitively describe complex attack patterns

or efficiently search for them. On the other hand, IPMES

excels in efficiently matching more intricate and complex

attack patterns.

As deep learning has demonstrated remarkable success in

various domains, DeepHunter [17] and ProvG-Searcher [18]

tackle the challenge of efficient provenance graph search

by employing graph-based neural networks to embed both

TABLE I: Comparison table for APT detection

Works Attack Pattern
Constitution

Match
Class NTR Detection

Efficiency ESS

RapSheet [13]
single event or
a few events

exact � high ×

Holmes [5]
single event
or short path

exact � high �
SIGMA [14]

single event or
a high events

exact � high �
ProvG-Searcher [18],

DeepHunter [17]
graph with

time constraints
inexact × depend on

graph size
×

Atlas [19]
not pattern

matching based
× × high ×

Anubis [20]
not pattern

matching based
× × high �

IPMES
graph with

time constraints
exact � depend on

attack intensity
�

Note: NTR means No training required. ESS means event stream support.

provenance and pattern graphs. Subsequently, match results

are determined based on these embeddings. However, due

to the inherent nature of neural networks, the matches are

inexact (allowing slight discrepancies between searched results

and queries) and require recalculating embeddings when the

provenance graph changes. In contrast, IPMES provides exact

matching and efficiently handles dynamic provenance graphs

without the need for repeated searches.

Atlas [19], and Anubis [20] utilize a sequence-based deep

learning model to detect APT attacks. Their methods mainly

extract small subgraphs containing related nodes from the

snapshots of provenance graphs and transform the subgraphs

into sequences for training and detection. Although these

systems can efficiently detect different APTs, they require

huge volumes of labeled data for training and retraining,

particularly when identifying new APTs or shifts in normal

behaviors. On the other hand, IPMES does not require training

data and only updates patterns upon discovering new APTs.

Comparisons of the above works are shown in Table I.

B. Graph pattern matching

While subgraph isomorphism, a widely used for graph

pattern matching, is known to be NP-complete and overly re-

strictive for identifying meaningful instances in social network

applications, alternative low-complexity graph pattern match-

ing semantics have been proposed such as graph simulation

[21], [22], strong simulation [23], and degree-preserving dual

simulation [24]. These pattern matching methods do not have

strong graph-structured relations between nodes/edges like

subgraph isomorphism, and can be done in O(n3). IPMES is

compatible with the pattern matching semantics by modifying

the corresponding relation checking. Avoiding using subgraph

isomorphism, Song et al. [25] proposed a Node-Neighbor

Tree structure to filter out false candidates over graph streams

efficiently. Their work focused on answering whether the

current graph exists an instance of a graph pattern, while

IPMES can answer all instances in the current graph.

The works [11], [12] achieve incremental matching with

time ordering by dividing a query graph (i.e., behavioral pat-

tern) into multiple subpatterns and recording all intermediate

match states in the proposed data structure (Match-Store tree).

Its evaluations use real network traffic data and a synthetic
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social stream benchmark, while IPMES’s evaluations use real

and synthetic system audit logs, which have more complexity

and higher data rate. In addition, those works assume that

timestamps in the data stream are strictly increasing, whereas

IPMES can accommodate event streams with non-strictly in-

creasing timestamps and interval timestamps like 〈from, to〉.
III. IPMES

The core concept of IPMES involves decomposing a target

behavioral pattern into multiple subpatterns, matching events

against these subpatterns, and then combining the match

results of these subpatterns to generate complete instances.

Figure 1 illustrates an overview of IPMES. Our implementa-

tion adopts a layered structure, tailored for efficient stream-

ing data processing. Each layer processes the output of its

preceding layer as input. IPMES consists of three layers:

Matching Layer, Composition Layer, and Join Layer. A

target behavioral pattern is decomposed in Prepossessing.

Upon reading an event, Matching Layer splits it based on

its interval timestamps, and reorders events according to their

matched event patterns of the subpatterns. Then, Composition
Layer uses events to match against subpatterns. Finally, Join
Layer collects all match results of all subpatterns and merges

them into complete instances as outputs.

