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Abstract—With recent legislation on the right to be forgotten,
machine unlearning has emerged as a crucial research area. It
facilitates the removal of a user’s data from federated trained
machine learning models without the necessity for retraining
from scratch. However, current machine unlearning algorithms
are confronted with challenges of efficiency and validity.

To address the above issues, we propose a new framework,
named Goldfish. It comprises four modules: basic model, loss
function, optimization, and extension. To address the challenge
of low validity in existing machine unlearning algorithms, we
propose a novel loss function. It takes into account the loss
arising from the discrepancy between predictions and actual
labels in the remaining dataset. Simultaneously, it takes into
consideration the bias of predicted results on the removed
dataset. Moreover, it accounts for the confidence level of predicted
results. Additionally, to enhance efficiency, we adopt knowledge
a distillation technique in the basic model and introduce an
optimization module that encompasses the early termination
mechanism guided by empirical risk and the data partition
mechanism. Furthermore, to bolster the robustness of the aggre-
gated model, we propose an extension module that incorporates a
mechanism using adaptive distillation temperature to address the
heterogeneity of user local data and a mechanism using adaptive
weight to handle the variety in the quality of uploaded models.
Finally, we conduct comprehensive experiments to illustrate the
effectiveness of proposed approach.

Index Terms—federated unlearning, distillation model, efficient
retraining

I. INTRODUCTION

Federated learning is an advanced distributed machine learn-

ing paradigm that enables multiple clients to collaboratively

train a shared global model without the need to share their

local data [1] [2]. This approach effectively addresses a key

challenge in traditional machine learning: enabling model

training in the absence of centralized storage and processing

for datasets. Federated learning effectively addresses this lim-

itation through distributed training, empowering data holders

to retain ownership and control of their data while actively

contributing to the training of a global model. In this frame-

work, participants are only required to upload the updated
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parameters of their local models to the central server. The

server then integrates these updates to construct an improved

global model. This process serves to safeguard client data

privacy.

However, within the federated learning framework, users

may request the removal of their contribution from the trained

global model. Moreover, recent regulations such as the Euro-

pean Union’s General Data Protection Regulation (GDPR) [3]

and the California Consumer Privacy Act (CCPA) [4] empower

individuals with the right to demand the deletion of their

private data from any part of the system within a reasonable

time frame. Furthermore, even if the original data was never

shared, the global machine learning model could still glean

information about the clients [5] [6]. Predictions made by the

global model might potentially leak client information [7] [8].

Therefore, there is a compelling need for a method to eliminate

a client’s contribution from the trained global model.

To ensure that a global model forgets the contributions of

a specific client, one straightforward approach is to retrain

the model from scratch after removing the target user’s data.

Alternatively, another method is to remove user information

from the parameters of the trained model, while preserving

the utility of the model [9].

In the context of managing large datasets and complex

models, retraining approaches can be impractical due to high

time and energy costs, computational expenses, and scalability

challenges. There is a growing interest in developing cost-

effective machine unlearning algorithms to mitigate the impact

of deleted data from trained models. To measure the effec-

tiveness of an unlearning algorithm in eradicating specified

information, Ginart et al. [10] introduced a metric similar to

(ε, δ)-differential privacy (DP). This metric serves as proof

of indistinguishability between the output of the unlearning

algorithm and the newly retrained output without the deleted

records. Building on this concept, several certifications of

forgetting have been introduced, aiming to validate the efficacy

of various forgetting mechanisms [11]–[15].

However, researchers have demonstrated the weaknesses in

current machine unlearning algorithms. Chourasia et al. [16]

recognizes the interdependence between training data and the

model, emphasizing that the data used in the training process
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imbues specific patterns within the model. In alignment with

Chourasia et al., Gupta et al. [17] contend that there are

inherent flaws in the deletion certification approach of pre-

vious unlearning works, which rely on the indistinguishability

between unlearned and retrained models.
Moreover, the existing unlearning algorithms [10]–[12] en-

hance the efficiency of machine unlearning algorithms by

relaxing the requirements for validity. Here, ‘validity’ refers

to the effectiveness of the unlearning process in ensuring that

the model no longer retains information about the deleted

data. Furthermore, most of these algorithms necessitate access

to users’ historical model updates or gradient information

to enhance efficiency, which is impermissible within the

framework of federated learning. Recent studies [18]–[20]

have demonstrated that attackers, such as a malicious central

server, can exploit clients’ local gradients to mount attacks

that reconstruct private training samples of the clients.
In this paper, we aim to overcome the aforementioned

shortcomings. First, to address the challenge of low validity in

existing machine unlearning algorithms, we propose a novel

loss function. It takes into account the loss arising from

the discrepancy between predictions and actual labels in the

remaining dataset. Simultaneously, it takes into consideration

the bias of predicted results on the removed dataset. Moreover,

it accounts for the confidence level of predicted results.

Additionally, to enhance efficiency, we adopt knowledge distil-

lation technique in basic model and introduce an optimization

module that encompasses the early termination mechanism

guided by empirical risk and the data partition mechanism.

Furthermore, to bolster the robustness of the aggregated

model, we propose an extension module that incorporates a

mechanism using adaptive distillation temperature to address

the heterogeneity of user local data and a mechanism using

adaptive weight to handle the variety in the quality of uploaded

models.
Overall, the main contributions of this paper are summarized

as follows.

• We introduce a novel paradigm for designing a machine

unlearning algorithm, named Goldfish. It comprises four

modules: basic model, loss function, optimization, and

extension.

• We propose a novel design for the loss function that

incorporates the discrepancy between predictions and ac-

tual labels in the remaining dataset, the bias of predicted

results on the removed dataset, and the confidence level

of predicted results.

