
ZipChannel: Cache Side-Channel Vulnerabilities in
Compression Algorithms

Marina Minkin
University of Michigan

Baris Kasikci
University of Washington

Abstract—While cache side-channel attacks have been known
for over a decade, attacks and defenses have been mostly limited
to cryptographic algorithms. In this work, we analyze the security
of compression algorithms and their susceptibility to cache side-
channels. We design TaintChannel, a tool that automatically
detects cache side-channel vulnerabilities and apply the tool to
compression software to conduct a study of vulnerabilities in
popular compression algorithms—LZ77, LZ78, BWT—and their
mainstream implementations. We discover that the implementa-
tion of all of these algorithms leak some or all of their input
data via cache side-channels. This is concerning, as compression
algorithms are widely used in software that operates on sensitive
data (e.g., HTTPS).

We demonstrate the practicality of these vulnerabilities via
two end-to-end attacks on Bzip2. These attacks work in two
different threat models and use different attack techniques. Our
first attack targets compression within an SGX enclave using
the Prime+Probe cache attack technique and extracts the entire
input while it is being compressed with an accuracy greater
than 99%. Because existing cache attack techniques fall short
in targeting applications with larger memory footprint such as
compression software, we develop new attack techniques for
larger buffers. Our second attack works in the threat model
when one application attacks a different application. It allows
the attacker to identify which file is being compressed out of
multiple options.

I. INTRODUCTION

Side-channel attacks extract secrets by analyzing the side

effects of application execution rather than on their nominal

output. This type of attack has been proven to be devastating

for cryptographic algorithms that were not designed with side-

channels in mind, with prior work having successfully leaked

secret encryption keys from secure implementations [1, 2].

Encryption is not the only important target for side-channel

attacks, as it is common practice in many applications, such as

HTTPS, password-protected zip, and PDF files, to compress

sensitive data before encrypting it. For example, at the time

of writing 88% of all websites compress their content [3]

and 81.4% encrypt it [4]. In such applications, protecting

encryption from side-channel leakage is not sufficient if the

compression that occurs shortly before encryption leaks infor-

mation about the plaintext.

Previous side-channel attacks on compression only target

implementations based on the LZ77 [5] algorithm and assume

that the attacker can trigger compression multiple times with

partially controlled input. CRIME and BREACH [6] measure

the compressed data size to leak secret HTTP cookies, and

Schwarzl et al. [7] measure the execution time of various

compression utilities to leak parts of their input. Since prior

work measures the overall execution of compression software

rather than taking advantage of more granular cache side

channels, they have to resort to controlling the input to

leak data. We show that using cache side channels provides

additional information that lifts this restriction.

Cache side-channel attacks use a variety of techniques to

extract information about the application’s usage of the cache,

with the most common ones being Prime+Probe [1] and

Flush+Reload [2]. Although these techniques allow attackers

to manipulate the cache’s state and measure the timing of

cache accesses to leak secrets, they were not designed to

attack applications with a large memory footprint, such as

compression software, where multiple memory accesses map

to the same cache set. In this paper, we are the first to develop

techniques to perform fine-grained cache attacks (i.e., those

that monitor individual cache lines) on applications whose

memory footprint exceeds the cache’s size.

Although numerous tools detect cache side-channel vulnera-

bilities in software, they have some limitations. Some existing

techniques [8, 9, 10] rely on exhaustive path exploration (e.g.,

via symbolic execution). Alas, these techniques scale poorly

and are limited to leaking secrets from applications with

simple control flow, such as cryptographic implementations.

Other techniques [11, 12, 13, 14, 15, 16] analyze the execution

traces of applications to correlate cache accesses with program

inputs to discover potential cache side-channel vulnerabilities.

However, such techniques cannot compute the precise relation

between inputs and secret-dependent memory accesses, which

is crucial to mount reliable side-channel attacks.

To that end, in this paper, we follow a two-pronged strategy

to (1) automatically detect cache side-channel vulnerabilities

in compression software and (2) demonstrate the viability of

attacking such software via end-to-end attacks.

TaintChannel. We first present TaintChannel, a lightweight

taint-tracking-based tool to automatically detect cache side-

channel leakage. Unlike symbolic execution-based tools [8, 9,

10] that face scalability issues due to path explosion, Taint-

Channel analyzes a concrete execution path to detect cache

side-channels, making it applicable to complex systems like

compression software. Unlike trace-based tools [11, 12, 13, 14,

15, 16], TaintChannel computes the exact function that relates

inputs to the memory addresses accessed during compression,

which is required in cache side-channel attacks that analyze

cache traces at a fine granularity.

223

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00033

Using TaintChannel, we perform an in-depth study of all

the major compression algorithms and their signature imple-

mentations. Our analysis reveals side-channel vulnerabilities

that can leak information about the data that these algorithms

process during compression. More specifically, we studied a

common implementation of each of the major algorithms and

discovered leakage gadgets in all of them: LZ77 [5] used in

Gzip [17], LZ78 [18] used in NCompress [19], and BWT [20]

used in Bzip2 [21].

End-to-end attacks on Bzip2. Based on the leakage

gadgets we found, we present ZipChannel, a new class of

compression cache side-channel attacks that we demonstrate

with two end-to-end attacks on Bzip2: Our first ZipChannel

attack uses a version of Prime+Probe cache attack tech-

nique [1] that we enhance with a novel application of Intel

CAT and a novel page selection technique in order to handle

the large footprint of the histogram that Bzip2 constructs.

The attack exploits a data flow gadget to leak a buffer with

random data while an Intel SGX enclave compresses it. In

our evaluation, ZipChannel achieves over 99% accuracy when

leaking randomly-generated data. Our second attack uses the

Flush+Reload attack technique with a control flow gadget to

fingerprint different files while Bzip2 compresses them.

Improving cache side-channel techniques. We find that

current Prime+Probe techniques do not perform well for our

first attack. The main obstacle we face with Prime+Probe is

that compression algorithms tend to have a significantly larger

memory footprint, causing existing approaches to fall short

because the victim application accesses multiple addresses that

map to the same cache sets. We note that Shusterman et al.

[22] even suggest introducing additional memory accesses to

mitigate their cache attack.

Furthermore, unlike attacks that target cryptographic keys,

(e.g., RSA keys), which leverage the redundancy in those

algorithms to only extract a part of the key and reconstruct the

rest based on the mathematical properties of the key, we can

not rely on such techniques to recover arbitrary compressed

data and require a more reliable channel.

To overcome these challenges and achieve a more reliable

channel, ZipChannel leverages the Intel Cache Allocation
Technology (CAT) to improve our cache side-channel attack’s

accuracy (for the first time to our knowledge). Additionally,

ZipChannel introduces a novel frame selection technique that

allows the attacker to select optimal frames for the attack.

The vulnerabilities we present in this work are particularly

concerning due to the widespread nature of compression

algorithms: security vulnerabilities in compression can have

far-reaching consequences. Past attacks on compression algo-

rithms have shown that an attacker can steal authentication

cookies from an HTTPS session, leak sensitive content, or

execute arbitrary code [6, 23]. Despite being known for over

a decade, disabling compression to mitigate these attacks is

the only known complete defense [6].

Overall, we make the following contributions.

1) We develop TaintChannel, a tool that helps developers

detect cache-side channel vulnerabilities in binaries.

2) We perform a study to demonstrate that all major com-

pression algorithms have gadgets performing memory

accesses that depend on the entire compressed file.

3) We demonstrate two end-to-end attacks against Bzip2.

4) We substantially improve cache attack techniques on Intel

SGX and achieve higher accuracy than prior work:

a) ZipChannel is the first attack to extract a fine-grained

cache access pattern from a buffer larger than a page

using cache-side channels.

b) ZipChannel is the first attack to utilize Intel CAT as

an offensive technique.

c) We develop a frame selection technique that improves

attack accuracy.

d) We implement a single-stepping mechanism from user

space, making the attack easier to mount.

The rest of the paper is organized as follows. Section II

provides background. Section III introduces TaintChannel, our

automated tool to find cache side-channel leakages. Section IV

surveys popular compression algorithms and the vulnerabilities

found by TaintChannel, Section V is an end-to-end attack on

Bzip2 compression within SGX, Section VI is our end-to-

end attack on fingerprinting files compressed with Bzip2, Sec-

tion VII is related work. In Section VIII we discuss potential

mitigations against our attack. We conclude in Section IX.

Open Source. Artifacts for this paper can be found here

https://github.com/efeslab/ZipChannel.

Responsible disclosure. Following the responsible disclo-

sure guidelines, we disclosed this work to Intel.

II. BACKGROUND

In this section we provide background on compression

software and cache side-channel attacks.

A. Compression Software

Compression algorithms are prevalent, as they reduce the

data size, allowing for more data to be stored or transferred for

the same capacity and bandwidth, respectively. All the general-

purpose compression software that we could find employs one

of three fundamental algorithms: LZ77 [5], LZ78 [18], and

Burrows-Wheeler Transform (BWT) [20]. LZ77, also known

as LZ1 and sliding window compression, replaces repeating

values with a reference to a previous occurrence of the same

value. The DEFLATE compression format, used by Gzip [17],

Zlib [24], Zip [25], and PNG [26] (e.g. used in eponymous

utilities) and the Brotli format [27], the successor of Gzip

for network traffic compression, both use the LZ77 algorithm.

