
System Call Interposition Without Compromise

Adriaan Jacobs
DistriNet, KU Leuven

Belgium

Merve Gülmez
Ericsson Security Research

Sweden

DistriNet, KU Leuven
Belgium

Alicia Andries
DistriNet, KU Leuven

Belgium

Stijn Volckaert
DistriNet, KU Leuven

Belgium

Alexios Voulimeneas
TU Delft
Netherlands

Abstract—Syscall interposition is crucial for tools that moni-
tor/modify application behavior. Mainstream OSes have, there-
fore, provided syscall interposition APIs for years, but these
often incur prohibitive performance penalties in syscall-intensive
applications. Recent work showed how to reduce this overhead
by rewriting syscall instructions1 to invoke the interposer di-
rectly, avoiding expensive mode/context switches. However, these
methods may not locate/rewrite all relevant instructions, which
is essential for many applications.

Our key insight is to combine the aforementioned techniques to
efficiently intercept all system calls. We present lazypoline, a tool
that uses slow kernel interfaces to exhaustively locate valid syscall
instructions upon their first use, and then lazily rewrites them to
invoke the interposer directly in all subsequent executions. We
extensively evaluate lazypoline on micro- and macrobenchmarks
and show that it is non-intrusive, fully exhaustive, and it achieves
the efficiency of pure rewriting, even for datacenter-scale syscall-
intensive workloads.

I . Introduction

Many user-space programs interact continuously and fre-

quently with the operating system (OS) kernel. They do this,

for instance, to access system resources or to perform actions

that affect other processes. Since system calls (syscalls) are the

primary means for these interactions, one can easily monitor

or manipulate an application’s behavior by installing a syscall

interposer. There are various use cases for such interposers,

including but not limited to (i) tracing and debugging [1–3],

(ii) improving program reliability [4–8] and security [9–27],

(iii) emulating a different OS [28, 29], (iv) adding binary

compatibility support for new OS subsystems [30–35], and (v)

transparently switching to a custom network stack [36, 37].

Most of these use cases require fast and effective syscall inter-

position, but creating a suitable, generic, and widely applicable

mechanism has proven to be a significant challenge in practice.

Naturally, the kernel is able to reliably intercept and redirect all
system calls, but it should not run arbitrary interposer code with

elevated privileges for reasons of reliability and security [38].

Hence, most kernel-based interposition mechanisms switch

back to user mode before invoking the interposer. ptrace’s
system call tracing mode, for instance, transfers control to

a tracer process when a tracee process invokes or returns

from a system call [39]. These control-flow transfers require

expensive context switches. By contrast, Syscall User Dispatch

(SUD) [40] and some seccomp filters (see seccomp-user in

Table I) transfer control to interposer functions that execute

within the context of the tracee process [25]. These mechanisms

still add additional mode switches to every intercepted system

call, decreasing the efficiency of the tracee process [25, 36].

As an alternative, some systems allow programs to install

kernel-space interposers using Berkeley Packet Filters (BPF),

shown as seccomp-bpf in Table I. These interposers maintain

high performance, but, for security reasons, are severely

restricted in which actions they can perform [41]. These

restrictions can hurt the interposers’ expressiveness to the point

where they cannot implement the required functionality of

many interposition use cases [3, 4, 23, 25, 42].

Finally, some more recent approaches side-step the efficiency

and expressiveness issues [6, 36, 43], by rewriting syscall

instructions up front such that the interposer code is directly

invoked without first passing through the kernel at all. While

such methods achieve maximal efficiency without restricting

the interposer’s expressiveness, their reliance on correct static

binary disassembly and rewriting prevents them from exhaus-
tively interposing all syscalls in practice. In addition, they

cannot interpose syscall instructions created after the initial

rewriting phase. These restrictions are incompatible with some

popular ways to develop [44], deploy [45], protect [46], and

obfuscate [47] software, which rely on dynamically loading or

generating new code [48], and modifying or rewriting existing

code [49]. At the same time, a vast number of application

monitoring scenarios require the exhaustive interpositioning

of syscalls to ensure security [23, 24, 42], reliability [1, 3], or

even basic functionality [4, 5, 7, 50].