split

 &

reorder

state pools

MMaattcchhiingng
LLaayyaaa eerr

CCoommppoossiittiioonn
LLaayyaaa eerr

PPrreepprroocceessssiingng

Behavioral
Pattern Subpatterns

generate

relations

initialize

initialize

Instances
JJooiinn

LLaayyaaa eerr

decom-

position

Events
match

 between subpatterns

state pools organized in a
binary tree structure

Fig. 1: IPMES flowchart

A. Preliminaries
A system audit event describes a subject performing some

operation on an object at some point in time; an event is

the minimum unit of record in an audit system. To ac-

commodate various system audit events, each event evt that

entails a subject sub and an object obj from timestamp ts
to timestamp te, and identified by a unique serial ID evtid,

is represented as (ts, te, sig(evt,sub,obj), evtid, subid, objid). A

signature sig(evt,sub,obj) is a string containing those important

attributes in evt, sub and obj such as event operation label,

subject/object type and name, etc., and is used for pattern

matching. The interval timestamp definition allows an audit

system to merge the consecutive events with the same op-

erations (no other operations in between) for data reduction

[26]. In cases where this aggregation is not applicable, the

timestamp ts and te are just set to the same value.

e2
write

N2
File

/var/log/journal/<mach
ine-id>/system.journal

N5
File

/var/spool/cron/cronbtabs/root

N1
Process

systemd-journald

N6
Process

journalctr

N3
Process

Virus

e1
read

e7
unlink

N4
Process

vim

e6
fork

e3
fork

e4
read

e5
write

Fig. 2: Provenance graph example

TABLE II: Simplified view of the original events in Figure 2

ts te sig(evt,sub,obj) evtidsubidobjid

0 10
read#

File::path::/var/log/journal/system.journal#
Process::name::systemd-journald

e1 N2 N1

5 15
write#

Process::name::systemd-journald#
File::path::/var/log/journal/system.journal

e2 N1 N2

7 7
fork#

Process::name::virus#
Process::name::vim#

e3 N3 N4

8 11
read#

File::path::/var/spool/cron/crontabs/root#
Process::name::vim#

e4 N5 N4

9 11
write#

Process::name::vim#
File::path::/var/spool/cron/crontabs/root

e5 N4 N5

11 12
fork#

Process::name::virus#
Process::name::journalctr

e6 N3 N6

11 12
unlink#

Process::name::journalctr#
File::path::/var/log/journal/system.journal

e7 N6 N2

An event stream is defined as an arbitrary or countably

infinite length sequence of events ordered by their timestamps

(with ts taking precedence, and in the case of equality, te
follows), i.e., 〈e1, e2, ..., en〉 or 〈e1, e2, ...〉 where ei.ts < ej .ts
or ei.te ≤ ej .te if ei.ts = ej .s for all i < j.

A provenance graph is defined as a directed multigraph,

and can be trivially constructed from a set of events (events as

edges and involved entities as nodes). It would provide a com-

prehensive overview of the events, including the relationships

between them. Figure 2 presents an example of an provenance

graph recording both a normal process, “systemd-journald”,

and a malicious process, “virus”. “Systemd-journald” fre-

quently reads and writes a system journal file to record system

information. Meanwhile, “virus” first uses “vim” to modify

the system crontab file and schedule a task for itself to run

persistently within the system. Subsequently, “virus” deletes

the system journal file through “journalctr”. Table II presents

a simplified view of the original events.

A behavioral pattern (or a subpattern) is defined as a tuple of

an event pattern set and a set of relations between them, repre-

sented by (EP, rels). Each event pattern in EP is similar to an

event, but uses a RegEx instead of a string in sig(evt,sub,obj)
field. An event is considered a matched instance of a event

pattern, or simply an instance, representing it matches the

pattern without violating any specified relations. This concept

is similar to an instance of a behavioral pattern but pertains to
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a set of events. In this study, we utilize the concept of subgraph

isomorphism with time constraints to establish relations. The

motivation is that any subsequence within an event stream is

inherently a subgraph within the associated provenance graph.

Moreover, Introducing time constraints explicitly enhances the

expressiveness of event ordering within this subgraph. The

relations rels include:

R1. Temporal Relation (with a partially ordered set of EP ):

The timestamps of the corresponding matched events

do not violate the ordering.

R2. Shared Entity Relation (with a set of relationships

between the entities of EP ): Each relationship specifies

that the entity’s ID of the corresponding matched event

of an event pattern is the same as the one of another

event pattern.

R3. Event Unique Relation: All matched event IDs are

unique.

R4. Entity Unique Relation: All entity IDs in matched

events are unique unless they have a relationship in

the Shared Entity Relation.