At the time of this writing, 87% of the total Internet traffic

is compressed using Gzip, Brotli, or DEFLATE [3]. LZ78,

known as LZ2 and used by the Linux utility compress [28],

stores input strings in a dictionary that maps them into codes
and outputs a stream of codes. While it compresses faster than

most compression utilities, due to originally being protected by

a patent [29], it is not as commonly used as the other utilities.

BWT, used in Bzip2 [21], rearranges the input into sequences

with more repetitions to make compression efficient.

224

B. Cache Side-Channel attacks

CPU caches act as a buffer between the main memory

and the processor to improve the memory access latency by

storing frequently accessed data for quick access. To improve

their utilization, caches are usually shared among different

applications. As a result, the time it takes for an application

to access its own memory may be affected by the memory

access pattern of other applications.

Cache side-channel attacks use the variability in memory

access latency to leak secrets across the application boundary.

Specifically, an attacker application can measure how long it

takes to access its own memory to leak secrets. Some of the

most famous cache side-channel attacks are Prime+Probe [1]

and Flush+Reload [2].

Prime+Probe. This cache attack consists of three steps:

1) The attacker application reads their own data to populate the

cache. 2) the victim application executes, and as a side-effect,

might evict the attacker’s data from the cache. 3) the attacker

measures how long it takes to access their own data. At the

end of the attack, the attacker knows if the victim accessed

addresses evicting the attacker’s data, and can use this infor-

mation to infer secrets from the victim.

Flush+Reload. To mount the attack, the attacker uses the

CPU flush instruction to evict a cache line that is shared

between the attacker and the victim. Next, the attacker waits

for the victim application to execute. If the victim accesses

the memory location backing the evicted cache line, the CPU

fetches it into the cache. For the final step of this attack, the

attacker accesses the cache line and measures the access la-

tency; should it be short, then this indicates that the victim has

accessed the monitor address. With this information, attackers

can leak sensitive data from their victims’ applications.

III. A TOOL TO DETECT SIDE-CHANNEL LEAKAGE

A. Design of TaintChannel

In this section, we present TaintChannel, a novel tool for

detecting cache side-channel vulnerabilities. We named our

tool this way because it relies on taint tracking of the input

and displays the results in a human-readable way to detect

cache side-channels. In a nutshell, taint tracking [30, 31] marks

some input data as “tainted” and traces its flow through a

program. In our case, this “taint” originates from the input file

to the program. TaintChannel then monitors the movement of

the tainted data, remembering the movement history for each

input byte. Finally, TaintChannel then reports on the potential

vulnerabilities it discovers.

Because TaintChannel analyzes a concrete execution path, it

scales to applications, such as compression, that are more com-

plex than symbolic execution can handle [8, 9, 10]. Addition-

ally, TaintChannel outputs the exact computation that converts

the input into a dereferenced pointer, which is impossible with

fuzzing-based tools [11, 12, 13, 14, 15, 16]. Although some

existing tools implement taint tracking functionality, such as

CacheD [8] to narrow the scope of symbolic execution analysis

and CaSym [9] to represent array data, TaintChannel is the first

tool for discovering side channel vulnerabilities where taint

tracking is the core technique and not just an optimization.

A common pitfall with taint tracking is that it is prone

to over-estimating the taint. To mitigate this, while still

discovering data-dependent memory accesses, TaintChannel

propagates taint for direct data manipulation, e.g., propagates

taint affected by instructions and arithmetic operations (such

as x = y + z) but not indirect data manipulations, i.e.,

taint propagated via control flow divergence. For example, for

the code snippet if(x<5) cnt++, taint from x would not

propagate into cnt. We show that this form of taint tacking

is sufficient for TaintChannel to discover the gadget in the

seminal attack on AES [1] and to be the first to discover

specific cache side-channel leakage gadgets in compression

software (rather than looking at the entire compression time [6]

or compression ratio [7] while controlling parts of the in-

put [6, 7]).

TaintChannel fulfills three main objectives to find vulnera-

bilities in compression software: (1) scalability for applications

with large memory footprints and unbound loops (2) emitting

the computation that converts secret inputs to memory access

patterns. (3) the user should not have to instrument, modify,

or recompile the source code. Thus, TaintChannel records the

propagation of all input bits through the execution, to detect

memory dereferences where the addresses depend on the input.

Scalability of the analysis. Symbolic execution-based

tools [8, 9, 10] do not scale well, because instead of executing

an application along a single path, these tools explore all possi-

ble execution paths, making the exploration time exponential

in the size of the application. Although symbolic execution

could theoretically provide the most comprehensive capability

for detecting cache side-channels, exploring all possible exe-

cution paths does not scale to complex applications in practice.

This is why symbolic execution-based tools usually sacrifice

the coverage of symbolic execution to achieve reasonable

performance. E.g., Daniel et al. [10] verifies applications that

were designed to be constant time and CacheD [8] only

performs symbolic execution along an execution trace. As we

analyze compression software with TaintChannel, we see that

most of vulnerabilities are in data-dependent array accesses.

In these cases, symbolic execution is not helpful, because

symbolic execution duplicates the state and address space for

each possible array index value, exhausting system resources.

Automatically determining the relation between the
secret input and the accessed addresses. In applications that

are vulnerable to cache side-channels, the victim performs

a memory access whose address depends on a secret input

unknown to the attacker. The attacker, in turn, observes the

accessed address to infer the secret. While knowing that such

gadget exists indicates that an application is vulnerable, it is

not sufficient for mounting an attack. It is also important to

understand how exactly to compute the relevant dereferenced

pointer given a secret input, because without this information,

an attacker would not know how to interpret the pointer they

leaked. Unfortunately, trace-based tools that run the applica-

tion with different inputs and look for statistical correlation

225

between inputs and cache trace [11, 12, 13, 14, 15, 16]

inherently cannot determine the exact relation between the

input and the pointer. In contrast, TaintChannel outputs all

instructions accessing the secret. Therefore, users can directly

see how the accessed address was computed based on the input

(i.e. the secret the attacker is trying to infer).

User interface. The user has to provide a command line to

invoke the application to test, and does not need the source

code. If debug information is available, TaintChannel displays

it. TaintChannel creates a unique visualization for each leakage

gadget with information it leaks as illustrated in Fig. 2, making

it easy to identify how much information a gadget might leak.

B. Implementation

We implement TaintChannel as a DynamoRIO [32] tool in

1630 lines of code. DynamoRIO is an instrumentation frame-

work that is portable and works on different architectures, i.e.,

IA-32, AMD64, ARM, and on different operating systems,

i.e., Windows, Linux, and has experimental MacOS support.

Although we only test TaintChannel on Intel CPUs in a Linux

environment, we choose DynamoRIO over Intel Pin [33] due

to its portability. In TaintChannel’s code we use DynamoRIO

abstractions avoid hard-coding Intel instructions, which should

reduce the effort in porting TaintChannel to other platforms.

TaintChannel assigns a sequential index for each input byte,

i.e., the first byte read with the system call read would be

#1, the second would be #2 etc. At the end of the analysis,

TaintChannel outputs the propagation of the taint per input

byte that results in input-dependent dereferenced memory

address. The output includes a report of the taint propagation

from each input byte, starting when the value is first read,

across all operations that directly use the value, e.g., copying

and arithmetic operations. For each instruction that propagates

taint, TaintChannel outputs its opcode, address, mnemonic,

relevant operand values, and whether they are tainted. For

the instruction that performs the final taint-dependent pointer

dereference, TaintChannel additionally outputs ASCII art that

illustrates which operand bits are tainted with what tag. Fig. 2

contains the entry of the taint-dependent memory dereference

TaintChannel discovered in Zlib. It shows that the instruction

writes 2 bytes from the register ax into the address pointed by

rdx. Below that, we can also see in Fig. 2 the taint breakdown

in rdx: bits 1-8 are tainted with data from input byte 5752,

bits 6-12 with byte 5751 and bits 11-15 with byte 5750.

Taint propagation. For each instruction that the application

executes, TaintChannel maintains the state of the taint per

register and memory location, as well as a per-taint-tag history.

To implement the taint propagation, TaintChannel groups in-

structions based on the type of their operands, e.g., operations

with a memory source operand and a register destination

operand, instructions with an immediate as a source operand

and register as destination, etc. For instructions that include

multiple sources, such as xor and or, TaintChannel simply

merges the taint of the sources into the destination operand,

as each bit can hold an arbitrary number of taint tags. For

example if the register rax holds taint from input byte 5

mark input as
tainted

Propogate taint
from source to
destination

Clear taint from
destination

Is source of instruction
tainted?