• We propose an optimization module that incorporates

the early termination mechanism guided by empirical

risk and the data partition mechanism. Additionally, we

introduce an extension module that includes a mechanism

using adaptive distillation temperature to address the

heterogeneity of user local data and a mechanism using

adaptive weight to handle the variety in the quality of

uploaded models.

• We have established the foundational framework of Gold-

fish and conducted comprehensive experiments on pub-

licly known datasets to assess its effectiveness. The exper-

imental results demonstrate that the proposed approach

can effectively resist backdoor attacks while exhibiting

better efficiency and accuracy compared to the state-of-

the-art methods.

II. RELATED WORK

Federated unlearning encompasses two primary approaches:

retraining-based and model update adjustment-based methods

[21]. Retraining-based methods require substantial retraining

of the global model using client data, leading to significant

time and resource consumption. In contrast, model update ad-

justment methods utilize parameter updates from the client to

revise the model, eliminating the need for complete retraining.

While update adjustment techniques are generally faster and

more resource-efficient, they demand the retention of addi-

tional information and meticulous calibration and aggregation

to ensure efficacy.

A. Retraining-based approach

Numerous research efforts have been undertaken to expedite

the retraining process and minimize time overhead. Liu et al.
[21] leverages the first-order Taylor expansion approximation

technique to customize a rapid retraining algorithm based on

diagonal experience FIM. On the contrary, Yuan et al. [22]

presents a federated forgetting framework. This framework

empowers clients to request data deletion, prompting the server

to retrain the global model based on these removal requests.

Bourtoule et al. [9] introduced SISA training as an approach

to alleviate computational costs associated with forgetting.

This method strategically limits the influence scope of data

points during training by employing techniques such as data

sharding and slicing.

B. Model update adjustment-based approach

Much research has been conducted with the aim of en-

hancing efficiency and effectiveness in the model update

adjustment-based approach. Zhang et al. [23] eliminate client

influence by extracting the weighted sum of gradient residuals

from the global model and customizing Gaussian noise. This

process is designed to achieve statistical indistinguishability

between unlearned and retrained models. Liu et al. [24]

reconstruct the forgotten model using parameter updates stored

on the server, introducing a novel calibration method to adjust

client updates. This innovative approach aims to enhance

forgetting speed while preserving model performance. In addi-

tion, Baumhauer et al. [25] and Thudi et al. [26] emphasize the

pursuit of higher efficiency in machine unlearning by relaxing

requirements for both effectiveness and provability. Izzo et al.
[11], Neel et al. [14], and Wu et al. [27] explore techniques for

the server to effectively approximate gradients during the un-

learning process by leveraging historical gradients and model

weights. Chourasia et al. [28] emphasize the significance of

robustness when addressing data deletion scenarios.

The proposed Goldfish framework presents a general ap-

proach for realizing federated unlearning, comprising four
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TABLE I: Frequently used notations.

Dc the dataset belonging to client c
Dc

f the removed dataset of client c

Dc
r the remaining dataset of client c

α the total number of classes of labels
τ the total number of shards of user local data
t the number of epochs
C the total number of clients
ω global model parameter
ωc local model parameter

key modules: basic model, loss function, optimization, and

extension. The Goldfish framework accommodates the imple-

mentation of both retraining-based methods and model update

adjustment-based methods. In addition, we introduce a more

effective loss function designed to achieve a balance between

accuracy and validity in data deletion scenarios. Furthermore,

the framework incorporates an adaptive distillation temper-

ature mechanism to address client-side data heterogeneity.

Additionally, we propose an adaptive weight mechanism to ef-

fectively manage variations in model quality. Finally, to boost

the efficiency of the retraining process, we introduce a data

sharding mechanism, complemented by an early termination

mechanism guided by empirical risk.

III. PROPOSED FRAMEWORK: GOLDFISH

In this section, we introduce the proposed framework:

Goldfish. We first demonstrate the overview of Goldfish and

then illustrate its details. Prior to introducing the scheme, we

illustrate the commonly used notation in Table I.

A. Overview of Goldfish

As shown in Fig.1, Goldfish specializes in four modules:

basic model, loss function, optimization, and extension.

The initial module of the Goldfish, basic model, is crafted

for model selection in the context of federated unlearning. The

second module is dedicated to the implementation of a person-

alized loss function. The third module is engineered to execute

an optimization algorithm aimed at enhancing efficiency. The

final module is tailored to address any additional requirements.

The underlying principle guiding this design is rooted in the

characteristics of federated unlearning. In federated learning,

as the first step, we need to select the initial model to imple-

ment the unlearning process. In particular, the trace generated

from the data that is requested to be removed should be

eliminated from the global model. To enhance the effectiveness

of the selected model, the design of the loss function is pivotal.

Loss functions provide a precise metric for assessing a model’s

performance by quantifying the disparity between predictions

and actual results.

In addition, given the sporadic nature of data removal

requests, ensuring the efficient execution of the unlearning

process is imperative. To adapt to the evolution of efficient

approaches, an optimization module is provided. Lastly, we

offer an extension module to achieve compatibility. Additional

Fig. 1: Goldfish Framework. It consists of four modules: basic

model, loss function, optimization, and extension.

requirements can be incorporated into this module. For in-

stance, the approach to address client heterogeneity can be

implemented within this module.

B. Details of Modules

In this section, we delve into the specifics of each module

within Goldfish, and its detailed description of the algorithm

is presented in Algorithm 1.

Basic model. In Goldfish, the basic model achieves fast

retraining through knowledge distillation. In particular, we

utilize a teacher model MT and a student model MS to

implement the retraining process on a user’s local dataset

Dc. The local dataset Dc consists of two parts: Dc
f and Dc

r.