Similar to the construction of a provenance graph from

events, EP with relations R2, R3, and R4 can be used to

construct a pattern graph that is identical to a provenance graph

except that the signature is replaced with a RegEx. Figure 3

illustrates a behavioral pattern example, depicting an arbitrary

process characterized by two malicious behaviors. The first

is T1070-Indicator Removal [27], involving the deletion of

log files generated within systems to eliminate evidence of

its presence. The second is T1053-Scheduled Task/Job [28],

exploiting task scheduling functionality to facilitate the initial

or recurring execution of malicious code. The behavioral

pattern contains five event patterns, and their relations R2, R3,

and R4 are entailed in the pattern graph. In short, a behavioral

pattern describes a bundle of events with patterns for specific

attributes in edges/subjects/objects and their occurrence order

to express a program behavior.

ep2

Pattern Graph

Temporal Relation

Behavioral Pattern

ep1

Process
journalctr

File
/var/log/.*

Process
.*

Process
vim

File
/.*/cronbtabs/root

ep3 ep4 ep5

ep5
write

ep2
unlink

ep4
read

ep1
forkep3

fork

Fig. 3: Behavioral pattern example

[Problem Definition] Given a behavioral pattern P and a

event stream ES, the aim is to find all instances of P in the

provenance graph GES from ES. Due to the adoption of the

subgraph isomorphism with time constraints to define relations

in behavioral patterns, this problem has been proven to be #P-

complete [29], [30].

To describe a match state in the following proposed algo-

rithm, an intermediate match state (w.r.t. a behavioral pattern

P or a subpattern), or “state” for convenience, is defined as

(E, fP ) where E a set of already matched events and fP
is a one-to-one function that maps each event in E to the

corresponding event pattern in P . Updating an intermediate

match state s with an event e and an event pattern eP of P is

to add e to s.E (i.e., s.E ∪ {e}) and update the mapping

(i.e., s.fP (e) = eP ) without violating any relations in P .

For convenience, m1‖m2 represents a merged state updated

from all events of state m1 and m2. An intermediate match

state is complete iff fP is a bijective function which means

each event pattern matches a unique event. Obviously, a

complete intermediate match state of a pattern corresponds

to an instance of the pattern.

B. Preprocessing

Given a behavioral pattern (EP, rels), IPMES adopts the

decomposition algorithm proposed by Li et al. [11] to decom-

pose the pattern into subpatterns. The algorithm guarantees

that all event patterns of each subpatterns follow a total

ordering and have shared entity relationships between adjacent

event patterns. For those remaining relationships that cross

two distinct subpatterns, we record them and will check them

in Join Layer. Figure 4 presents the subpatterns, sp1 and

sp2, decomposed from Figure 3. Their total orderings are

respectively ep1 → ep2 and ep3 → ep4 → ep5, and the shared

entity relationship ser does not belong to any subpatterns. For

convenience, we use ek ∼ epj@spi to represent a event ek
match an event pattern epj of a subpattern spi.

Process
journalctr

File
/var/log/.*

Process
.*

Process
vim

File
/.*/cronbtabs/root

ep5

ep2

ep4

ep1

Process
.*

ep3
sp2

sp1

ser

Fig. 4: Subpattern example decomposed from Figure 3, where

ser represents a shared entity relationship

C. Matching Layer

Matching Layer handles issues regarding timestamps and

reorders events according to their matched event patterns.

Recall that an event timestamp is represented as an interval.

To match accurately, we must consider all possible temporal

relationships between events. For instance, consider e1 and

e2 in Table II. Both e1 → e2 (for 6 → 13) and e2 → e1 (for

7 → 9) should be taken into consideration in temporal relation

checking. To simplify the implementation of timestamp inter-

val comparisons, those events with ts 	= te are split into two

distinct events with same field values except for timestamps

(e.g., split(e1) = 〈e1s, e1e〉 where e1s.ts = e1s.te = 0 and

e1e.ts = e1e.te = 10 in the above case). This technique

preserves possible temporal relationships between events.

Now, all events have been split (e.ts = e.te for all

events). Depending on the timestamp granularity of input event
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streams, some events may have identical timestamps (e.g., e6
and e7 in Table II). In this case, we must also consider all

possible temporal relationships that comply with subpatterns,

since no more fine-grained information is logged. Matching
Layer reorders these events according to their matched event

patterns, aligning them with the total orderings of the sub-

patterns. In Figure 4 and Table II, consider an input event

sequence with identical timestamps 11: 〈e7s, e5e, e4e, e6s〉.
The sequence will be matched and rearranged as 〈e6s ∼
ep1@sp1, e7s ∼ ep2@sp1, e4e ∼ ep4@sp2, e5e ∼ ep5@sp2, 〉.
D. Composition Layer

Composition Layer mainly updates stored intermediate

match states of subpatterns, and sends complete states to Join
Layer. Algorithm 1 illustrates the procedure of Composition
Layer. To efficiently update states, Composition Layer main-

tains an array of pools to categorize states for each subpattern,

Here, pools[i][j] denotes the pool that stores states waiting for

an event matched by epj@spi.
Upon receiving a event ek ∼ epj@spi from Matching

Layer, Composition Layer tries to update s with ek for all

state s in pools[i][j] (at Line 2–9). To eliminate unnecessary

states, Composition Layer employs a lazy window mecha-

nism for each pools: Instead of continually checking all states

for expiration in all pools, the expired states, whose event-

timestamp span exceeds the predefined window size, are only

removed when being traversed in the pools. If a newly updated

intermediate match state is complete (at Line 12–16), it will

be sent to Join Layer; otherwise, the state will be added to

the next pool of the same subpattern. Figure 5 illustrates an

example for Composition Layer in handling Table II and 4.