In short, the current state of the art does not simulta-
neously support expressive, exhaustive, and efficient user-
space syscall interposition. As a result, some projects with

extreme security or performance requirements now modify

OS kernels to provide first-class support for their particular

use case [21, 25, 42], or even develop custom hardware

modifications to achieve their goals [22, 25]. We believe

that such intrusive changes to the Trusted Computing Base

(TCB) should be avoided to maintain a secure, reliable, and

maintainable software stack in the long term.

This paper presents the first non-intrusive approach that en-

ables expressive, exhaustive, and efficient syscall interposition.

Our key idea is to create a hybrid interposition mechanism that

combines the exhaustiveness of kernel interfaces like SUD [40]

1. Throughout this paper, we will use the term “syscall instruction” to refer

to both the x86 SYSCALL and SYSENTER instructions.

183

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00030

Characteristics ptrace seccomp-bpf seccomp-user, SUD Binary Rewriting [6, 36] Our Approach
Expressiveness Full Limited Full Full Full

Exhaustiveness � � � � �
Efficiency Low High Moderate High High

TABLE I: Characteristics of popular non-intrusive syscall interposition solutions. seccomp-bpf refers to seccomp-based syscall

interposition that operates entirely in kernel space using Berkeley Packet Filters (BPF), while seccomp-user defers the handling
of a syscall back to user space, similar to SUD.

with the efficiency of binary rewriting techniques [6, 36] to

invoke a user-space interposer that is maximally expressive.

We implemented our design in an open-source tool called

lazypoline2. We extensively evaluated lazypoline using mi-

crobenchmarks and real-world applications, and show that our

approach enables exhaustive, expressive, and efficient syscall

interposition.

II . Background

Various techniques for syscall interposition exist, such as

binary rewriting [6, 36, 43], kernel interfaces [39–41], and

hardware or kernel modifications [21, 22, 25]. For this work,

we mainly focus on approaches that depend on binary rewriting

and existing kernel interfaces, summarized in Table I, since

they do not require intrusive changes to the Trusted Computing

Base (TCB). We briefly discuss approaches that require kernel

or hardware modifications in Section VII.

A. Linux Kernel Interfaces for Syscall Interposition

Linux has historically offered a number of interfaces to

monitor and control the application’s use of syscalls.

ptrace allows one tracer thread to attach to multiple tracee
threads [39], and synchronously be notified of all the syscalls

they perform. The tracer can inspect and modify the syscall

number, arguments, and return value, as well as any tracee

memory and registers while it is in the syscall stop state.

Although this provides a powerful interface for debugging [1]

and simple tracing [3], ptrace is infamous for the significant

slowdown it typically incurs [25, 42, 51]. Its overhead stems

both from the many additional syscalls required to perform

even basic operations on the tracee, as well as the context

switch necessary to schedule the tracer on every tracee syscall.

seccomp presents a more efficient interface [41], specifically

targeted at sandboxing. Users can supply Berkeley Packet

Filter (BPF) programs that take superficial syscall information

as input, and output an action for the kernel to take, e.g.

permit or reject the syscall. The kernel then directly runs these

BPF programs whenever a syscall is invoked, which yields

highly efficient syscall interposition without any redundant

mode switches (see seccomp-bpf in Table I). However,

BPF has limited expressiveness. For example, it does not

allow simple operations such as dereferencing pointers. This

makes BPF an ill fit in scenarios that require deep inspection

or modification of invoked syscalls, e.g., dynamic software

updating [7] and more thorough sandboxing [23–26]. Despite

tremendous effort to bring more expressive filtering to seccomp,
e.g., using eBPF [52], upstreaming efforts have traditionally

no
yes

selector
== ALLOW?

yes
noallowlisted IP?

Perform syscall
normally

Do not execute
syscall; deliver

SIGSYS

syscall
entry

Fig. 1: The Linux syscall kernel entry path under SUD.

met resistance from Linux kernel developers [53] hesitant to

add complexity, and thus potentially exploitable bugs [54–58],

in what is considered the kernel’s “most important security

isolation boundary” [59]. Newer seccomp actions allow filters

to delegate handling back to user space for increased expres-

siveness [25, 41] (see seccomp-user in Table I), but naturally

involve extra mode switches, hurting performance [60].

Syscall User Dispatch (SUD) [40] is Linux’ most recent

mechanism to intercept syscalls and handle them in user space.

Similar to seccomp-user, the core idea is to generate a signal

(SIGSYS) whenever a syscall is invoked, which allows the

application to implement the interposition via a signal handler.