Dc
f represents the data that needs to be removed while Dc

r

denotes the remaining data. The student model MS can be

initialized without any knowledge of Dc, while the global

model serves as the teacher model MT . The teacher model MT

encompasses the knowledge acquired from both datasets Dc
r

and Dc
f . Our approach is designed to enable the student model

MS to selectively learn from the teacher model, preserving ex-

clusively the knowledge associated with the remaining dataset

Dc
r, thereby accomplishing the forgetting of Dc

f . During

the training process, we ensure that the knowledge transfer

between the teacher model MT and the student model MS

occurs exclusively on dataset Dc
r, fundamentally preventing

the student model from learning the removed data Dc
f . More-

over, we can employ the removed dataset Dc
f to evaluate the

output of the student model, ensuring that predictions on the

removed data are not biased.

Loss function. The proposed loss function is an amalgamation

of hard loss, confusion loss, and distillation loss.

Hard loss. The discrepancy between the model’s prediction

and the actual label is named as “hard loss”. The hard loss of

the unlearning process on Dc can be split into two aspects. The

first aspect is associated with the remaining dataset Dc
r. During

the training, the label prediction of Dc
r may deviate from the

actual label. The total loss caused by the Dc
r is denoted as

Lr. Another aspect is related to the removed data Dc
f . The

total loss caused by Dc
f is denoted as Lf . Finally, the hard

loss is represented by Equation 1. In particular, in multi-class
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Algorithm 1: Goldfish Algorithm

Input : local training dataset Dc, initialized model

parameter ω0, learning rate μ, deletion request

Output: unlearned global model

1 Procedure Efficient Federated Unlearning Framework:
2 Reinitialize global model and distribute to all clients c:

ω0
c ← ω0;

3 for t = 0, 1, . . . , N do
4 foreach client c in parallel do
5 if no deletion request then
6 LocalTraining(ωt

c, Dc);

7 end
8 else
9 foreach unlearned client c in parallel do

10 Dc
f ← deleted data;

11 Dc
r ← Dc/D

c
f ;

12 Reinitialize global model and distribute

to all clients c: ωt
c ← ω0;

13 ωt+1
c ←Goldfish(ωt

c, ωt−1, Dc
f ,

Dc
r);

14 end
15 foreach normal client c in parallel do
16 ωt+1

c ←Goldfish(ωt
c, ωt−1, Dc

f ,
Dc

r);

17 end
18 end
19 end
20 Server:
21 Update global model parameters ωt+1;

22 end
23 return ωt+1;

24 Procedure Goldfish(ωt
c, ωt, Dc

f , Dc
r):

25 Initialize teacher model MT parameters: ωT ← ωt;

26 Initialize student model MS parameters: ωS ← ωt
c;

27 foreach local epoch i = 0, 1, 2, . . . , n do
28 if Dc

f is not empty then
29 ωt

c(i+1) ← ωt
c(i)−μ∇l(MT ,MS , D

c
f , D

c
r);

30 end
31 else
32 ωt

c(i+ 1) ← ωt
c(i)− μ∇l(MT ,MS , D

c
r);

33 end
34 end
35 return ωt

c(i+ 1);

36 Procedure LocalTraining(ωt
c, Dc):

37 foreach local epoch i = 0, 1, 2, . . . , n do
38 ωt

c(i+ 1) ← ωt
c(i)− μ∇l(ωt

c, Dc);
39 end
40 return ωt

c(i+ 1);

classification, Lr is computed by −∑
xi∈Dc

r
yi log(Ms(xi)),

where Ms(xi) represents the prediction made by Ms on the

data xi from Dc
r, yi represents the true label corresponding to

xi. Similarly, Lf is computed by −∑
xi∈Dc

f
yi log(Ms(xi)),

where Ms(xi) represents the prediction made by Mf on

the data xi from Dc
f . In the paper, we consider the size

of Dc
r is much larger than Dc

f (|Dc
r| >> |Dc

f |). Without

losing generality, the minimization of Lh promotes Lf while

suppressing Lr.

Lh = Lr − Lf (1)

Confusion loss. The confusion loss is designed to reduce

the bias of the predicted results of MS on Dc
f . We set the

Equation 2 to evaluate the bias level of the predicted results,

Lc =
1∣∣∣Dc
f

∣∣∣
∑

xj∈Dc
f

√
D (MS (xj)) (2)

where MS(xj) represents the predicted vector of the stu-

dent model for the samples in the removed dataset Dc
f and

D(MS(xj)) denotes the variance of the predicted vector. This

confidence vector contains the predicted probabilities of a

sample belonging to various classes. Variance measures the

dispersion between predicted results, and we aim at minimiz-

ing it, ensuring that the confidence in predictions made by MS

for each sample in Dc
f is close.

Distillation loss. Knowledge distillation model utilizes the

predicted results generated by the teacher model as labels

for the student network. The predicted results of the teacher

model are transformed into prediction confidences through the

softmax function. The confidence level PT
xi

of a sample xi

(xi ∈ Dc
r) for teacher model MT is computed as Equation 3,

PT
xi

=
exp(vi/T )

ΣC
j=1exp(vj/T )

(3)

where T represents the distillation temperature, vj represents

the confidence score of the teacher model MT predicting xi

belonging to class j, and vi represents the confidence score

of the teacher model MT predicting xi belonging to the

class i (i ∈ [1, α]) correctly. From Equation 3, we can learn

that higher distillation temperatures can make the predicted

probabilities generated by the teacher model smoother. Using

the same methodology, we define the confidence level PS
xi

of

a sample xi for student model MS as Equation 4,

PS
xi

=
exp(zi/T )

ΣC
j=1exp(zj/T )

(4)

where zj represents the confidence score of the student model

MS predicting xi belonging to class j, and vi represents

the confidence score of the student model MS predicting xi

belonging to the class i (i ∈ [1, α]) correctly.