At t = 7, the empty state (i.e., (∅, ∅ → ∅)) in pools[2][1]
is updated with e3 ∼ ep3@sp2 and subsequently added to

pools[2][2]. Then, at t = 8, similar operations occur, where

a new state is added to pools[2][3] by updating a state in

pools[2][2] with e4s ∼ ep4@sp2 . At t = 9, a complete state is

formed by updating a state in pools[2][3] with e5s ∼ ep5@sp2,

and is then sent to Join Layer.

E. Join Layer

Join Layer joins complete states of subpatterns into com-

plete states of the target behavioral pattern (i.e., instances).

Algorithm 2 illustrates the procedure of Join Layer. Because

the event splitting procedure in Matching Layer may cause

identical instances, Join Layer uses a hashset to ensure

instance uniqueness. In addition, Join Layer maintains a

binary-tree structured pool T to store states. All leaf nodes of

T (like mi in Figure 1) stores complete states of subpatterns

(spi), while all non-leaf nodes (like m1‖m2 in Figure 1) stores

joined states from its two descendants. It is clear that any states

in the root node are complete since each event pattern in the

behavioral pattern has a corresponding matched event, and all

relation checks are passed.

Whenever a node of T receives a new state, Join Layer
tries to join the state with all states in the node’s sibling (at

Line 10–17). Newly joined states are then pushed to the node’s

Algorithm 1: Composition Layer

Input: an event from Matching Layer
(evt ∼ epj@spi), subpatterns SP , window size

ws, Join Layer JoinLayer
Output: update states in the pools, and send complete

states of subpatterns to Join Layer
Initialize: pools[i][j] ← {}, ∀spi ∈ SP, ∀epj ∈ spi
Initialize: pools[i][1].add((∅, ∅ → ∅)), ∀spi ∈ SP

1 newStates ← {}
2 for state s ∈ pools[i][j] do
3 /* lazy window mechanism */

4 if s.isExpired(ws) then
5 pools[i][j].remove(s)
6 /* check if s can be updated with evt */

7 if checkRelation(s, evt, SP.rels) then
8 /* a new match state is generated */

9 newStates.add(s‖{evt ∼ epj})
10 if j == spi.|EP |+ 1 then
11 /* new states are complete for spi */

12 for state s ∈ newStates do
13 JoinLayer.receive(s)
14 else
15 /* new states are incomplete and lack an event

matched by epj+1@spi */

16 pool[i][j + 1].addAll(newStates)

parent (at Line 19–22). Join Layer repeats this process in a

bottom-up fashion until no new states are joined or the root

has been reached. Figure 5 illustrates an example for Join
Layer in handling Table II and 4. At t = 11(1), the leaf node

corresponds to sp1 receives a state (N3
e6s−−→ N6

e7s−−→ N2)

from Composition Layer. Since the node’s sibling is not

empty, Join Layer tries to join the state with states in the

sibling, which results in pushing a complete state to the root.

Join Layer incorporates the following optimizations to en-

hance efficiency. (1) Join Layer also employs the lazy window

mechanism for each node to eliminate unnecessary states. (2)

A node corresponding to a subpattern with more event patterns

are placed in a deeper leaf nodes of T . This heuristic assumes

that larger subpatterns have fewer corresponding complete

states. (3) Since the joining order is predetermined, Join Layer
can check only necessary relations during joining.

IV. EVALUATION

Various experiments were performed to evaluate the IPMES

to determine the following:

Q1. Efficiency: Whether Composition Layer and Join
Layer design is efficient in TTP detection.

Q2. Feasibility: Whether applying IPMES for TTP detec-

tion is feasible.