Users can enable and configure SUD on a per-task basis via

the prctl interface. The interception behavior of SUD is

flexibly controllable through a user-space selector byte, that
applications can set to enable/disable syscall interposing at will.

In addition, SUD never triggers a signal for syscalls invoked

from an application-specified code address range, regardless of

the selector value. The location of the selector byte and

the allowlisted code address range are specified when enabling

SUD through prctl. Figure 1 schematically represents the

updated kernel syscall entry path when SUD is enabled.

While SUD was initially developed as a more elegant alter-

native to seccomp-user in the Wine compatibility layer [28],

it has since found its way into other use cases as well, such as

sandboxing [60]. A typical SUD deployment sets the selector
to ALLOW at the start of the SIGSYS handler, invokes the syscall

interposer function from within the signal handler, and resets the

selector to BLOCK at the end, such that subsequent application
syscalls are also intercepted. To avoid recursively triggering

SUD when exiting the SIGSYS handler and returning to the

application context via rt_sigreturn, the syscall instruction

performing the sigreturn is typically included in the allowlisted

code address range [40].

Despite being one of the most efficient available kernel

interfaces for syscall interposition, recent work has shown that

2. https://github.com/lazypoline/lazypoline

184

SUD still incurs a significant slowdown for syscall-intensive

applications like web servers [36].

B. Binary Rewriting for Syscall Interposition

Various approaches use binary rewriting techniques for

syscall interposition [5–8, 36, 43]. They largely perform the

following steps: (i) disassemble the binary, (ii) identify syscall

instructions, and (iii) replace the identified instructions with an

invocation of the syscall interposer’s code. These approaches

eliminate multiple mode switches between kernel and user

mode, while still running the interposers’ code in user space.

Hence, they increase the efficiency of a syscall interposer while

maintaining full expressiveness and avoiding an increase in the

size of the Trusted Computing Base (TCB).

Despite these advantages, each of the steps involved in

this binary rewriting procedure has historically come with

complications and incompatibilities [34, 43, 61, 62], often

exacerbated on architectures with variable-length instructions

like x86-64 [6, 36]. For instance, syscall instructions may

inadvertently appear as part of other instructions or data,

and they occupy just two bytes on x86-64, while jmp/call
instructions with an arbitrary destination address are much

larger than that.

To overcome this latter issue, previous binary rewriters

make assumptions about the surrounding code [6, 43], and

often rewrite or move a whole sequence of instructions. In

doing so, they rely on current-day code generator properties

or common practices to match their rewriting rules. Instead,

Yasukata et al. recently proposed a new binary rewriting

approach for x86-64 binaries [36], called zpoline, that resolves

the aforementioned rewriting issue. zpoline replaces the two-

byte syscall/sysenter instruction with the two-byte call
rax instruction and instantiates some trampoline code at virtual

address 0. x86-64 applications have to store the syscall number

in rax before invoking a syscall, according to the calling

convention. Hence, these call rax instructions jump to a

virtual address between 0 and the max syscall number N,

typically under 500. zpoline populates this virtual address

range with a nop sled that leads into a jump to user-defined

code, i.e., the syscall interposer’s code.

The major advantage of the zpoline technique is that, by

design, it cannot fail to rewrite a syscall instruction, which
definitively solves the final step in the rewriting procedure.

However, being a static binary rewriter, zpoline still struggles

with the challenges involved in every other step of the rewriting

procedure, just like prior work [6, 43]. For instance, it cannot

discover syscall instructions that are loaded or crafted after its

static disassembly phase, such as those found in dynamically

generated code. Furthermore, zpoline still depends on accurate

static binary disassembly, which is extremely difficult to achieve

in practice without using assumptions and heuristics [6, 63, 64].

I I I . Goal & Des ign

The overarching goal of this work is to provide a multi-

purpose syscall interposition solution that is suitable for various

scenarios with different requirements. We define three important

rewrite
syscall

Application code

syscall

Application code

�call rax interpose
syscall

interpose
syscall

Before Rewriting - Slow Path After Rewriting - Fast Path

Fig. 2: The fast and slow path of our lazy rewriting design.

properties interposers must have to satisfy this goal, and find

that existing interposers never have all three, as shown in

Table I. This section describes these properties in more detail,

presents our novel, hybrid interposition method, and explains

how it overcomes the limitations of previous work by design.
Expressiveness refers to the capabilities of the syscall in-

terposer. For instance, seccomp-based interposition techniques

that completely operate in kernel space (seccomp-bpf) cannot
perform deep argument inspection of a syscall. Consequently,

the expressiveness of such approaches is limited.