Is next instruction
a call to read()?

yes yes

no

no

Fig. 1: A simplified decision tree that TaintChannel traverses

for each executed instruction. TaintChannel first initiates the

input data as tainted, and then propagates taint between source

and destination operands of different instructions, using the

DynamoRIO abstraction to identify the source and destination

of each instruction.

in bits 0 and 1 and the register rbx holds taint from the

input byte 6 in the bits 1 and 2, xor rax, rbx would have

taint from input byte 5 in bit 0, taint from both input bytes

5 and 6 in bit 1 and taint from input byte 6 in bit 2. Some

instructions e.g., and with a mask, or arithmetic shift, require

special handling. If the application performs an and between a

tainted value and an untainted value, the result of the operation

would include the original tainted tags only at the locations

where the untainted values were 1. An arithmetic shift shifts

the taint the same number of bits as the instruction itself.

Discovering data-flow vulnerabilities. TaintChannel dis-

covered cache side-channel vulnerabilities in implementations

of all major compression algorithms, as we analyze in Sec-

tion IV. we also verified TaintChannel that TaintChannel finds

the vulnerability Osvik et al. [1] in the software implementa-

tion of AES in OpenSSL.

Discovering control-flow vulnerabilities. TaintChannel ef-

fectively reduces a complex application to a small trace

of input-dependent instructions. These traces simplify the

comparison of the application execution across different in-

puts. This is how we discover control flow vulnerabilities.

This is significant because the most reliable cache side-

channel technique for the application-application threat model,

Flush+Reload [2], is particularly effective in spying on code

executed by shared libraries. We describe the vulnerability that

we discovered in Bzip2 in Section VI.

While analyzing compression software, we discovered

control-flow vulnerability in memcpy(). The vulnerability is

that there are multiple control flow paths within memcpy()
based on the size of the data being copied - if the size of the

data is an exact multiple of the size of an AVX register, it uses

these registers to implement the copy. Otherwise, memcpy()
copies as much as it can using the AVX registers, and the rest

byte by byte. This can reveal information about the exact size

of data that is being copied. Especially if combined with the

estimate of the total runtime of the function.

226

IV. COMPRESSION ALGORITHMS AND THEIR

VULNERABILITY TO CACHE SIDE-CHANNELS

In this section, we study the three most popular compression

algorithms as outlined in Section II. We first provide back-

ground on how an attacker uses the cache as a side channel to

leak secrets (Section IV-A). Using TaintChannel’s output, we

then show that all three major algorithms that underlie the most

widely used compression utilities have cache side-channel

leakage gadgets that can leak their entire input (Sections IV-B,

IV-C, and IV-D). For two of these implementations, we show

how an attacker can extract their entire input.

A. The Cache Channel and the Threat Model

Cache side-channels attacks can observe the cache line

a victim accesses but not the offset within the cache line.

Because the cache consists of cache lines of 64 bytes they

cannot observe the 6 least significant bits of each address (6

least significant address bits are used to represent the offset

within the cache line because log2 64 = 6). Therefore, when

we describe the attack gadgets in the rest of this section, for

each gadget we present we assume that when the attacker

generates a trace of the memory accesses that are performed

by the gadget in the victim application, the 6 least significant

bits are not visible to the attacker(even though they appear in

TaintChannel’s output). In the rest of the section, we assume

a threat model where an attacker knows the base addresses of

all the arrays the victim accesses. When we describe our end-

to-end attack in Section V, we show that these cache channel

properties and the threat model are realistic.

B. LZ77

The LZ77 [5] algorithm, eliminates string repetitions in

the plaintext by replacing them with backward references

that include the distance to the previous occurrence of the

same string, and the length of the repeated string. LZ77 is

widespread among different compression formats, including

Brotli [27] and DEFLATE [34]. While DEFLATE is a stan-

dalone format, it gains its popularity from being a part of other

formats, e.g., Gzip [17], Zlib [24], Zip [25] and PNG [26].

DEFLATE and Gzip, among other use cases, are supported

by all major browsers for encoding HTTP traffic [35].

We study DEFLATE’s specification [34] as well as its

implementation in the Zlib [24] library that is likely the most

a used implementation of DEFLATE, Zlib and Gzip.

Implementation of the Zlib compressor. The role of an

LZ77-based compressor is to find repetitions in the input

stream and replace them with backward references to a previ-

ous occurrence. The references are represented by the distance

between the previous occurrence of a string and the current

one, and additionally by the length of the repeated string. The

Zlib compressor, as it implements the DEFLATE protocol,

has the freedom to choose which repetitions to eliminate,

and which previous instance to point to. For this reason,

implementers of the Zlib compressor had to find a balance

between compression ratio, performance and memory footprint

1 # d e f i n e UPDATE HASH(ins h , c) \
2 i n s h = ((ins h<< 5) ˆ c) & 0 x 7 f f f)
3
4 # d e f i n e INSERT STRING (i , window , head) \
5 UPDATE HASH(ins h , window [i + 2]) , \
6 . . . \
7 / / head i s o f t y p e u n s i g n e d s h o r t * \
8 head [i n s h] = (Pos) (i))

Listing 1: Simplified version of the LZ77 compression

gadget. Code adapted from from gadget on line 182 in

deflate.c in Zlib 1.2.13

(e.g., finding a longer previous match might give a better

compression, but take more resources to find).

Besides performance trade-offs, compressor implementa-

tions, including Zlib, avoid violating patents. Conveniently, the

specification of DEFLATE [34] provides a recommendation

for a compressor implementation that is not restricted by

patents: “The compressor uses a chained hash table to find

duplicated strings, using a hash function that operates on 3-

byte sequences.” We observe that a typical implementation that

follows this recommendation would use an underlying array

to implement the hash table and use hashes of triplets of bytes

as array indices. Accessing the array using these hashes can

leak information about the hashes via the cache side-channel,

and consequently leak information about the input that was

used to compute the hashes. To quantify this input leakage, we

examine the Zlib compressor that follows the guideline [34].

Listing 1 is a simplified version of the code that populates

the hash table head, where the array window contains the

input to be compressed. The main code calls the macro

INSERT_STRING with with sequential values of i, starting

from 0 and the macro inserts strings of length 3 starting from

the index i in window to the hash table head. Before a call

to INSERT_STRING, ins_h is initialized to (window[i]
<< 5) ˆ window[i+1]. When INSERT_STRING is in-

voked, it starts its operation by calling UPDATE_HASH
(Line 1) on Line 5. Resulting in the variable ins_h always

contains information about the three latest input bytes in a

particular structure. Hence, when head[ins_h] is accessed

it causes an input-dependent address dereference.

We use TaintChannel’s output (Fig. 2) to illustrate the break-

down of the input bits within the pointer to head[ins_h],

the address being dereferenced in Line 8 from Listing 1, and

stored in the register rdx. Due to pointer arithmetics, the

value inside rdx is head + ins_h<<1. Fig. 2 illustrates

that the taint in rdx in bits 1-8, 6-13 and 11-15 contains

taint originating from 3 consecutive input bytes. By inspecting

TaintChannel’s output that is not included in Fig. 2 we can

further see the computation that includes the xor of the 3 latest

input bytes left-shifted by 1, 6 and 11 bits, respectively (we

elaborate on this process in Section IV-C). In terms of the

source code, every time UPDATE_HASH is called, it starts its

operation by left-shifting the previous value of ins_h by 5

bits. Then UPDATE_HASH xor’s ins_h with the new byte c
and masks ins_h with 0x7fff to leave the 15 bits that are

227

Taint-dependent memory access
0x00007f43da2ff954 /path/to/libz.so.1.2.11!deflate_slow+468
 0x00007f43da2ff954 66 89 02 data16 mov %ax -> (%rdx)[2byte]
rdx = 10 b7 43 d6 43 7f 00 00 [C C] (tainted)

5750: | x| x| x| x| x| | | | | | | | | | | |
5751: | | | x| x| x| x| x| x| x| x| | | | | | |
5752: | | | | | | | | x| x| x| x| x| x| x| x| |
 |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|

Fig. 2: A snippet of the output of TaintChannel running on Zlib

showing the mov instruction that corresponds to the gadget in

Listing 1. The instruction copies data from the register ax
to the address in the tainted register rdx. The snippet shows

how rdx is tainted. For example, bits 6-13 are tainted with

information from input byte 5751. (TaintChannel also outputs

instruction address, file, function, offset within the function.)

depicted in Fig. 2. Finally, on Line 8, the code accesses the

array head at the index ins_h. Finally, because the type of

head is short unsigned int (2 bytes), therefore, the

compiler replaces the accesses to head[ins_h] on Line 8

with a dereference to the address head + ins_h<<1.

Recall that in our threat model, the attacker can observe all

memory accesses modulo cache offset. For simplicity, assume

that the array head is cache aligned. To extract information

from the cache channel, at iteration i, an attacker subtracts the

known address of head from the address they observe (head
+ ins_h *2). The attacker then divides the subtracted value

by 2 to undo the pointer arithmetic that multiplies ins_h by

2 during array dereference, and gets a value that contains all

the bits with indices greater than 5 from Fig. 2 because, as

we discuss in Section IV-A, the cache channel does not leak

the 6 least significant bits of addresses in a memory trace.