For generating experiment datasets, we used a simulated

scenario and a real-world scenario. In the simulated scenario,

we first referenced the APT3 (threat actor) emulation plan

from Mitre Att&ck [31] to implement an APT attack which

primarily exploits CVE-2021-37678 [32] to implant a malware

for malicious activities and entirely covers 19 different TTPs.
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Algorithm 2: Join Layer

Input: a complete state m of a subpattern spi, a

behavioral pattern P , window size ws
Output: complete states of P ins
Initialize: node.pool ← {}, ∀node ∈ the tree T
Initialize: ins ← new HashSet()

1 /* locate the node of spi in T */

2 node ← T.getNode(spi)
3 node.pool.add(m)
4 /* states holds the states newly arrived at node */

5 states ← {m}
6 /* do a bottom-up join */

7 while node 	= T.root do
8 newJoinedStates ← {}
9 /* traverse pools in node and its sibling and try to

join states */

10 for s1 ∈ states, s2 ∈ node.sibling.pool do
11 /* lazy window mechanism */

12 if s2.isExpired(ws) then
13 node.sibling.pool.remove(s2)
14 else
15 if checkRelations(s1, s2) then
16 // a new state is joined from s1 and s2
17 newJoinedStates.add(s1‖s2)
18 if !newJoinedStates.isEmpty() then
19 /* newly joined state exists; switch to the

node’s parent for further joining */

20 node.parent.pool.addAll(newJoinedStates)
21 states ← newJoinedStates
22 node ← node.parent
23 else
24 break
25 if node = T.root then
26 ins.addAll(states)
27 return ins

Then, in our controlled environment, we simulated three

benign users concurrently and continually executing normal

operations as benign workloads, and one attacker periodically

executing the APT attack per hour. System audit events were

logged by SPADE [33], [34], and eventually, three synthetic

datasets, Attack (containing only attacks), Benign (containing

only benign workloads), and Mix (containing both benign

workloads and attacks), were generated based on this scenario.

In real-world scenario, we used DARPA Trace [35] as a

data source. According to their documents, we extracted the

logs for 4 intervals as 4 datasets, one of which (DD1) does

not contain any attacks, and three of which (DD2, DD3 and

DD4) cover four APT attacks (Firefox Backdoor, Browser

Extension, Phishing Email, and Pine Backdoor). Information

on the above datasets is presented in Table III. All system audit

events for all datasets were preprocessed using SPADE and

Neo4j [36]; the events were then output in our custom JSON

format. In preprocessing, only consecutive events with the

same operation and the same subject and object are aggregated.

The generation of precise behavioral patterns for attack
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e5t

ep5

e7s

ep2

e6t

ep1

e7t

ep2

e4t

ep4

Time (t)

7 8 9 11(1)

pools[1][1] pools[1][2]

pools[2][1] pools[2][2] pools[2][3]

∅

∅
t = 0

t = 0

e3

ep3

t = 7

e4s

ep4

t = 8

e5s

ep5

e6s

ep1

t = 11(3)

Composition Layer Join Layer
sp1

sp2

sp1 || sp2
T

N3

N4

N3

N4

N5 N5

N3 N4

e6s
N3 N6

e6s
N3 N6

N2

e7s

e3 e3

e4s

e3

e5s /e4s 
t = 9

N3 N6

N2

N5

N4

e6s

e3 e7s

e5s /e4s 

11(2) 11(4)11(3) 12(1) 12(2)

t = 11(4)

t = 11(4)

Fig. 5: An example for Composition Layer and Join Layer
in handling Figure 3, Figure 4, and Table II

TABLE III: Dataset characteristics

Scenario Dataset
Name Duration # of nodes

(entities)
# of edges

(events)

Simulated
Benign 12 hr. 688,016 771,417
Attack 12 hr. 1,793,045 2,107,866
Mix 12 hr. 2,393,438 2,885,867

Real-world
(DARPA

Trace)

DD1
2018/04/08

(19:00 – 23:00)
4 hr. 3,764,417 6,609,005

DD2
2018/04/10

(09:40 – 16:00)
6.33 hr. 10,118,397 7,062,697

DD3
2018/04/13

(12:00 – 17:00)
5 hr. 12,463,586 7,692,127

DD4
2018/04/13

(14:00 – 19:00)
5 hr. 17,618,165 10,851,966

behaviors without covering normal behaviors is beyond the

scope of this paper. For experiments, behavioral patterns were

selected by inspecting the provenance graphs constructed from

the datasets and referencing related works like [37]. First,

some events were manually extracted as event patterns that

were considered to belong to a behavioral pattern from the

datasets. In the signature of the event patterns, non-general

values (such as the object hash, UUID and timestamp) were

removed, and some values (such as non-utility program names,

IPs and port numbers, and file or directory names) were

replaced with wildcard string (i.e., “.*”) in RegEx for pattern

generality. The temporal relation of each event pattern was

defined based on the original event timestamps and human

knowledge (this relation may be a partial ordering if some

events have the same timestamp). The other relations can be

directly retrieved from the provenance graph.