Exhaustiveness refers to the ability to interpose all invoked
syscalls. For instance, binary rewriting-based techniques like

zpoline [36] and SaBre [6] cannot interpose syscalls triggered

from syscall instructions located in dynamically loaded or gen-

erated code, e.g., JIT-compiled code, and rely on heuristics and

assumptions to correctly disassemble and identify legitimate

syscall instructions. Consequently, they are not exhaustive.
Efficiency refers to the performance penalty that the syscall

interposer imposes on applications. For instance, when SUD

is enabled the kernel raises a signal for each invoked syscall.

Previous work [36], as well as our own evaluation (see Sec-

tion V), shows that SUD has a significant performance impact

on syscall-intensive workloads due to the overhead of the

required signal handling. Consequently, we classify SUD’s

performance as moderate.

We find that the kernel’s involvement in identifying valid

syscall invocation sites is critical to achieve our goal. An

exhaustive kernel interface like SUD or ptrace can reliably

identify the precise code bytes that represent a real syscall

instruction at the moment it is first executed. This insight

leads us to design a hybrid interposer. We use a kernel

interface such as SUD as a slow-path, catch-all mechanism,

and rewrite any encountered syscall instructions to install a

fast-path mechanism that invokes the user-space interposer

code directly on subsequent executions, bypassing the slow

path. We illustrate our approach in Figure 2.

The slow path has a dual purpose: (i) it rewrites any

previously not encountered syscall, and (ii) it interposes the

first syscall triggered from such instructions. This is shown

as “Before Rewriting” in Figure 2. When the application tries

to use a rewritten syscall instruction, it will actually jump

185

to our syscall interposer. This is shown as “After Rewriting”

in Figure 2. The slow path remains constantly enabled to

discover new syscall invocation sites.

Our approach achieves expressiveness, exhaustiveness, and

efficiency because (i) both the slow and the fast path are

fully expressive, (ii) the slow path is exhaustive and does

not depend on assumptions or heuristics to identify legitimate

syscall instructions, and (iii) our fast path eventually interposes

the vast majority of invoked syscalls. Note that we overcome

the primary limitations of prior rewriting work by design. Our
slow path only ever rewrites real, aligned syscall instructions,

avoiding compatibility issues. At the same time, all syscall
invocations are reliably interposed, regardless of the way in

which they were conceived into the code.

Security Considerations: Similar to other expressive and

efficient syscall interposition mechanisms [6, 36], our approach

does not provide any security guarantees against an attacker

that aims to either execute syscalls without being detected

or access potential sensitive internal state maintained by the

interposer. We discuss techniques to enhance the security of

our approach in Section VI.

IV. Implementation

We implemented our tool named lazypoline in 1.4k LoC

of C/C++ code and 200 lines of x86-64 assembly. In this

section, we outline implementation details of our lazy rewriting

mechanism, as well as various implementation challenges we

had to overcome with both the fast and slow interposition path.

A. The Slow Path

Based on our review of eligible exhaustive interception

mechanisms in Section II-A, we opted to use SUD to implement

the slow path, primarily because of its simple and flexible

control via the selector byte, such that any syscalls made

from within the interposer can efficiently bypass interposition.

a) Motivation of SUD choice: Under ptrace, the tracer

process would still be notified of such syscalls, even if it

chooses not to interpose them, resulting in significant run-

time overhead [23, 42, 51]. seccomp does provide a more

efficient option to permit interposer syscalls, by filtering on

the code address of the syscall invocation, similar to SUD’s

allowlisted code address range [60, 65]. However, this still

requires loading and executing a BPF program for every syscall,

which previous work has shown to be slower than SUD’s

more direct filtering [60]. In addition, seccomp proves to be

much less flexible to work with in practice due to its security

orientation. For instance, filters can never be uninstalled, even

after calling execve to load a new application binary, which

developers may not want to run with any syscall interposition

enabled [66]. These flexibility issues were the main motivation

for the Wine project to develop SUD in the first place [65].

b) Rewriting to the fast path: Once our SUD SIGSYS

handler is invoked, it will rewrite the invoked syscall instruction

to call rax, establishing the fast path for that particular

syscall invocation site. We implement the rewrite by temporarily

changing the page permissions to RW, modifying the code page,

and restoring its original page permissions afterward. We hold

a spinlock throughout this procedure to prevent race conditions

where one thread revokes write permissions while another

thread is busy rewriting.

c) selector-only SUD: Our usage of SUD is somewhat

unconventional compared to the typical deployment described

in Section II-A, because we wanted to avoid pitfalls and

implementation complexities faced by previous work [25, 60].