The attacker directly obtains the 2 middle bits that are not

xor’ed with other values from window[i+1], therefore they

can recover 25% of the input plaintext data. For each input

byte, the attacker also obtains the value of the 3 least sig-

nificant bits xor’ed most significant bits of previous byte and

xor of 3 most significant bits from the next byte. Additional

knowledge about the plaintext can help the attacker recover

further information. For example, in a file that composed of

lower-case ASCII characters, all bytes would be in the range

0x61-0x7a meaning that the 3 most significant bits would

always be 011, allowing leakage of the entire content of the

file with minor losses due to cache misalignment, which we

overcome with a detailed example for Bzip2 in Section IV-D.

C. LZ78

LZ78 [18] forms the foundation for the popular compression

utility Ncompress [19], which all major browsers support for

HTTP encoding [35] and which comes with major operating

systems, such as MacOS and variants of UNIX (invoked

using the command compress). LZ78 is a dictionary-based
compression algorithm, where the compressor outputs a stream

of codes. During compression, the compressor maintains a

dictionary that maps codes (represented as integers) to strings
of one or more characters from the uncompressed input. The

compressor constructs the dictionary based on the currently

and previously processed uncompressed input characters. The

dictionary in LZ78 is designed such that that the decompressor

can reconstruct it based on the previously decompressed data.

(Which is helpful for data recovery in our attack.)

Ncompress is based on LZW [29], and not on a pure

LZ78 implementation, which is not used in popularly available

tools. The main modification that LZW introduces to LZ78

is the addition of pre-initialized dictionary entries. Rather

than adding all characters and strings to the dictionary as the

decompressor reads the input, the dictionary is pre-initialized

with all possible characters. Specifically, in the Ncompress im-

plementation, the dictionary is initialized to contain a mapping

that maps all codes 0–256 to themselves. The values 0–255

represent the same value, and 256 represents EOF.

Fig. 3 contains output from TaintChannel operating on

Ncompress and has information about the taint propagation

of an input byte with a value of 0x20. The value is used to

compute the address of a dereferenced pointer. In (1) in Fig. 3

this value is read into a memory address ending with b49. It

is then copied to several registers: from memory to eax, from

al (an alias for eax) to bl, and from rax to rsi. In step (3),

the value is shifted left by 9 bits using the shl instruction. In

step (3) It is xor’ed with the value in the register rdx in step

(3), which we will show to contain a dictionary entry when we

analyze the source code. Next, the value that is now shifted

and xor’ed with a dictionary is copied into the register r9.

Finally, the computed value is used as an index to an array

whose base is in the register rbp, after being multiplied by 8

as indicated by the addressing mode in (4).

Listing 2, includes the code snippet from Ncompress that

exhibits an input-dependent access pattern and corresponds

with step (4) in Fig. 3 Analyzing the source code allows us

to validate the output from TaintChannel and to quantify the

leakage. The code snippet in Listing 2 is invoked repeatedly

for every input in the order they appear. The newly read input

byte is stored in the variable c. In each invocation of the

snippet, the variable ent contains a dictionary entry that is

computed based on the previous plaintext bytes in a deter-

ministic method. Listing 2 does not show this computation.

Instead, Listing 2 only shows the usage of the value of ent.

The code in Listing 2 performs the first step of a lookup

into the hash table, htab, which contains information about

whether a given entry appears in the dictionary. In particular,

this lookup checks whether a certain value of fc is already

in the hash table htab at the index hp. The value of hp is

computed on Line 9 of Listing 2, and is a simple hash function

computation that uses the input byte c and ent as inputs. hp
is used for indexing the hash table htab (Line 11). Thus,

causing a dereference to a pointer that depends on hp.

To correlate with Fig. 3, the value of hp is stored in rax
from step 4, and the base of the array htab is stored in

rbp. Looking at the addressing mode of the instruction, the

accessed address is computed as rbp + rax*8. The reason

for multiplying the array index by 8 is evident in the source

code in Listing 2, where the type of htab is an array of

count_int that is defined as unsigned long - an 8-byte

228

integer. Finally, bits 9-16 in Fig. 3 are marked as tainted with

data from input byte 1001, which matches to the variable hp
containing data from input byte c shifted left by 9 bits.

Because in the implementation we study, the address htab
is always cache line aligned, the attacker can subtract the

address of htab from the leaked address to retrieve the value

of hp. Initially, the attacker can shift the result to the right

by 3 to obtain the value of hp because ent is variable length

and grows from 9 to 16 bits as the dictionary grows. At this

point, the attacker has all bits except bits 0-2 from Fig. 3.

As ent grows beyond 9 bits, the attacker has to get more

sophisticated and use the key observation that because the

compression algorithm is designed to be reversible, knowledge

of all previous input bytes allows the attacker to compute

all dictionary entries in the same manner as the compressor

does. In particular, the attacker can xor the variable ent they

compute with the observed value of hp to gain each input byte

c. However, there is a special case for the first input byte; in

the first invocation of the snippet of Listing 2, c is already

initialized with the second input byte while ent contains the

first input byte (not shown in the snippet). This allows the

attacker to leak 5 bits out of the first input byte (since the last

3 bits are lost as mentioned above). With the assumption the

attacker knows these 3 bits from the first byte, they can fully

recover the input. If we relax this assumption, the attacker can

check all 23 = 8 possible triplets of bits and choose the most

feasible input out of these options. We verified that this attack

is possible with a Python script that simulates the attack, given

a trace of memory accesses performed by Line 11.

D. BWT

Burrows–Wheeler transform (BWT) [20] batches together

similar input bytes. BWT is useful for compression because it

is easier to compress a string with multiple repeating charac-

ters [20]. BWT is reversible, which allows decompression.

BWT forms the basis of the compression utility Bzip2 [21]

that we target because of its popularity as it comes pre-

installed with most Linux-based distributions (e.g., Android

and Ubuntu) and MacOS. In this section, we analyze its

implementation and how it can lead to a side-channel vul-

nerability. Bzip2 is built as a stack of multiple algorithms,

1 long hp ;
2 c h a r t y p e c ;
3 u n s i g n e d s h o r t e n t ;
4 long f c ;
5 t y p e d e f l on g i n t c o u n t i n t ;
6 c o u n t i n t h t a b [HSIZE] ;
7 . . .
8
9 hp = ((((l ong) c) << 9) ˆ (l ong) e n t) ;

10 / / f c = (e n t << 8) | c
11 i f ((h t a b [hp]) == f c) go to hfound ;

Listing 2: A simplified code gadget from (N)compress 5.1

to leak data during compression. Adapted from the file

compress.c:1176

taint source
data (1 bytes from 0x00007fb86b3fcb49): 20 []
==============================
0x00007fb86b2b4c7a /path/to/ncompress/compress!compress+826
 0x00007fb86b2b4c7a 43 0f b6 44 25 00 movzx 0x00(%r13,%r12)[1byte] -> %eax
data (1 bytes from 0x00007fb86b3fcb49): 20 []
==============================
0x00007fb86b2b4c83 /path/to/ncompress/compress!compress+835
 0x00007fb86b2b4c83 88 c3 mov %al -> %bl
rax = 20 00 00 00 00 00 00 00 [] (tainted)
==============================
0x00007fb86b2b4c85 /path/to/ncompress/compress!compress+837
 0x00007fb86b2b4c85 48 89 c6 mov %rax -> %rsi
rax = 20 00 00 00 00 00 00 00 [] (tainted)
==============================
0x00007fb86b2b4c88 /path/to/ncompress/compress!compress+840
 0x00007fb86b2b4c88 48 c1 e0 09 shl $0x0000000000000009 %rax -> %rax
rax = 20 00 00 00 00 00 00 00 [] (tainted)
==============================
0x00007fb86b2b4c8c /path/to/ncompress/compress!compress+844
 0x00007fb86b2b4c8c 48 31 d0 xor %rdx %rax -> %rax
rax = 00 40 00 00 00 00 00 00 [@] (tainted)
rdx = 0a 01 00 00 00 00 00 00 []
==============================
0x00007fb86b2b4c8f /path/to/ncompress/compress!compress+847
 0x00007fb86b2b4c8f 49 89 d9 mov %rbx -> %r9
rbx = 20 00 0a 01 00 00 00 00 [] (tainted)
==============================
Taint-dependent memory access
0x00007fb86b2b4c92 /path/to/ncompress/compress!compress+850
 0x00007fb86b2b4c92 48 8b 4c c5 00 mov 0x00(%rbp,%rax,8)[8byte] -> %rcx
rax = 0a 41 00 00 00 00 00 00 [A] (tainted)

 1001: | x| x| x| x| x| x| x| x| | | | | | | | | |
 |16|15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|

rbp = c0 a1 2f 6b b8 7f 00 00 [/k]

1

2

3

4

Fig. 3: The propagation of the taint for an input byte is shown

in Listing 2. The different stages in the propagation of the

taint are divided using rows filled with the symbol =. The

snippet follows the value that is read from the input (1), copied

across different registers until it is shifted by 9 bits (2), xor’ed

with a dictionary value (3), and eventually used for a memory

dereference (4). In the last instruction, we can see that the bits

9-16 in the array index are tainted and that the array index is

multiplied by 8 before the dereference.

each of which is reversible, which allows decompression of

a compressed file. The first step in the Bzip2 compression

(and the last in decompression) is run-length-encoding (RLE),

which compresses sequences of the same byte in the plaintext

input. Because RLE does not affect most inputs, and because

we attack BWT (the step that follows RLE), in the rest of this

paper, we refer to the data compressed with RLE as the input.