For the DARPA Trace datasets, five behavioral patterns

in APT-level (containing multiple TTPs) were extracted and

denoted as DP1–DP5. These patterns correspond to four APT

attacks documented in the dataset, each characterized by a

duration lasting 92–996 seconds, involving 9–20 entities and

15–30 events. For the synthetic datasets, twelve behavioral

patterns in TTP-level were extracted and denoted as SP1–
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SP12, each characterized by a duration lasting 0.02–35 sec-

onds, involving 5–26 entities and 4–36 events.

All experiments were run on an Ubuntu 18.04 host equipped

with four Intel Xeon Platinum 8280 Processors at 2.70 GHz,

1.47 TB RAM, and 21 TB disk storage. CPU time was

measured using the “time” utility in Linux, while memory

usage data was obtained from the JVM.

A. Matching efficiency

For answering the Q1. Efficiency, we used two baseline

setting, IPMES with naive join and Siddhi. IPMES with naive

join setting is similar to IPMES but replaces the binary tree

structure with a large array directly storing all states in Join
Layer. This implies that the naive join setting does not take

into account the join order. In the Siddhi setting, Composition
Layer is replaced with Siddhi [9] CEP tool for matching

subpatterns because Siddhi is proved its practicality with large-

scale provenance data in the work [7]. Table IV presents the

matching and performance results for the synthetic datasets

with IPMES, IPMES with naive join, Siddhi (all window

sizes are 1800 seconds). Generally, the CPU time of IPMES

is less than IPMESnaive(1.1x–10.1x) and Siddhi(2.1x–4.3x)

in average. The peak heap memory of IPMES is also less

than IPMESnaive(1.0x–1.2x) and Siddhi(1.6x–1.8x) in average.

This indicates that, without the consideration of join order,

IPMESnaive generates more states, resulting in an increased

cost in traversing states. On the other hand, Siddhi exhibits

lower efficiency in matching subpatterns as it employs an ab-

stract syntax tree for general relation checkings. This approach

determines which variables’ values to obtain during runtime.

In contrast, IPMES achieves relation checkings by explicitly

specifying the required variables in the code.

Table V presents the matching and performance results for

the DARPA Trace datasets with IPMES, IPMES with naive

join, Siddhi (all window sizes are 1000 seconds). In most

cases, the CPU time of IPMES is close to IPMESnaive except

for DP5 in DD4. This is because the number of states are

a few in the datasets such that the benefits from the join

order is not noticeable, while DP5 has up to 873,785 states

at peak and 21,453,120 instances in DD4. The CPU time of

Siddhi is very larger than IPMES (up to 936x in average). The

explanation about IPMES’ high efficiency is provided in the

previous paragraph, and this issue becomes more pronounced

in more complex patterns.

B. Window size

To investigate window size impacts on efficiency and sen-

sitivity, we selected SP7 and the Mix dataset for experiments

on window size. The reason is that the previous experiments

revealed that sufficient instances of the behavioral pattern in

the dataset and a larger pool size in executing IPMES. More-

over, despite DARPA datasets containing numerous instances

of patterns, all these instances belong to a single attack.

For efficiency, Figure 6 presents the peak pool size and

required CPU time for various window size. The CPU time

grows slowly under window size 3200 seconds, and then grows

fast. This is because the attacks executed once per hour in

our simulated scenario. A larger window size exceeding 3600

seconds causes the pool storing states associated with different

attack instances, thereby reducing the efficiency in join. Note

that the peak pool size of window size 2 second is larger than

ones of window size 4, 8 and 20 seconds. This is because of

the lazy window mechanism.
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For sensibility, Figure 7 presents the number of identified

instances and coverage for various window size. The coverage

means the ratio of the number of discovering an attack by

IPMES (identify at least one instance in one attack) and the

number of all attacks (= 13 times in this dataset). A window

size exceeding 80 seconds can not find more instances, and

a window size under 9 seconds would lose some coverage.

This means the SP7 attack can last up to 80 seconds, and

revealing its behavior at a minimum of 9 seconds. Combined

the efficiency results in Figure 6, in practice guideline, we

suggest the proper window size should be set in accordance

with the threat reports or threat models at hand for better

detection efficiency and sensibility. Note that window sizes

within the intervals of identical attacks are also considered

acceptable without significantly compromising efficiency if the

attacks are sparse. Intense attacks will be discussed in Sec. V.