Concretely, after finishing the syscall instruction rewrite, we

do not directly invoke the syscall interposer function from

inside the SIGSYS handler. Rather, we modify the application’s

provided register context from within the signal handler to

resume execution at the start of our fast-path entry point upon

returning out of the signal handler. We do this by setting

REG_RIP to the address of our generic interposer entry point.

We sigreturn out of the signal handler with the selector byte
still set to ALLOW.

This approach has several advantages compared to the more

traditional design of allowlisting a code address range for the

SIGSYS rt_sigreturn and interposing the syscall from the

SIGSYS handler. First off, we are able to share a single syscall

handling implementation between the fast and slow path, which

reduces development and maintenance effort, especially for

interposing more complex syscalls such as vfork, clone,
and rt_sigreturn itself. Secondly, it allows us to avoid

excluding any code addresses from SUD interception, since our

implementation allows us to sigreturn from the SUD SIGSYS

handler with the selector byte set to ALLOW. This side-

steps the primary reason why SUD is not recommended for

exhaustive syscall interception in a security context [25, 40],

since attackers could simply jump to any allowlisted syscall

instruction. Instead, we reduce the problem of attacker-robust

SUD interception to one of isolating the selector byte from

malicious overwrites, which is a simple intra-process memory

isolation problem resolvable through a breadth of existing

techniques [22–24, 26, 42, 60, 67, 68]. We discuss potential

security extensions of lazypoline in Section VI.

B. The Fast Path

While any of the existing state-of-the art binary rewriters

would suffice to build our fast path [6, 36, 43], we choose

zpoline due to its unique ability to rewrite any syscall

instruction, provided it knows its location (see Section II).

Since we already solve the problem of exhaustively locating all

valid syscall instructions through the slow path, this is the most

desirable quality to base our selection on. We reimplement part

of the open-source zpoline prototype to serve as our fast path

for syscall interposition [69]. We improve the prototype in a

number of ways to handle more complex applications, adhere

more thoroughly to application’s expectations of the syscall

ABI, and be robust enough to avoid imposing restrictions on the

interposer’s code and abilities. We briefly overview the most

important changes here, as well as our handling of application

complexities in general.

a) Multiprocessing and Multithreading: SUD can be

activated on a per-task basis, and it is deactivated on every

186

Listing 1: Simplified disassembly of pthread initialization

routine. r12 contains &__stack_user, a list of threads with

user-provided stacks in use.

mov xmm0, r12 ; load into both
punpcklqdq xmm0, xmm0 ; halves of xmm0
; ... irrelevant
syscall ; set_tid_address
; ... irrelevant
syscall ; set_robust_list
; ... irrelevant
movups [r12], xmm0 ; write ‘&__stack_user ‘

; to ‘prev‘ + ‘next‘

(v)fork, clone, and execve [40]. Hence, we re-enable SUD

in the child to continue intercepting syscalls from any new

invocation sites. We supply a different selector byte per task,
and store it in a %gs-relative memory region, which we map

and initialize whenever a new task is created. This ensures that

even tasks that share their virtual memory subsystem using

CLONE_VM, e.g., threads, can separately enable/disable SUD.

b) ABI Compatibility: On x86-64 Linux, a syscall does

not clobber any registers apart from rax, rcx, and r11.
To maximize compatibility with existing applications, any

interposer must strictly adhere to this ABI. Similar to existing

interposers, we preserve all general purpose registers across

the interposition. However, we found that existing open-

source interposers do not always preserve all extended state

components [6, 36, 42, 43], primarily those that use binary

rewriting. In practice, this precludes the interposer from using

any of the SSE/AVX vector or legacy x87 FPU registers [70],

which modern compilers and libraries, including libc, may do

ad libitum for performance reasons.