BWT starts its operation by sorting all cyclical shifts of

the input string in lexicographic order. For example, the first

step of applying BWT on the string BANANA, sorts the strings

BANANA, ABANAN, ... ANANAB. To implement that, Bzip2

starts its execution with the creation of a histogram that counts

the numbers of all pairs of bytes that appear in the input.

Listing 3 is a simplified version of the histogram construction

code. The histogram—referred to as a frequency table in the

code—is represented by the array ftab. This array has 65537

entries, where indices represent all the values that the byte-

pairs can take (28+8). Each element of ftab represents the

number of times this pair of bytes appears in the input.

Bzip2 divides the input into blocks for processing. The

variable nblock (Line 7), contains the size of the block
being compressed. Elements of the quadrant array are set to

zero in (Line 8), as a cache-related performance optimization

as per the comments in the original source code. As we

demonstrate later, these writes to the quadrant array make

229

1 UInt32 * f t a b = m a l l o c (65537 * s i z e o f (UInt32)) ;
2
3 / * −− s e t up t h e 2− b y t e f r e q u e n c y t a b l e −− * /
4 f o r (i = 65536 ; i >= 0 ; i − −) f t a b [i] = 0 ;
5
6 j = b l o c k [0] << 8 ;
7 f o r (i = n b l o c k − 1 ; i >= 0 ; i − −) {
8 q u a d r a n t [i] = 0 ;
9 j = (j >> 8) | (((UInt16) b l o c k [i]) << 8) ;

10 f t a b [j] + + ;
11 }

Listing 3: construction for frequency tabels in bzip2 source

code. A simplified version of the gadget in the function

mainSort in the file blocksort.c, line 769. bzip2-1.0.6

our attack more reliable (Section V). Therefore, even though

other parts of the Bzip2 code also perform memory accesses

dependent on the entire input, the accesses to the quadrant
array make this particular snippet a more effective gadget.

To construct the frequency table, the code in Listing 3

iterates over block bytes in reverse order using the iterator i.

j is initialized in Line 6 to the value of block[0] shifted 8

bits to the left and is used as index into ftab. Within the for
loop starting at Line 7, j holds the value of a concatenated

pair of input bytes at a time. Looking at the first iteration, in

Line 9, j is shifted 8 bits to the right to contain the value of

block[0], which is concatenated with the value of the last

byte in the block, which resides in the higher 8 bits of j. On

Line 10, ftab[j] is incremented to keep track of the count

of j, which represents the current pair of bytes.

In each iteration, for a given i, the value of j on

Line 10 equals (block[i + 1] << 8) | block[i]
(where the first iteration wraps around the beginning of the

array). To illustrate, the bytes of j as a 2-element byte array

in the fist few assignments to j (Line 9) are the pairs of

block entries at the indices: nblock-1 and 0, nblock-2
and nblock-1, nblock-3 and nblock-2, etc.

Fig. 4, contains 2 entries from TaintChannel’s output that

correspond to Line 10. j from Listing 3 is in the register rcx:

in the first entry in Fig. 4 the bottom 8 bits are tainted with

data from input byte 1689 and the upper 8 bits are tainted

with data from input byte 1688. The second entry contains

data from bytes 1690 and 1689 respectively.

Because ftab’s type is Int32* (Line 1), access-

ing ftab[j] is translated into accessing the mem-

ory at the address ftab + j*4, equivalent to ftab +
block[i]<<10 + block[i+1]<<2. In most cases, an

attacker who knows all but 6 least significant bits of the

address can unambiguously compute block[i]. However,

because the array ftab is not aligned to the size of a

cache line, there can be an off-by-one ambiguity in the value

of block[i]. One example where an attacker would see

unresolved ambiguity that emerges from ftab not being

cache aligned is when ftab = 0x7ffff47177b0. and the

attacker observes an access to 0x7ffff472eb80 from the

cache channel on iteration i+1 (6 least significant bits are

zeroed), the attacker would be able to infer the plaintext values

in two ways: either the value of block[i] is between 0x00
and 0x03 and block[i+1] = 0x5d. or block[i] is

between 0xf4 and 0xff and block[i+1] = 0x5c the

attacker can resolve this ambiguity by looking at the values of

because We note that even if there is an off-by-one ambiguity

on iteration i, the attacker can still know if block[i] is

between 0x00 and 0x03 or between 0xf4 and 0xff.

E. Survey Summary

In this section, we have shown how the three major algo-

rithms used for compression—LZ77, LZ78, and BWT—are

vulnerable to cache side channel attacks by identifying and

studying gadgets to mount cache side channel attacks in all

of them. For 2 out of 3 implementations, we find that an

attacker who can observe all memory accesses at a cache line

granularity can extract the entire plaintext. We show an end-

to-end attack on BWT in Section V.

V. ATTACKING BZIP2 WITHIN SGX

In this section, we present an end-to-end attack on Bzip2

compression running inside an SGX enclave. We use the

leakage gadget presented in Section IV-D. This gadget can

theoretically leak the entire input, and we show that we can

extract more than 99% of any randomly-generated input.

Intel Software Guard Extensions (SGX) is a set of instruc-

tions built into certain Intel CPUs that create “enclaves,” pro-

tected regions of memory where code and data are encrypted

while in use. This hardware-based isolation shields sensitive

information from unauthorized access, even from the operating

system or other applications running on the same machine.

In section IV-D, we introduced an attack gadget that exploits

the frequency table ftab accessed on line 10 in Listing 3.

However, existing attack methods are insufficient for this

scenario due to the large size of ftab (64Kb) and the

requirement for cache line granularity in accessing memory.

To overcome these obstacles, we developed a new attack that

combines novel and established techniques.

We implement a state machine to track the execution of

Lines 8 to 10 from Listing 3 as required (these lines appear in

Fig. 5 as well). The rest is organized as follows: Section V-A

describes the technique we use to transition between different

states to effectively single-step the victim. In Sections V-B

Taint-dependent memory access
0x00007ff944c47147 /path/to/bzip2-1.0.6/libbz2.so.1.0.6!mainSort+215
 0x00007ff944c47147 83 04 8e 01 add $0x00000001 (%rsi,%rcx,4)[4byte] -> (%rsi,%rcx,4)[4byte]
rcx = 4c 41 00 00 00 00 00 00 [LA] (tainted)

 1688: | x| x| x| x| x| x| x| x| | | | | | | | |
 1689: | | | | | | | | | x| x| x| x| x| x| x| x|
 |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|

rsi = 10 f0 9b 44 f9 7f 00 00 [D]
==============================
Taint-dependent memory access
0x00007ff944c4712a /path/to/bzip2-1.0.6/libbz2.so.1.0.6!mainSort+186
 0x00007ff944c4712a 83 04 8e 01 add $0x00000001 (%rsi,%rcx,4)[4byte] -> (%rsi,%rcx,4)[4byte]
rcx = 49 4c 00 00 00 00 00 00 [IL] (tainted)

 1689: | x| x| x| x| x| x| x| x| | | | | | | | |
 1690: | | | | | | | | | x| x| x| x| x| x| x| x|
 |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|

rsi = 10 f0 9b 44 f9 7f 00 00 [D]

Fig. 4: Two entries from TaintChannel’s trace for input byte

1689. In the top entry, the byte is in bits 0-7 of the array index.

In the second entry it is in bits 8-15.

230

quadrant --
block rw
ftab rw

Before line 8,
quadrant

Before line 9,
block

Before line 10,
ftab

quadrant rw
block --
ftab rw

quadrant rw
block --
ftab rw quadrant rw

block rw
ftab r-

quadrant rw
block rw
ftab r-

Before line 8,
quadrant

Before line 10,
ftab

replace page and repeat
until found a quiet page

log noisy
cache lines

log measurment

check if
current
page is
quiet

S4

S0

S1 S2 S3

line 8: quadrant[i] = 0;
line 9: j = (j >> 8) | (((UInt16)block[i]) << 8);
line 10: ftab[j]++;

Fig. 5: State machine created by the controlled channel attack in ZipChannel. We include code from Listing 3 as reference.

and V-C we show how to leak the accessed page address

and offset, respectively. Sections V-C1 and V-C2 introduce

our novel improvements to the accuracy, and Section V-D

describes how to aggregate the reading to retrieve the data.

A. Single-Stepping

To improve Prime+Probe precision and separate individual

accesses to ftab, we single-step the enclave’s execution.

Previous methods rely on timer interrupts [36] for that, but

we found these interrupts to be unreliable. Instead, we use

a controlled-channel attack similar to Xu et al. [37]’s work.

Instead of modifying the OS, we use the mprotect system

call, which modifies the access permissions for a memory re-

gion. In our attack, we revoke access to the arrays quadrant,

block, and ftab, one at a time. Since each of the lines 8,

9, and 10 from Listing 3 accesses exactly one of these, we

effectively single-step through the attack gadget.