About the Q2. Feasibility, In simulated datasets, where the

log durations were around 12 hours, the average CPU time

per pattern was 12–20 seconds. In the DARPA Trace datasets,

where the log durations were around 5 hours, the average

CPU time per pattern was 0.5–14 minutes. These results

imply that IPMES can feasibly handle around 20–3600 TTP

patterns for practical online detection without any advanced
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TABLE IV: Matching and performance results for synthetic datasets

Pattern
No.

CPU Time (ratio r.s.t to IPMES)
IPMES / IPMESnaive / Siddhi

Peak Heap Memory (ratio w.r.t IPMES)
IPMES / IPMESnaive / Siddhi

Attack Mix Benign Attack Mix Benign
SP1 1.0x / 1.0x / 2.0x 1.0x / 1.1x / 1.7x 1.0x / 1.0x / 2.1x 1.0x / 0.8x / 2.1x 1.0x / 1.0x / 1.6x 1.0x / 1.0x / 1.5x
SP2 1.0x / 1.0x / 1.6x 1.0x / 1.1x / 1.7x 1.0x / 1.0x / 1.5x 1.0x / 1.0x / 1.3x 1.0x / 1.0x / 1.4x 1.0x / 0.8x / 1.2x
SP3 1.0x / 4.5x / 1.9x 1.0x / 3.7x / 2.0x 1.0x / 1.0x / 1.9x 1.0x / 1.1x / 2.3x 1.0x / 1.3x / 1.6x 1.0x / 1.0 / 2.1x
SP4 1.0x / 1.2x / 1.7x 1.0x / 0.9x / 1.6x 1.0x / 1.0x / 1.6x 1.0x / 1.0x / 1.6x 1.0x / 0.8x / 2.1x 1.0x / 1.0x / 1.4x
SP5 1.0x / 0.9x / 2.1x 1.0x / 1.0x / 4.8x 1.0x / 1.1x / 40.0x 1.0x / 1.1x / 1.9x 1.0x / 1.4x / 2.0x 1.0x / 1.0x / 3.5x
SP6 1.0x / 1.2x / 1.6x 1.0x / 1.1x / 1.8x 1.0x / 1.1x / 1.9x 1.0x / 1.7x / 1.8x 1.0x / 0.8x / 1.5x 1.0x / 0.8x / 1.1x
SP7 1.0x / 5.6x / 1.5x 1.0x / 69.0x / 1.7x 1.0x / 0.9x / 1.5x 1.0x / 1.8x / 1.2x 1.0x / 3.7x / 1.6x 1.0x / 1.0x / 1.2x
SP8 1.0x / 1.6x / 1.5x 1.0x / 3.5x / 1.5x 1.0x / 5.6x / 1.7x 1.0x / 1.1x / 2.3x 1.0x / 0.8x / 2.0x 1.0x / 1.0x / 1.2x
SP9 1.0x / 1.1x / 1.6x 1.0x / 1.0x / 3.0x 1.0x / 1.1x / 1.8x 1.0x / 1.0x / 1.5x 1.0x / 0.7x / 1.5x 1.0x / 1.0x / 1.4x

SP10 1.0x / 1.1x / 1.3x 1.0x / 1.0x / 1.6x 1.0x / 1.0x / 1.6x 1.0x / 1.0x / 2.1x 1.0x / 0.8x / 1.5x 1.0x / 1.0x / 1.7x
SP11 1.0x / 1.0x / 1.5x 1.0x / 1.0x / 1.7x 1.0x / 1.0x / 1.6x 1.0x / 1.0x / 1.5x 1.0x / 1.0x / 1.6x 1.0x / 1.2x / 1.5x
SP12 1.0x / 1.0x / 1.4x 1.0x / 1.1x / 2.0x 1.0x / 1.0x / 1.5x 1.0x / 1.0x / 1.7x 1.0x / 1.0x / 1.8x 1.0x / 1.0x / 1.2x

Average 1.0x / 2.4x / 2.1x 1.0x / 10.1x / 2.8x 1.0x / 1.1x / 4.3x 1.0x / 1.2x / 1.8x 1.0x / 1.2x / 1.7x 1.0x / 1.0 / 1.6x
Note: A cell with a filled background indicates that the column dataset contains instances of the row pattern. The average row is
calculated using the average CPU time rather than the average of the ratios.

TABLE V: Matching and performance results for DARPA Trace datasets

Pattern
No.