Finally, the distillation loss is defined based on the con-

fidence level, as formalized by Equation 5. The equation

shows that the greater the disparity between the predicted

distributions of the teacher model and the student model, the

larger the loss.
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Ld = −
∑

xi∈Dc
r

PT
xi
logPS

xi
(5)

Final expression of loss function. The final loss function is

defined as follows:

L = Lh + μcLc + μdLd (6)

where the weight factors μc and μd can be adjusted to balance

the importance of different objectives. Assigning a larger

weight to the confusion loss can reduce the bias of model

MS on Dc
f . The hard loss ensures that the model learns from

the remaining dataset Dc
r, while the distillation loss improves

the generalization of the model.

Optimization. We introduce two approaches to improve the

efficiency of retraining. The first method is implemented

through terminating the training process earlier based on

convergence speed. The second is to divide the data into

many small portions. The retraining process only needs to be

conducted on those portions that include deleted data.

Early termination guided by empirical risk. During the

training process, the loss value output by the loss function is

used to measure the convergence of the model. To decide the

condition of stopping training, we introduce excess empirical

risk to determine whether the loss value of the student model

during the training process is close to that of the global

model from the previous epoch. The excess empirical risk is

defined in Equation 7, where ωt−1 represents the global model

parameters of t − 1 epoch of training, and wt
c(i) represents

the ith (i ∈ [0, n]) epoch of local training corresponding to

the t epoch of global training, and n stands for the number of

epochs of local training.

err
(
ωt
c, ω

t−1
)
=

∣∣∣∣∣ 1n
n∑

i=0

L
(
ωt
c (i)

)− L
(
ωt−1

)∣∣∣∣∣ (7)

During the training phase, when the loss value of the student

model decreases to within a certain range of the lowest loss

of the pre-trained model, i.e., err
(
wt

c, w
t−1

) ≤ δ, where δ is

a specified threshold value, the training process terminated.

Data partition into small portions. As shown in Fig.2, each

local dataset is partitioned into data shards. Each shard has a

model and the final output is the aggregation of models from

these shards. During the local training process, each data shard

is independently trained and retains the model weight ωc,i

(i ∈ [1, τ ]). Ultimately, all models saved from the data shards

are aggregated to construct the user’s local model parameter

ωc. The above description is formalized in Equation 8, where

|Dc
i | represents the size of the ith shard and |Dc| denotes the

size of the user local data.

ωt
c =

τ∑
i=1

|Dc
i |

|Dc|ω
t
c,i (8)

When a deletion request is made by the user, it is only

required to retrain the local model with the remaining dataset

by removing the shard that contains the removed data. As a

Fig. 2: Data Sharding Diagram. Each dataset is partitioned into

data shards. Each shard has a model and the final output is

the aggregation of models from these shards.

result, instead of re-initialization of user local model weights,

it starts training from the checkpoint, which saves the time of

retraining. The checkpoint is computed using the models from

data shards that do not contain removed data as Equation 9,

where the ith shard is removed.

ωt
c =

τ−1∑
j �=i

∣∣Dc
j

∣∣
|Dc|ω

t
c,j (9)

After retraining, we delete the removed data in data shard

Dc
i and obtain the weights of the shard Dc

i by subtracting

the weights of other shards. As shown in Equation 10, the

new model weight of shard Dc
i is computed by subtracting

the model weights of other shards.

ωt
c,i =

|Dc|
|Dc

i |
(ωt+1

c −
τ−1∑
j �=i

∣∣Dc
j

∣∣
|Dc|ω

t
c,j) (10)

In case, as shown in Fig.3, if only partial data of a shard

is deleted, it is required to retrain the model of the shard. If

more than one shard is involved, the training of the multiple

shards can be parallelized.

Extension. We propose two mechanisms within the exten-

sion module. The first mechanism is applied to address the

heterogeneity of user local data through adaptive distillation

temperature. The second mechanism is employed to tackle

the different quality levels of uploaded models via adaptive

weights.

Adaptive distillation temperature proposed for addressing
the heterogeneity of user local data. During the phase of model

training, the models trained on clients with larger and more

evenly distributed datasets behave better. However, in real-life

scenarios, the local datasets vary from user to user. For exam-

ple, the sizes of local datasets may vary significantly among

different users. It is natural to put more emphasis on models

that exhibit better performance during model aggregation.
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Fig. 3: Retraining under data sharding. In Shard 1, only partial

data of the shard is deleted, it is required to retrain the model

of the shard before model aggregation.

We formulate the above concept by using Equation 11,

where T0 is the initial distillation temperature, and α is the

adjustment factor. The principle behind the equation is that the

amount of information decoupled by the student model from

the outputs of the teacher model is directly proportional to

the distillation temperature. A higher distillation temperature

can smooth the distribution of the teacher model’s predicted

results. When T ≤ 1, soft labels degrade into hard labels, and

the distillation loss becomes equivalent to the traditional cross-

entropy loss. We adjust the value of T based on the sizes of

the removed dataset and the remaining dataset.

T = αT0exp

⎛
⎝ |Dc

r|
|Dc

r|+
∣∣∣Dc

f

∣∣∣
⎞
⎠ (11)

Adaptive weight for addressing variety in the quality of
uploaded models. We use the Mean Squared Error (MSE)

to measure the performance of different user local models

and assign higher weights to models with higher prediction

accuracy based on MSE. This approach ensures that the

global model retains higher testing performance during model

aggregation.