Fig. 5 illustrates our attack as a state machine, where the

arrows are labeled with the required permissions to go to the

next state. To illustrate a few of the transitions: To enter the

initial state (S0), the attacker revokes access to quadrant
and lets the enclave execute until a page fault occurs. To

transition into S1, the enclave is about to execute Line 9.

At this point, the attacker reverts access to quadrant, and

revokes it from block. To transition from S1 to S2, the code

reverts access to block and revokes write access from ftab.

B. Identifying the Accessed Virtual Page

The transition to S2 provides the attacker with information

about the virtual page the victim accessed in the signal handler.

As Xu et al. [37] discovered, even though SGX masks the page

offset, the OS has architectural access to the address of page

that caused the page fault, albeit without the 12 lower address

bits. Thus the attacker only has to leak the page offset bits

using other, less accurate, techniques.

C. Leaking Page Offset

The victim performs exactly one architectural access to

ftab in each iteration of the loop, in the transition between S3

and S4. To measure the state of the cache, at the end of S3, the

attacker fills a portion of the cache with their own data, allows

the victim to access ftab, and accesses their own data again

while measuring access time. Ideally, the attacker observes

exactly one cache miss that corresponds to the address that the

victim accessed. In practice, there could be false positive and

false negative measurements due to, e.g., other applications or

signal handlers using the same cache. In the remainder of this

section, we show our novel techniques that reduce the number

of wrong readings and improve attack accuracy.

1) Cache Partitioning: Intel CAT allows system adminis-

trators to statically partition the cache ways between different

CPUs to avoid memory contention. To our knowledge, we are

the first to use Intel Cache Allocation Technology (CAT) as

an offensive tool. More specifically, to avoid cache contention

from unrelated applications that can lead to false positives in

the cache timing attack, we isolate the CPU that performs

the attack from the rest of the system. Unlike traditional

cache attacks where the cache replacement policy may pose

a challenge, Intel CAT can effectively reduce the cache to a

single way.

Furthermore, in addition to ways, the cache is also divided

into slices. Prior work [38] reverse engineered the previously

undocumented complex hash function used to map address to

their corresponding slices. Since SGX is limited to at most

128M of physical memory on our platform, we precompute

the slicing function for these addresses instead of reverse

engineering the full function on our platform.

2) Frame Selection Technique: The transition between

states might interfere with our attack as it pollutes the cache

with memory accesses from SGX and the OS. To overcome

this, we develop a framework where the attacker can choose

physical frames that do not use conflicting cache sets.

The attacker repeats S2 until such a frame in an idle cache

set is found, i.e., performing all the state transition logic while

not performing actual access to ftab. If the attacker detects

cache activity on the monitored cache sets, the state transition

caused this activity, rather than accesses to ftab. Therefore,

the attacker remaps the frame until they find one that does not

collide with noise from the system (or until a timeout).

231

Before the victim accesses ftab, the attacker triggers a

transition from S2 to S3 that is more similar to the actual

access, as the attacker no longer modifies page table mappings.

The attacker simply logs any noisy cache lines due to evic-

tions, and will treat them as false positives later on. Finally,

the attacker lets the state machine transition from S3 to S4,

performs the access to ftab, and records the measurements.

D. Algorithmic Computation

Section IV-D describes the exact computation for an at-

tacker to convert addresses into input data. Upon collecting

all the traces, the attacker performs the same computation.

Additionally, as Section IV-D explains, bits from the same

plaintext byte are repeated on consecutive iterations of the

leakage gadget. In case there are multiple value candidates,

the attacker uses this redundancy as a form of error correction.

E. Evaluation

We used an Intel i7-7567U CPU running Ubuntu 20.04

with kernel version 5.4.0 with hyper-threading disabled and all

existing mitigations (e.g., against Foreshadow [39]) enabled.

We leak 10KB of randomly generated data inside SGX. Due to

the lack of redundancy, random data is the hardest data to leak

through a side channel. As such, unlike prior work [40, 41], we

cannot rely on any sort of error correction. The attack always

takes less than 30 seconds to run end-to-end and correctly

leaks over 99% of the data bits. Despite the aforementioned

techniques, the noise results in a ≤1% inaccuracy that cannot

be eliminated (e.g., when we exhaust all free physical pages,

searching for one unaffected by context switches).

VI. FINGERPRINTING ATTACK ON BZIP2

In this section, we describe our second attack in which a

malicious application can identify which file the Bzip2 utility

is compressing. Specifically, the attacker application monitors

the usage of two cache lines that include the entry point of

two functions within the Bzip2 implementation. The reason

that these function leaks information about the input file is an

optimization in Bzip2 where it uses either of these functions

based on the input’s repetitiveness and exact length.

Discovering control flow divergence in Bzip2. When we

experimented with TaintChannel, we noticed that TaintChannel

discovers different leakage gadgets when invoked with dif-

ferent inputs; one in mainSort() (which we describe in

Section IV-D and exploit in Section V), and another in

fallbackSort(). We describe below the relevant parts of

the Bzip2 compressor that lead to control flow divergence.

Bzip2 implementation. Although BWT (basis for Bzip2)

usually achieves better compression than LZ77 and LZ78, it is

typically slower as it sorts all the input string’s cyclical shifts.

The Bzip2 compressor implements multiple performance op-

timizations to achieve reasonable performance, resulting in

different code paths when compressing different files.

Bzip2 splits the input data into blocks and compresses

each block separately. Each block is 10,000 bytes, whereas

the last block is shorter if the file size is not a multiple of

small block?

fallbackSort
yes

mainSort step

rest of compression
stack

too repetitive?
small block?

no

no

yes

finished? yes

no

Fig. 6: Control flow of the sorting component of the Bzip2

compressor per input block.

10,000. For each block Fig. 6 illustrates the control flow of

Bzip2’s sorting. For all 10,000-byte, Bzip2 starts the sorting

with mainSort(), whereas for shorter blocks it uses fall-
backSort(). For strings that Bzip2 classifies as too repeti-

tive, it abandons mainSort() mid-way and continues with

fallbackSort(). In our attack, we use this divergence

to distinguish different input files. Some differences include

the compressor spending more time in fallbackSort in a

more repetitive file or spending different amount of time in

mainSort before retreating to fallbackSort.

Flush+Reload [2] is arguably the most reliable cache side-

channel attack technique for retrieving the control flow within

a shared library (e.g., libbz2) under the threat model in

which the attacker and the victim are different applications on

the same system. In our implementation of the Flush+Reload

attack, the attacker calls a function in the shared library

libbz2 to map it to their address space. The attacker

then starts the active attack: Flushing and reloading the two

monitored addresses (one for each monitored function) until

the attacker application detects a cache hit in one of them.

The attacker then continues flushing and reloading them for

an additional 10,000 iterations, which we empirically found to

cover the execution duration of the victim. The attacker finally

prints out 2 arrays of 10,000 boolean values, where each value

represents either a measured cache hit or a cache miss for each

of the functions mainSort() and fallbackSort(). The

attacker passes these arrays to a classifier.

Trace classification To classify traces, we train a deep
neural network (DNN) with Pytorch [42] and 9,334 traces

that we collect with compressed files for each experiment

chosen at random. As each trace contains 10,000 samples from

2 cache lines (the output from our Flush+Reload program),

the input tensor’s shape to the neural network is 2 × 1, 000
filled with values 0 and 1, where 0 and 1 represents a cache

miss and hit respectively. If the attacker does not detect any

cache activity from the victim after a timeout of 5 seconds,

we encode this with a tensor filled with the value 2. Finally,

we split our data into training, evaluation, and testing sets of

the ratios of 90%, 10%, and 10% respectively. We use these

sets for network training, mid-training evaluation and the final

evaluation respectively, that we present in this paper.

Evaluation. We use the test files that come with the

Brotli [27] compression software, the most comprehensive

collection of compression test files we could find and includes

232

Fig. 7: The accuracy of our classifier on different test files.

21 files. Fig. 7 is the confusion matrix of our trained classifier.

In a confusion matrix, the columns present the files that the

classifier was challenged with, and the rows are the possible

outputs from the classifier. for a perfect classifier, the main

diagonal of the confusion matrix where the file names in the

row and in the columns are identical would only contain 1, and

the rest of the matrix would be 0. We see that our classifier

achieves decent accuracy for most files, and struggles to

distinguish files that immediately go into fallbackSort()
without starting from mainSort(). For example, the file x,

whose content is identical to its name, is classified correctly

20% of the time, where the probability of a random guess to

classify correctly is 4.76%. Overall, we parsed the data, trained

a neural network, evaluated it and generated Fig. 7 using

Pytorch using Google Colab resources in under 5 minutes.

Leaking how repetitive a file is. We conduct an experiment

to show that an attacker can distinguish files in the absence

of other differences between them, such as the location of the

repetition, the number of blocks in a file, or whether there

exists a shorter block at the end of the file. We create a series

of 5 similar files of the same size, 20,000 bytes each. For

generating these files, we use the Python utility lipsum to

output 5 random paragraphs that look similar to English text.