CPU Time (ratio w.r.t IPMES)
IPMES / IPMESnaive / Siddhi

Peak Heap Memory (ratio w.r.t IPMES)
IPMES / IPMESnaive / Siddhi

DD2 DD3 DD4 DD1 DD2 DD3 DD4 DD1
DP1 1.0x | 1.2x | 1039x 1.0x | 1.1x | 2390x 1.0x | 1.1x | 2696x 1.0x | 1.2x | 1965x 1.0x | 1.7x | 2.6x 1.0x | 1.2x | 2.7x 1.0x | 0.8x | 1.2x 1.0x | 1.0x | 1.5x
DP2 1.0x | 0.9x | 2.0x 1.0x | 1.1x | 2.1x 1.0x | 1.0x | 2.3x 1.0x | 1.0x | 2.0x 1.0x | 0.8x | 1.5x 1.0x | 1.1x | 2.2x 1.0x | 0.8x | 1.9x 1.0x | 1.2x | 2.4x
DP3 1.0x | 0.8x | 3.1x 1.0x | 1.1x | 5.0x 1.0x | 0.9x | 5.2x 1.0x | 1.1x | 4.2x 1.0x | 0.9x | 1.8x 1.0x | 1.2x | 1.6x 1.0x | 1.0x | 1.4x 1.0x | 1.1x | 1.7x
DP4 1.0x | 0.9x | 5.9x 1.0x | 0.9x | 27.1x 1.0x | 1.0x | 49.2x 1.0x | 1.1x | 3.4x 1.0x | 0.8x | 1.6x 1.0x | 0.7x | 1.4x 1.0x | 1.5x | 1.9x 1.0x | 0.8x | 1.2x
DP5 1.0x | 0.9x | 13.3x 1.0x | 1.1x | 15.3x 1.0x | 13.7x | 61.5x 1.0x | 1.1x | 23.7x 1.0x | 1.0x | 1.5x 1.0x | 1.1x | 1.3x 1.0x | 1.5x | 1.1x 1.0x | 1.0x | 1.4x

Average 1.0x | 1.0x | 348x 1.0x | 1.1x | 936x 1.0x | 11.2x | 316x 1.0x | 1.1x | 730x 1.0x | 1.0x | 1.8x 1.0x | 1.0x | 1.8x 1.0x | 1.3x | 1.3x 1.0x | 1.0x | 1.6x
Note: A cell with a filled background indicates that the column dataset contains instances of the row pattern. The average row is
calculated using the average CPU time rather than the average of the ratios.

parallel optimizations and optimal settings. Recall that pattern

size used in experiments is up to 36 events. we believe this

size is sufficient to encompass the majority of TTP patterns.

Alternatively, we may consider adopting the decomposition

approach mentioned in preprocessing on larger patterns to

reduce the size of individual patterns. Except for a large

number of complex patterns, high-throughput event streams

in real-world scenarios may pose challenges in processing

time. To overcome this, we may introduce pipeline techniques

and independent operations parallelization within each layer

to increase the throughput of IPMES.

In summary, these results from both simulated and real-

world data show that IPMES is effective and feasible for

practical TTP detection. Although improper window size set-

tings may impact detection sensitivity or efficiency, we provide

practical guidelines for selecting appropriate window sizes.

V. LIMITATIONS AND FUTURE WORK

Even if the number of generated states is reduced as much as

possible, intentional attacks can still cause the pool to overflow

in order to avoid detection. However, the event generation rate

of the attacks is bound to increase noticeably, and the attacks

may be detected by other frequency-based or sequence-based

detection methods [38]–[41]. In other words, using IPMES can

partially limit the stealthiness of attacks.

The behavioral pattern definitions of this study cannot

describe event occurrence times in a range (e.g., describe a

process writing the same file 3–5 times) or a reachability

relation between the involved system entities (e.g., describe

some secret file leaking information to an untrusted socket).

Defining multiple behavioral patterns for different event occur-

rence times or the possible number of internal nodes between

starting entities and end entities is not reasonable, because

these similar behavioral patterns result in repeated matching

for most of the same events. However, these features should be

included to extend a behavioral pattern’s descriptive power in

the future. This also requires careful design because additional

descriptive power usually increases detection overhead.

VI. CONCLUSION

The extended dwell time of APT attacks poses a challenge

in detecting them within vast provenance graphs. To address

this, we present IPMES, a specialized tool for incremental

TTP detection over system audit event streams, aiding in the

identification of APT attack steps. IPMES employs a divide-

and-conquer approach to match complex graph-based patterns

and incorporates specific optimizations to enhance efficiency, a

capability not realized by general-purpose CEP tools. Further-

more, IPMES can handle events with identical timestamps and

interval timestamps without losing their order relation during

matching. Evaluations through experiments on synthetic and

real-world data have demonstrated that IPMES is a practical

TTP detection tool. IPMES is expected to be provided to

Telecom Technology Center, Institute for Information Industry,

and Industrial Technology Research Institute organizations in

Taiwan to facilitate the detection of APT attacks.
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