Wc = exp

(
−
metc − 1

|C|
∑C

i=1 (mei
t)

1
|C|

∑C
i=1 (meit)

)
(12)

The detail is shown in Equation 12, where Wc denotes the

weight allocated to the local model of the client c, metc repre-

sents the MSE obtained by the client c when testing its local

model on the test set at the central server, 1
|C|

∑C
i=1 (mei

t)
denotes the average of all clients’ MSEs in the t round of

FL. Based on the definition of the client’s weight, in the

t + 1th epoch, the finally aggregated model parameter is

defined in Equation 13, where θ is the normalization factor,

i.e., θ =
∑C

c=1 Wc.

TABLE II: Dataset Description

Dataset Dimensions Classes Training Test
MNIST 784 10 60000 10000

Fashion-MNIST 784 10 60000 10000
CIFAR-10 3072 10 50000 10000

CIFAR-100 3072 100 50000 10000

ωt+1 =
1

θ

C∑
c=1

Wcω
t+1
c (13)

IV. PERFORMANCE OF GOLDFISH

In this section, we utilize different datasets and model

architectures to evaluate the performance of the proposed

forgetting approach. Before delving into the details of the

experiment, we provide an overview of the setting below.

A. Experimental Setup

Dataset Description. In the experiments, we utilized

four public known ML datasets: the MNIST [29], Fashion-

MNIST(FMNIST) [30], CIFAR-10 [31], and CIFAR-100 [31].

As illustrated in Table II, these datasets encompass diverse

attributes, dimensions, and numbers of classes. In the setting

of the FL environment, we uniformly assigned the data from

the four training datasets to all clients.

Models. To enable the variety of models, we adopted four

different models. In particular, the model for MNIST and

FMNIST is a traditional LeNet-5 model [21] [29] consists of 2

convolutional layers, 2 max pool layers, and 2 fully connected

layers in the end for prediction output. The models for CIFAR-

10 are a modified LeNet-5 consisting of 2 convolutional layers,

2 max pool layers, and 3 fully connected layers in the end

for prediction output and ResNet32, which is a variant of

the Residual Network (ResNet) architecture [32]. This model

consists of 32 layers, including multiple residual blocks, each

designed to learn residual functions with reference to the

layer inputs. The model for CIFAR-100 is ResNet56, which

is another variant of the Residual Network (ResNet) archi-

tecture [32]. This model is designed to handle the increased

complexity of the CIFAR-100 dataset. ResNet56 consists of 56

layers, including multiple residual blocks that are instrumental

in enabling the network to learn deeper representations without

the issues of vanishing gradients that can plague very deep

networks. All models are implemented using Pytorch, and

experiments are done on a machine with one NVIDIA 1660ti

GPU and a machine with one NVIDIA 3060 GPU.

Hyperparameters. In the experiment, the total number C
of clients is set to 5, 15, and 25. In addition, the batch size

B is set to 100, and the learning rate η is set to 0.001. For

the deletion rate, following [33], we additionally include the

values of 2%, 4%, 6%, 8%, 10%, and 12%. The momentum

parameter β is set to 0.9 and the total number N of shards,

following [9], is set to 1, 3, 6, 9, 12, 15, and 18.

Evaluation Metrics. In the experiments, we evaluate the

proposed approach in training speed, accuracy of prediction,

unlearning ability, and robustness. In particular, following the
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validation approach in [34], we use backdoor attack to evaluate

the unlearning ability. Additionally, we employ L2 distance,

Jensen-Shannon Divergence (JSD), and T-test to evaluate the

model running result.

Baselines. To validate the effectiveness of the proposed

approach, three baselines are set. The first baseline is an

approach to retrain the model from the scratch [23], denoted as

B1. The second baseline is the rapid retraining method [21],

denoted as B2. The third baseline is the federated unlearning

algorithm [35], denoted as B3.

B. Experiment

The experiments are crafted to assess the effectiveness and

forgetfulness of the proposed approaches.

We first execute the retraining algorithms across four dis-

tinct datasets. Specifically, we set the batch size B to 100, and

learning rate η to 0.001. In addition, we employed models with

accuracies of 94.5%, 81.3%, and 72.6% as teacher models for

the datasets MNIST, FMNIST, and CIFAR-100, respectively.

Additionally, a modified LeNet-5 model with an accuracy of

72.6% and a ResNet32 model with an accuracy of 92.6%

were utilized as teacher models for the CIFAR-10 dataset..

The retraining results for MNIST, FMNIST, CIFAR-10 and

CIFAR-100 are illustrated in Fig.4a, Fig.4b, Fig.4c, Fig.4d,

and Fig.4e respectively. Upon comparison, it becomes evident

that our approach attains the highest accuracy, followed by B2

in second place, while B1 exhibits the lowest accuracy.

We examine the success rate of backdoor attacks on mod-

els across various deletion rate settings. The objective is to

assess whether our proposed approach effectively prevents the

retention of pertinent information about backdoor samples in

the model after retraining. In our experiments, we compare

our proposed method with the original model, B1 and B3.

Following the configuration of [36], we set the distillation

temperature T to 3, the weight factor μd to 1.0, and μc to 0.25.

B2 speeds up the retraining process by preserving historical

gradients and other information, which is the same as B1. Both

retrain from scratch. Therefore, it is not included here.

The experimental result is shown in Fig.5a, Fig.5b, Fig.5c,

Fig.5d, and Fig.5e. From the figures, we can learn that the

original model consistently maintains a high backdoor attack

success rate, indicating contamination of model parameters

and the emergence of specific backdoor prediction patterns.

In contrast, our method, as well as B1 and B3, consistently

shows low backdoor attack success rates, particularly on

MNIST and FMNIST datasets. Our method consistently main-

tains the lowest backdoor attack success rate across different

deletion rates with minimal accuracy error. This underscores

the effective prevention of information retention from the

removed set during retraining.