To normalize the lengths of these paragraphs, we truncate each

of them to the first 20 characters. To generate the ith file,

where 1 ≤ i ≤ 5, we output a random selection from i first

paragraphs. Fig. 8 shows the confusion matrix of the same

classifier, this time trained on the traces generated compressing

the 5 file. With the baseline of a random guess that 20%, we

classify 1st file is correctly classified 98% of the time, and the

rest with accuracy between 32% and 52%. Overall, the more

repetitive the file is the more accurate the classification is.

VII. RELATED WORK

A. Tools for Verifying that Code is Constant-Time

Most of the existing tools for detecting cache-side channels

in software are designed to verify that cryptographic code is

constant-time [8, 9, 10, 11, 13, 14, 15, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55], while TaintChannel aims to

detect vulnerabilities in general-purpose code. While some of

the tools also attempt to find the source of the leakage [16, 56],

they do not provide the computations that leads to the leakage,

which is information that most attackers rely on.

1) Symbolic Execution Based Tools: These tools [8, 9, 10,

45, 46, 47, 48, 49, 53] verify that applications are constant-

time by attempting to explore all of their possible execution

paths. Verifying this way that cryptographic libraries are

constant-time is easier compared to general applications for

a few reasons: First, cryptographic libraries, especially ones

that are designed to be constant-time have fewer branching

instructions than general-purpose code, limiting the number

of paths for a symbolic execution engine to explore. Second,

cryptographic code usually only has reads from symbolic array

indices. However, all the gadgets in compression discussed

in Section IV include writes to arrays in symbolic indices,

e.g., for constructing histograms of the input stream. Writes to

symbolic array indices can be extremely inefficient in symbolic

execution engines, for example KLEE [57] forks the memory

state for each possible value in each possible index. In the

case of Bzip2, that would mean 65, 536 forks of the memory

for each pair of input bytes, which is infeasible.

2) Trace Based Tools: Trace based tools operate in two

steps: First, they collect a trace of all cache accesses that an

application performs either by instrumenting the application

[13, 14, 15, 16, 43, 56] to output its memory accesses or

by mounting an end-to-end cache attack [11, 16, 44, 56].

In the second step, these tools process the traces and look

for a correlation between the secret inputs and the traces.

Although these tools aim to detect whether there is a statistical

correlation between a secret input and the trace generated

running the application with that input, they inherently cannot

yield the exact computation that converts the input into a

Fig. 8: The classifier’s accuracy on similar files with different

repetitiveness factor.

233

secret-dependent memory access, knowledge that was used in

the overwhelming majority of existing side-channel attacks

. Interestingly, a recent work, CacheQL [56] whose main

contribution is combining features from a wide array of

existing tools does manual taint tracking.

3) Static Analysis Based Tools: Static analysis tools analyze

the information flows of an application without executing it. To

verify that programs do not have cache side-channel leakage,

static analysis tools rely on specific features of particular

programming languages, which do not include C, the language

of most compression software. Examples of such tools are:

FlowTracker [50] verifies that programs written in the While
programming language are constant-time. FlowTracker also

has a prototype that works on LLVM IR, however, because

LLVM IR has different properties than While this prototype

does not hold the proven security guarantees; Blazer [51] is

a tool that statically verifies that Java ByteCode is constant-

time; Themis [52] verifies Java applications; BPT17 [53]
verifies that code written in the C#Minor programming lan-

guage is constant-time; CT-Wasm [54] defines a subset of

Web assembly that the tool can verify to be constant-time.

virtualCert [55] verifies programs in a subset of the Match

programming language they call MatchIR.

B. Attacks related to compression

Arguably the most famous compression-related attack is the

zip bomb[58, 59]. This type of attack involves the creation

of a compressed file that, when decompressed, expands to

an unmanageable and potentially system-crashing size. Zip

bombs function by exploiting the repetitive patterns and redun-

dancies within compression algorithms, causing an exponential

increase in file size upon decompression. These files, often

masquerading as harmless archives, can overwhelm storage

resources, exhaust system memory, and disrupt normal opera-

tions. Unlike zip bomb, in this paper we explore side-channel

leakage.

The CRIME (Compression Ratio Info-leak Made Easy)

and BREACH (Browser Reconnaissance and Exfiltration via

Adaptive Compression of Hypertext) attacks [6] are security

vulnerabilities that exploit compression algorithms in the

context of web communication. Both attacks rely on the

attacker controlling a portion of the compressed data to leak

unknown data, such as HTTP cookies. CRIME, disclosed in

2012, primarily targets the TLS (Transport Layer Security)

protocol. By observing the compression ratio of encrypted

data, an attacker can infer information about the plaintext,

potentially leading to the disclosure of sensitive information.

On the other hand, BREACH, introduced in 2013, extends

the threat to web applications relying on HTTP compression.

BREACH leverages the compression oracle to infer details

about the content of web responses, posing a significant risk

to the confidentiality of data exchanged between users and web

servers. However, unlike ZipChannel, CRIME and BREACH

assume partial control over the compressed input and the

ability to compress it multiple times.

Schwarzl et al. [7] also assume a partial control over

compressed data by the attacker and measure the execution

time of LZ77-based compression software.

Kelsey [60] explore theoretical side-channel attacks on

compression, observing the difference in size between the

original and compressed data. This differs from our work since

we look at practical implementations and the side-channel,

which might contain more information than the file size.

C. Attacks on SGX

Controlled-channel attacks on SGX [37, 41] were demon-

strated on libjpeg [61] using a simulator. On the contrary, Zip-

Channel works on real hardware. While prior work does not

report leakage accuracy, the papers include visibly distorted

JPEG images leaked through the attack, potentially indicating

a lower accuracy than our SGX attack where we correctly leak

99% of the data.

Cache attacks on SGX. Most cache attacks on SGX have

targeted the L1 cache [41, 62], however, since the Foreshadow

mitigation [39] blocks L1 cache attacks in some CPUs, attacks,

including ours, resort to other levels.

Sieck et al. [40] target the L3 cache. However, they do not

leak the entire key and rely on mathematical properties of

RSA to retrieve the missing bits. While they do not report

raw leakage rate, in related work, Yarom et al. [63] report that

they can reconstruct RSA keys from 60% the key.

VIII. MITIGATIONS

Constant time compression. The deployed mitigation

for cryptographic side-channels is constant-time code. Thus,

constant-time compression implementations may be helpful.

Application-specific constant-time compression. It may

be feasible to secure application-specific compression from

side-channel leakage using additional knowledge about the

format. For example, in the case of HTML, most opening tags

must have a matching closing tag.

IX. CONCLUSION

We presented TaintChannel, a tool to automatically detect

cache side-channel vulnerabilities. We used TaintChannel to

study cache side-channel vulnerabilities in the implementation

of the widely used compression algorithms: LZ77, LZ78,

and BWT. We discovered that all of these algorithms are

vulnerable. Finally, we present two end-to-end attacks on

Bzip2 using the vulnerabilities discovered by TaintChannel-

in the first attack the victim application runs within an SGX

enclave and in the second attack both the attacker and the

victim applications share the same system.

X. ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd,

Herbert Bos, for their insightful suggestions and feedback. The

work was supported by Marina Minkin’s Meta fellowship and

the Assured Micropatching a DARPA program.

234

REFERENCES

[1] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks

and countermeasures: the case of aes,” in Cryptogra-
phers’ track at the RSA conference. Springer, 2006,

pp. 1–20.

[2] Y. Yarom and K. Falkner, “Flush+ reload: A high res-

olution, low noise, l3 cache side-channel attack,” in

23rd {USENIX} Security Symposium ({USENIX} Secu-
rity 14), 2014, pp. 719–732.

[3] W3Techs, “Usage statistics of compression for websites,”

https://w3techs.com/technologies/details/ce-compressi

on, 2022.

[4] ——, “Usage statistics of default protocol https for

websites,” https://w3techs.com/technologies/details/c

e-httpsdefault, 2023.

[5] J. Ziv and A. Lempel, “A universal algorithm for se-

quential data compression,” IEEE Transactions on infor-
mation theory, vol. 23, no. 3, pp. 337–343, 1977.

[6] T. Duong and J. Rizzo, “Breach attack,” http://breachat

tack.com/, (Accessed on 08/06/2021).

[7] M. Schwarzl, P. Borrello, G. Saileshwar, H. Müller,

M. Schwarz, and D. Gruss, “Practical timing side chan-

nel attacks on memory compression,” arXiv preprint
arXiv:2111.08404, 2021.

[8] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu,

“{CacheD}: Identifying {Cache-Based} timing channels

in production software,” in 26th USENIX security sym-
posium (USENIX security 17), 2017, pp. 235–252.

[9] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kan-

demir, “Casym: Cache aware symbolic execution for

side channel detection and mitigation,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019,

pp. 505–521.

[10] L.-A. Daniel, S. Bardin, and T. Rezk, “Binsec/rel: Effi-

cient relational symbolic execution for constant-time at

binary-level,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1021–1038.

[11] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template

attacks: Automating attacks on inclusive {Last-Level}
caches,” in 24th USENIX Security Symposium (USENIX
Security 15), 2015, pp. 897–912.

[12] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Dif-

ferentially analyzing side-channel traces for detecting

ssl/tls vulnerabilities in secure enclaves,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 859–874.