To quantify this issue in practice, we wrote an Intel Pin [71]

tool that tracks at run time whether a syscall is executed

between a consecutive write to and read from the same register.

This indicates that the application expected the register contents

to remain preserved across the syscall. Interposers should

respect these expectations. Note that, as the Pin tool performs a

dynamic analysis, it will generally underestimate the frequency

of such occurrences. Still, when we evaluated popular coreutils

(see Section V) using this tool, we found that, apart from

general purpose registers, many programs also expect the kernel

to preserve extended state. Listing 1 presents a representative

example, taken from the pthread initialization routine of glibc

2.31. The compiler uses a single SSE movups to initialize two

adjacent struct fields at once. Because the function contains no

instructions that clobber SSE registers, the compiler populates

the relevant xmm0 register up front. The main body of the

initialization routine performs two syscalls before actually

using xmm0 to initialize the struct fields.

By default, lazypoline preserves all the SSE, AVX, and x87

legacy FPU state, since we aim to provide the interposer with

a fully expressive environment without arbitrary restrictions.

At the same time, we recognize that interposers which operate

at the extreme performance levels we scale to (see Section V)

might well be willing to incorporate some restrictions to maxi-

mize efficiency, or at least tune the interposition to their specific

workload. We support those users through a configurable option

that controls which extended state components are preserved,

if any. By using this option, interposers accept that they must

either not clobber the extended state, or preserve it themselves.

On interposer entry, we use the xsave instruction [70] to save

any extended state components to a dedicated per-task, %gs-
relative memory region, because they can amount to a sizable

chunk of data that could overflow the application stack when

pushed on top of it. The per-task xstate memory region is

nonetheless managed as a stack by lazypoline to support nested

interposer invocations (see Signal Handling). On interposer

exit, we use the xrstor instruction [70] to restore the register

state from the top of our xstate component stack.

lazypoline
wrapping handler

Application
handler

sigreturn
stack

push
current selector

rt_sigreturn
lazypoline

Syscall Interposer

lazypoline
sigreturn trampoline

rt_sigreturn

pop selector

1

Signal
delivery site

2

3

4

Fig. 3: Application signal handler execution and interposition

under lazypoline. The dotted lines represent data flow, the full

lines represent control flow.

c) Signal Handling: Whenever a signal is delivered, we

need to ensure that SUD interception is enabled and the

selector is set to BLOCK. This allows us to catch any new

syscalls invoked by the signal handler. While we trivially

meet these conditions when signals are delivered during

regular application execution, we must specially handle signals

delivered while the application executes our interposer.

Using our exhaustive syscall interposition, we intercept all of

the application’s attempts to register custom signal handlers. We

modify the sigaction structure passed to the kernel to register

our own wrapper handler instead, and keep track of the original

application handlers in a separate table. Figure 3 visualizes

the way lazypoline handles signal delivery from this point on.

Whenever a signal is delivered for which we need to invoke

an application signal handler, our wrapper handler pushes

the current value of the selector to a separate, %gs-relative
sigreturn stack for later use, before setting the selector to
BLOCK and invoking the relevant application handler from

the table (1�). From then on, all syscalls executed from the

application handler are interposed normally by our hybrid slow-

and fast-path mechanisms (2�).
When our interposer intercepts the application signal han-

dler’s rt_sigreturn call, it must restore the selector value
we previously pushed to our %gs-relative sigreturn stack before

handing control back to the original signal delivery context.

187

However, it cannot restore the selector before invoking

the rt_sigreturn itself, since that might recursively trigger

interposer invocations when the selector is restored to BLOCK.
Hence, our interposer calls rt_sigreturn with the selector
set to ALLOW (3�), but forces the application to return to its

regular execution context through an indirection called the

sigreturn trampoline. This trampoline restores the original

selector value and subsequently transfers control to the

original signal delivery context (4�).

V. Evaluation

We evaluate lazypoline on its ability to comprehensively

interposition all system calls in dynamically generated code, as

well as its performance overhead in real-world, syscall-intensive

workloads, e.g., web servers.