In Table III, Table IV, Table V, and Table VI, we present the

result of running different models on the test set with various

deletion rates. From the tables, it is evident that our proposed

method consistently maintains high accuracy across different

deletion rates. This indicates the effectiveness of our approach

in ensuring forgetting while preserving predictive accuracy on

the test set.

As demonstrated in Table VII, Table VIII, and Table IX,

we compare B3 and our approach with B1 in terms of JSD

and L2 distance on MNIST, FMNIST and CIFAR-10 datesets.

Additionally, we conduct a T-test to compare B3 and our

approach with the original model. Jensen-Shannon Divergence

(JSD) and L2 Distance are statistical metrics used to quantify

the dissimilarity between two probability distributions. JSD

measures the average Kullback-Leibler Divergence between

the two distributions, whereas L2 Distance measures the mean

squared error between them. A small JSD and L2 distance

implies a high similarity between two distributions. A T-

test is a statistical method used to determine if there is a

significant difference between the means of two groups. In a

T-test, the p-value (probability value) indicates the probability

of obtaining the observed results (or more extreme) if the

null hypothesis (i.e., the means of two groups are equal)

is true. The smaller the p-value, the stronger the evidence

against the null hypothesis, indicating a greater likelihood

of a significant difference between the means of the two

samples. From the tables, we can learn that both our approach

and B3 have small L2 values. Moreover, our method has

a smaller JSD value compared with B3, indicating that the

predictive results obtained through our method are closer to

those obtained through B1. In the context of the T-test, our

algorithm consistently yields smaller p-values in most cases.

This suggests significant differences between the predictive

patterns obtained through our algorithm and those generated

by backdoor attacks.

In order to investigate the importance of different com-

ponents of the loss function, following [36], we conducted

an ablation experiment on the loss function. We trained

the ResNet32 model on the CIFAR-10 dataset, considering

four combinations of loss functions: hard loss only, without

distillation loss (i.e., hard loss and confusion loss), without

confusion loss (i.e., hard loss and distillation loss), and total

loss (i.e., hard loss, distillation loss, and confusion loss) to

study the roles of different parts of the loss function. The

experimental result is shown in Table X.

After analyzing the experimental data, we observe that

the model trained without distillation loss exhibits a low

success rate in backdoor attacks while compromising overall

accuracy. However, the model trained without confusion loss

maintains a high accuracy and success rate in backdoor attacks.

Notably, the incorporation of total loss ensures both elevated

model accuracy and a reduced success rate in backdoor

attacks. This underscores the advantageous role of distillation

loss in expediting the training process and highlights the

significance of confusion loss in facilitating more effective

forgetting of backdoor data during training. Additionally, we

note a marginal decrease in accuracy during the initial training

stages for the model lacking confusion loss compared to other

models. This decline is attributed to the absence of confusion

loss, leading the model to adopt incorrect predictive patterns.

Furthermore, we have introduced additional loss functions,
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(a) (b) (c)

(d) (e)

Fig. 4: Accuracy rate of (a) LeNet-5 model trained on the MNIST dataset, (b) LeNet-5 model trained on FMNIST dataset, (c)

Modified LeNet-5 model trained on CIFAR-10 dataset, (d) ResNet32 model trained on CIFAR-10 dataset, and (e) ResNet56

model trained on CIFAR-100 dataset.

TABLE III: Accuracy rate and success rate of backdoor attack of models on the MNIST dataset.

Deleted data Rate
origin Ours B1 B3

acc backdoor acc backdoor acc backdoor acc backdoor
2 85.67 89.20 92.67 0.31 95.00 1.90 91.33 1.27
4 86.58 92.79 92.58 0.32 95.50 0.65 90.67 1.29
6 85.94 94.24 95.06 0.10 95.94 0.52 93.61 0.21
8 86.08 96.23 94.25 0.54 95.38 1.08 91.18 0.77
10 85.63 96.98 95.10 0.68 95.63 0.74 95.33 0.74
12 85.33 96.71 94.75 0.41 95.36 0.77 95.56 0.41

namely Focal loss [37] and Negative Log Likelihood (NLL)

loss [29], in addition to the traditional cross-entropy loss

employed as the hard loss. This sequential inclusion aims to

systematically assess the the compatibility of our framework

with various types of loss functions, as illustrated in the exper-

imental results presented in Table XI. We denote the scenario

where the cross-entropy loss function is utilized as the hard

loss as ‘Total loss α’, while the scenarios employing Focal

loss and NLL loss are denoted as ‘Total loss β’ and ‘Total

loss γ’, respectively. The table demonstrates consistently high

accuracy in testing across different loss functions, coupled

with a consistently low success rate in backdoor attacks.

This underscores the robust compatibility of the proposed

framework with diverse loss functions.

To measure the efficacy of data sharding, we seek answers

to two pivotal questions:

• Does the model exhibit effective convergence with the

application of data sharding?

• Does the utilization of data sharding contribute to an

expedited retraining process?

Following the experimental configuration [9], the number

of shards is set to 1, 3, 6, 9, 12, 15, and 18. In addition,

the MNIST dataset is employed. Initially, each data shard

is assigned with a model and each of them is trained over

the shard. After that, those models are locally aggregated and

the aggregated model becomes the client’s local model. The

training result is shown in Fig.6. From the figure, it is evident

that the rate of accuracy improvement decelerates with an in-

creasing number of data shards. This phenomenon is attributed

to the partiality of data within each shard, resulting in the

model being biased towards local data. However, irrespective

of the number of shards, the convergence trend of model

accuracy remains consistent.