[13] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar,

“Microwalk: A framework for finding side channels in

binaries,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 161–173.

[14] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard,

and G. Sigl, “{DATA}–differential address trace analysis:

Finding address-based {Side-Channels} in binaries,” in

27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 603–620.

[15] S. Weiser, D. Schrammel, L. Bodner, and R. Spre-

itzer, “Big numbers-big troubles: Systematically analyz-

ing nonce leakage in ({EC) DSA} implementations,”

in 29th USENIX Security Symposium (USENIX Security
20), 2020, pp. 1767–1784.

[16] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Automated

side channel analysis of media software with manifold

learning,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug.

2022. [Online]. Available: https://www.usenix.org/confe

rence/usenixsecurity22/presentation/yuan

[17] P. Deutsch et al., “Gzip file format specification version

4.3,” May 1996.

[18] J. Ziv and A. Lempel, “Compression of individual se-

quences via variable-rate coding,” IEEE transactions on
Information Theory, vol. 24, no. 5, pp. 530–536, 1978.

[19] “ncompress: a public domain project,” https://ncompres

s.sourceforge.io/, (Accessed on 10/12/2021).

[20] M. Burrows and D. Wheeler, “A block-sorting lossless

data compression algorithm,” in Digital SRC Research
Report. Citeseer, 1994.

[21] J. Seward, “bzip2 and libbzip2,” avaliable at http://www.
bzip. org, 1996.

[22] A. Shusterman, Z. Avraham, E. Croitoru, Y. Haskal,

L. Kang, D. Levi, Y. Meltser, P. Mittal, Y. Oren, and

Y. Yarom, “Website fingerprinting through the cache

occupancy channel and its real world practicality,” IEEE
Transactions on Dependable and Secure Computing,

vol. 18, no. 5, pp. 2042–2060, 2020.

[23] “Gzip file compression utility buffer overflow used by

many ftp servers allows remote users to execute arbitrary

code on the ftp server - securitytracker,” https://security

tracker.com/id/1002771, (Accessed on 08/06/2021).

[24] P. Deutsch and J.-L. Gailly, “Zlib compressed data format

specification version 3.3,” RFC 1950, Tech. Rep., May

1996.
[25] “https://pkware.cachefly.net/webdocs/casestudies/appnote.txt,”

https://pkware.cachefly.net/webdocs/casestudies/APPNO

TE.TXT, 1989, (Accessed on 08/19/2021).

[26] T. Boutell, “Png (portable network graphics) specification

version 1.0,” RFC 2083, Tech. Rep., Mar. 1997.

[27] J. Alakuijala, A. Farruggia, P. Ferragina, E. Kliuchnikov,

R. Obryk, Z. Szabadka, and L. Vandevenne, “Brotli: A

general-purpose data compressor,” ACM Transactions on
Information Systems (TOIS), vol. 37, no. 1, pp. 1–30,

2018.

[28] D. Berz, M. Engstler, M. Heindl, and F. Waibel, “Com-

parison of lossless data compression methods,” 2015.

[29] T. A. Welch, “A technique for high-performance data

compression,” Computer, vol. 17, no. 06, pp. 8–19, 1984.

[30] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and

M. Rosenblum, “Understanding data lifetime via whole

system simulation,” in USENIX Security Symposium,

2004, pp. 321–336.

[31] J. Newsome and D. X. Song, “Dynamic taint analysis

for automatic detection, analysis, and signaturegeneration

235

of exploits on commodity software.” in NDSS, vol. 5.

Citeseer, 2005, pp. 3–4.

[32] “Dynamorio,” https://dynamorio.org/, (Accessed on

04/26/2022).

[33] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,

“Pin: building customized program analysis tools with

dynamic instrumentation,” Acm sigplan notices, vol. 40,

no. 6, pp. 190–200, 2005.

[34] P. Deutsch, “Deflate compressed data format specifica-

tion version 1.3,” RFC 1951, May 1996.

[35] “Content-encoding - http — mdn,” https://developer.mo

zilla.org/en-US/docs/Web/HTTP/Headers/Content-Enc

oding, (Accessed on 08/19/2021).

[36] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A

practical attack framework for precise enclave execution

control,” in Proceedings of the 2nd Workshop on System
Software for Trusted Execution, 2017, pp. 1–6.

[37] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel

attacks: Deterministic side channels for untrusted operat-

ing systems,” in 2015 IEEE Symposium on Security and
Privacy. IEEE, 2015, pp. 640–656.

[38] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-

level cache side-channel attacks are practical,” in 2015
IEEE symposium on security and privacy. IEEE, 2015,

pp. 605–622.

[39] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,

B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,

Y. Yarom, and R. Strackx, “Foreshadow: Extracting the

keys to the intel {SGX} kingdom with transient out-of-

order execution,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 991–1008.

[40] F. Sieck, S. Berndt, J. Wichelmann, and T. Eisenbarth,

“Util:: Lookup: Exploiting key decoding in cryptographic

libraries,” arXiv preprint arXiv:2108.04600, 2021.

[41] M. Hähnel, W. Cui, and M. Peinado, “High-resolution

side channels for untrusted operating systems,”

in 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17), 2017, pp. 299–312.

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,

J. Bai, and S. Chintala, “Pytorch: An imperative

style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems 32.

Curran Associates, Inc., 2019, pp. 8024–8035. [Online].

Available: http://papers.neurips.cc/paper/9015-pytorch-a

n-imperative-style-high-performance-deep-learning-lib

rary.pdf

[43] S. He, M. Emmi, and G. Ciocarlie, “ct-fuzz: Fuzzing

for timing leaks,” in 2020 IEEE 13th International Con-
ference on Software Testing, Validation and Verification
(ICST). IEEE, 2020, pp. 466–471.

[44] O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is

my code constant time?” in Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2017. IEEE,

2017, pp. 1697–1702.

[45] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke,

“Cacheaudit: A tool for the static analysis of cache side

channels,” ACM Transactions on Information and System
Security (TISSEC), vol. 18, no. 1, pp. 1–32, 2015.

[46] S. Wang, Y. Bao, X. Liu, P. Wang, D. Zhang,

and D. Wu, “Identifying {Cache-Based} side channels

through {Secret-Augmented} abstract interpretation,” in

28th USENIX security symposium (USENIX security 19),
2019, pp. 657–674.

[47] Q. Bao, Z. Wang, X. Li, J. R. Larus, and D. Wu, “Aba-

cus: Precise side-channel analysis,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 797–809.

[48] S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller,

“Quantifying the information leakage in cache attacks via

symbolic execution,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 1, pp. 1–27,

2019.

[49] C. Sung, B. Paulsen, and C. Wang, “Canal: a cache

timing analysis framework via llvm transformation,” in

Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, 2018, pp.

904–907.

[50] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha,

“Sparse representation of implicit flows with applications

to side-channel detection,” in Proceedings of the 25th In-
ternational Conference on Compiler Construction, 2016,

pp. 110–120.

[51] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen,

T. Terauchi, and S. Wei, “Decomposition instead of self-

composition for proving the absence of timing channels,”

ACM SIGPLAN Notices, vol. 52, no. 6, pp. 362–375,

2017.

[52] J. Chen, Y. Feng, and I. Dillig, “Precise detection of

side-channel vulnerabilities using quantitative cartesian

hoare logic,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,

2017, pp. 875–890.

[53] S. Blazy, D. Pichardie, and A. Trieu, “Verifying constant-

time implementations by abstract interpretation (extended

version),” Journal of Computer Security, 2018.

[54] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan,

“Ct-wasm: type-driven secure cryptography for the web

ecosystem,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[55] G. Barthe, G. Betarte, J. Campo, C. Luna, and

D. Pichardie, “System-level non-interference for

constant-time cryptography,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 1267–1279.

[56] Y. Yuan, Z. Liu, and S. Wang, “Cacheql: Quantifying and

localizing cache side-channel vulnerabilities in produc-

tion software,” arXiv preprint arXiv:2209.14952, 2022.

[57] C. Cadar, D. Dunbar, and D. Engler, “Klee: unassisted

236

and automatic generation of high-coverage tests for com-

plex systems programs.” in OSDI, vol. 8, 2008, pp. 209–

224.

[58] “42.zip,” ht tps : / /unforget tab le .dk/, (Accessed on

02/20/2024).

[59] D. Fifield, “A better zip bomb,” in 13th USENIX Work-
shop on Offensive Technologies (WOOT 19), 2019.

[60] J. Kelsey, “Compression and information leakage of

plaintext,” in International Workshop on Fast Software
Encryption. Springer, 2002, pp. 263–276.

[61] W. B. Pennebaker and J. L. Mitchell, JPEG: Still im-
age data compression standard. Springer Science &

Business Media, 1992.

[62] A. Moghimi, G. Irazoqui, and T. Eisenbarth,

“Cachezoom: How sgx amplifies the power of cache

attacks,” in International Conference on Cryptographic
Hardware and Embedded Systems. Springer, 2017, pp.

69–90.

[63] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: a

timing attack on openssl constant-time rsa,” Journal of
Cryptographic Engineering, vol. 7, pp. 99–112, 2017.

237