Moreover, for the optimal selection of the number of data

shards, it depends on the acceptable accuracy loss and benefits

from a reduced number of training rounds in data deletion. In
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(a) (b) (c)

(d) (e)

Fig. 5: Success Rate of backdoor attack of models under different removed data rates on the (a) MNIST dataset, (b) FMNIST

dataset, (c) CIFAR-10 dataset, (d) CIFAR-10 dataset, and (e) CIFAR-100 dataset.

TABLE IV: Accuracy rate and success rate of backdoor attack of models on the FMNIST dataset.

Deleted data Rate
origin Ours B1 B3

acc backdoor acc backdoor acc backdoor acc backdoor
2 75.33 66.56 78.67 0.00 79.50 0.47 73.50 0.31
4 72.50 88.00 76.83 0.16 80.33 0.31 75.17 0.16
6 72.89 94.65 77.17 0.17 80.50 0.00 75.61 0.00
8 71.50 92.52 77.33 0.11 81.33 0.34 74.62 0.17
10 71.90 89.89 78.57 0.00 81.33 0.06 74.13 0.07
12 71.17 92.60 77.58 0.11 78.17 0.06 75.08 0.05

TABLE V: Accuracy rate and success rate of backdoor attack of models on the CIFAR-10 dataset.

Deleted data Rate
origin Ours B1 B3

acc backdoor acc backdoor acc backdoor acc backdoor
2 78.54 97.14 87.11 1.90 84.61 2.86 87.53 7.62
4 77.57 99.05 86.31 1.43 85.13 3.81 85.64 6.67
6 75.47 98.10 86.28 3.16 84.69 5.38 87.69 9.18
8 78.65 98.28 86.40 2.71 84.97 5.17 88.72 8.37
10 78.52 99.02 86.21 2.73 84.96 4.10 87.71 7.42
12 78.52 98.54 86.31 2.44 84.97 2.60 86.64 7.15

formal, we could write the above problem as computing the

maximum value of (rr · c1 − al · c2), where rr is the reduced

number of training rounds, al is the accuracy loss, c1 is the

benefit of one reduced training round, and c2 is the cost of

one percent of accuracy loss. rr and al are corresponding to

the chosen of the number of data shards while c1 and c2 are

set based on the user preference.

To investigate the second question, we configured deletion

rates at 2%, 6%, and 10% and observed the variations in

model accuracy before and after data deletion across different

numbers of data shards. The experimental results are depicted

in Fig.7a, Fig.7b, and Fig.7c, with the red dashed line at 3
indicating the moment of the data deletion operation. From

Fig.7a, it is clear that when the deletion rate is 2%, the model

utilizing data sharding attains higher accuracy after the initial

round of training following data deletion, compared to the

model without data sharding (i.e., the number of shards is 1).

Furthermore, it rapidly approaches the convergence accuracy

value before data deletion. This occurs because, in scenarios

with a low deletion rate, the deleted data only resides within

one of the data shards, thus gaining an advantage over the

model without data sharding at the beginning of training.
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TABLE VI: Accuracy rate and success rate of backdoor attack of models on the CIFAR-100 dataset.

Deleted data Rate
origin Ours B1 B3

acc backdoor acc backdoor acc backdoor acc backdoor
2 57.83 100.00 64.29 0 59.22 0 65.22 0.00
4 55.14 89.47 65.22 0 55.67 0 62.24 5.26
6 51.04 96.67 65.31 0 57.84 0 65.24 6.67
8 53.96 97.62 64.39 0 56.91 0 63.08 2.38
10 50.96 96.30 65.08 0 55.67 0 65.00 1.85
12 51.26 96.61 66.44 0 55.71 0 67.18 3.39

TABLE VII: Evaluation based on JSD, L2, and T-test on the

MNIST dataset.

Deleted data Rate
B3 Ours

JSD L2 T-test JSD L2 T-test
2 0.69 0.49 0.95 0.56 0.14 0.29
4 0.69 0.27 0.67 0.69 0.15 0.45
6 0.69 0.25 0.74 0.63 0.06 0.33
8 0.63 0.27 0.85 0.63 0.07 0.43
10 0.69 0.06 0.31 0.63 0.07 0.35
12 0.69 0.06 0.28 0.54 0.07 0.35

TABLE VIII: Evaluation based on JSD, L2, and T-test on the

FMNIST dataset.

Deleted data Rate
B3 Ours

JSD L2 T-test JSD L2 T-test
2 0.63 0.25 0.92 0.63 0.33 0.82
4 0.69 0.27 0.81 0.69 0.32 0.59
6 0.69 0.3 0.71 0.69 0.31 0.67
8 0.69 0.18 0.82 0.69 0.21 0.64
10 0.69 0.29 0.69 0.69 0.22 0.53
12 0.69 0.22 0.69 0.69 0.16 0.58

TABLE IX: Evaluation based on JSD, L2, and T-test on the

CIFAR-10 dataset.

Deleted data Rate
B3 Ours

JSD L2 T-test JSD L2 T-test
2 0.70 0.35 0.82 0.70 0.34 0.71
4 0.63 0.36 0.85 0.63 0.37 0.73
6 0.63 0.36 0.75 0.63 0.38 0.67
8 0.59 0.23 0.81 0.58 0.26 0.74
10 0.67 0.37 0.79 0.66 0.33 0.63
12 0.63 0.22 0.73 0.63 0.17 0.68

Fig. 6: Accuracy rate of models trained on the MNIST dataset

with various numbers of shards.

At a 6% deletion rate, illustrated in Fig.7b, the number of

data shards containing deleted data increases. Consequently,

models with fewer data shards experience a decrease in

accuracy. At a 10% deletion rate, as depicted in Fig.7c, all

models utilizing data sharding witness a decline in accuracy.

The accuracy with three shards is similar to that with one shard

because all shards necessitate retraining when data deletion

occurs. However, when the number of shards is 6 and 9, the

accuracy remains very high, indicating a trade-off between the

number of shards and efficacy. Based on our empirical results,

we recommend using a moderate number of shards that allows

for efficient retraining without compromising the model’s

generalization ability. Specifically, we found that using 6 to 9

shards provided a good balance, as it maintained high accuracy

while enabling the model to adapt quickly to data deletions.

Our findings indicate that although the initial advantage in

convergence speed is not maintained throughout the entire

training process, the data sharding approach shows its re-

silience against dataset change. Specifically, after experiencing

the change in the dataset, the data sharding model can recover

faster than a non-sharded model.

We also evaluate the robustness of the proposed model

aggregation approach. For benchmarking against the state-of-

the-art, we compare our approach with FedAvg [2]. In this

evaluation, we aim to answer the following two questions:

1) Does our proposed federated model aggregation ap-

proach exhibit comparable effectiveness to FedAvg

when the client’s local data is independently and iden-

tically distributed?

2) Does our proposed federated model aggregation ap-

proach surpass FedAvg in preserving the performance

capability of the model when the client’s local data is

highly heterogeneous?

To explore the answers, we set the total number of clients

to 5, 15, and 25, and randomly assign the data from MNIST

dataset to all users equally.

As shown in Fig.9, the accuracy obtained by our aggre-

gation method and FedAvg aggregation method exhibit virtu-

ally identical variations under the condition of uniform data

distribution. This indicates comparable applicability for both

methods when confronted with uniformly distributed data.

We define heterogeneity as the diversity in datasets across

different users. To construct a heterogeneous dataset, data is

randomly assigned to each user. To quantitatively evaluate the

level of heterogeneity, we calculate the variance of dataset

sizes among users and analyze the range of maximum and
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TABLE X: Ablation Study of the Importance of Different Components of the Loss Function

Epoch Metrics Hard loss only w/o Distillation loss w/o Confussion loss Total loss

10
acc 80.73 80.57 78.91 83.75

backdoor 5.08 2.93 6.45 3.71

20
acc 84.63 84.19 84.25 85.84

backdoor 5.08 4.88 7.03 5.08

30
acc 87.03 85.40 86.80 88.22

backdoor 1.95 2.60 3.13 1.10

40
acc 86.61 86.63 87.71 88.56

backdoor 5.08 2.93 2.73 2.44

(a) (b) (c)

Fig. 7: Model Accuracy on MNIST Dataset with Different Data Shards Numbers at (a) 2%, (b) 6%, and (c) 10% Deletion

Rates.

(a) (b) (c)

Fig. 8: Accuracy Comparison of FedAvg and Ours on MNIST with Uneven Local Data Distribution for (a) 5, (b) 15, and (c)

25 Clients.

TABLE XI: Compatibility Study of Different Loss Functions.

Epoch Metrics Total loss α Total loss β Total loss γ

10
acc 83.75 83.37 83.71

backdoor 3.71 3.81 2.86

20
acc 85.84 88.03 84.63

backdoor 5.08 1.9 1.95

30
acc 88.22 87.54 87.71

backdoor 1.10 1.9 2.86

40
acc 88.56 88.49 87.92

backdoor 2.44 0.95 2.71

minimum accuracy attained by independently training models

on local datasets for all users. These metrics are presented in

Table XII.

Before performing model aggregation, we assess the ac-

TABLE XII: Representation of Data Heterogeneity.

Clients Numbers Variance Min acc Max acc

5 2.00×106 9.3 75.6
15 1.87×107 10.1 73.3
25 5.20×107 9.8 73.4

curacy of local models on the test set and compute the

accuracy of the global model. The resulting accuracy is plotted

with error bars representing precision statistics for all users.

This facilitates a comparison of the aggregation capabilities

between FedAvg and our proposed method. Figures 8a, 8b,

and 8c show wide-ranging error bars of FedAvg at the initial

stage due to the heterogeneity of local data among users. This

heterogeneity leads to significant variations in the accuracy
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Fig. 9: Accuracy Rate of FedAvg and Ours trained on the

MNIST dataset with various numbers of clients. The local

datasets for all users are independently and identically dis-

tributed.

of local models during the initial training phase. However,

our proposed federated model aggregation method effectively

addresses the challenge of data heterogeneity in the initial

training phase. We assign higher weights to local models

demonstrating superior performance on the test set during the

aggregation process. This strategic approach allows the global

model to retain the parameter distribution of high-performing

models, thereby enhancing overall performance and retraining

efficiency.

V. DISCUSSION

In this section, we discuss the challenges and our future

research directions of federated unlearning.

The primary challenge lies in striking a balance between

the efficiency and validity of federated unlearning. This pro-

cess aims to expunge specific client data from the global

model without compromising model performance. Success-

fully addressing this challenge demands innovative strategies

to streamline the unlearning process while preserving user

privacy and maintaining model accuracy. Another challenge

is to adapt to a diverse array of heterogeneous clients. In the

dynamic landscape of federated unlearning, where clients may

join or leave, and data distributions can vary, the federated

unlearning scheme must exhibit both flexibility and resilience.

As part of our future research direction, we aim to enhance

the accuracy rate of the current data sharding model. Addi-

tionally, we plan to explore strategies to effectively address the

dynamism and heterogeneity inherent in client environments.

VI. CONCLUSION

In this paper, we introduce a new paradigm of designing

machine unlearning algorithms, named Goldfish. Moreover,

we instantiate each module of Goldfish to achieve better

efficiency and validity by adopting knowledge distillation

technique in basic model, introducing a novel loss function,

proposing an optimization module, and illustrating an exten-

sion implementation. Furthermore, we conduct comprehensive

experiments to validate the effectiveness of approaches.
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