A. Exhaustiveness

We test lazypoline on the Tiny C Compiler (tcc) [72],

notable for its just-in-time (JIT) compilation within the C

programming environment. We introduce a singular, non-libc

getpid syscall into a C application, which we then ran under

tcc (tcc -run). We evaluate the exhaustiveness of lazypoline’s

different components by JIT-ing the same program under SUD,

zpoline, and lazypoline. All interposers perform the same

interposition function; they print the current system call with

all its arguments, then execute the syscall without modification

and return the result. As expected, lazypoline and SUD print

the exact same syscalls, in the same order, including our

introduced getpid syscall, satisfying our goal of matching

SUD’s exhaustiveness. zpoline’s trace, on the other hand, does

not include the relevant getpid, since the syscall instruction

from which it was invoked did not exist yet at load time, when

zpoline scanned the tcc binary.
Note that, while our tcc evaluation validates lazypoline’s

ability to interpose dynamically loaded or generated code,

our exhaustiveness advantages over zpoline span beyond this

alone. As mentioned in Section II-B, static binary scanning

may additionally fail to identify syscall instructions that

were not or incorrectly disassembled, e.g., due to coverage

limitations during code discovery and disambiguation [64].

Moreover, our live syscall identification resolves issues with

static misidentification due to faulty disassembly, yielding a

higher-fidelity tool without the risk of accidentally destroying

misidentified code.

B. Performance

We evaluate the performance impact of lazypoline’s ex-

haustive syscall interpositioning by benchmarking different

configurations and scenarios, and we re-evaluate the existing

state of the art for a direct comparison. Throughout the

evaluation, we use a “dummy” interposition function that

simply executes the syscall with its original arguments and

returns the result, to benchmark the overhead of lazypoline’s

interposition alone. As such, the baseline for all experiments is

the native execution of the benchmark without any interposition.

We ran all experiments on a 48-core Intel Xeon Gold 5318S

CPU running at 2.10 GHz and 1.0 TiB of RAM. We disable

hyperthreading on the CPU to reduce measurement noise [73].

The machine runs Ubuntu 22.04.3 LTS with version 5.15.0-83

of the Linux kernel.

First, we evaluate the overhead of lazypoline’s fast path in

a synthetic microbenchmarking setup, since the fast path case

matches zpoline’s pure rewriting configuration. We evaluate

whether the overhead is comparable, and explain the differences

in detail. The later macrobenchmarks will evaluate whether the

added initial execution of the slow path significantly degrades

the aggregated efficiency of our hybrid design in real-world,

datacenter-scale workloads.

a) Microbenchmarks: We measure the CPU cycles re-

quired to interpose a non-existent syscall (number 500) 100M
times. A non-existent syscall gives a lower bound on the round

trip time of entering and exiting the kernel. Hence, the overhead

differences between the different interposers will be maximally

enlarged, which yields the clearest results. Additionally, syscall

number 500 will cause zpoline’s nop sled to be entered at

its very tail, which minimizes zpoline’s overhead, allowing

us to precisely evaluate the additional overhead of our hybrid

design on top of zpoline’s pure rewriting. We measure the

overhead over the baseline 10 times, and report the geomean

and maximal standard deviation in Table II for zpoline, SUD,

and lazypoline with and without preservation of extended state

components (xstate). For the lazypoline measurements, we

manually rewrote the syscall instruction up front, so there is

no initial execution of the slow path. This way, the measured

overhead does not depend on the number of microbenchmark

iterations, but solely represents lazypoline’s steady state. Hence,

lazypoline’s additional slowdown compared to zpoline in

Table II is not due to any live rewriting, but solely due to the

different, slower syscall entry path the kernel takes when any of

its interception interfaces are enabled, even when that specific

syscall is exempt from interception. This overhead stems from

kernel code that checks if syscall interception is enabled, and,

in the case of SUD, also reads out the user-space selector
byte. Table II shows the significance of this overhead, even

on non-interposed, native syscalls. To verify that this is our

only overhead over zpoline, we run the microbenchmark of

lazypoline’s fast path again with SUD disabled. Figure 4

shows that, without the SUD overhead, lazypoline’s fast path

matches zpoline’s performance. Hence, the overhead labeled

as “enabling SUD” precisely represents the added cost of our

exhaustiveness guarantee over prior work.

We separately measure the cost of properly adhering to the

syscall ABI by preserving the extended state components. As

Figure 4 shows, this preservation is responsible for the majority

of lazypoline’s overhead over baseline. To get a better idea of

whether this cost actually benefits compatibility in practice, we

run our Pin tool, which dynamically tracks register preservation

expectations across syscalls, on ten popular coreutils shown

in Table III. Given that most syscalls will be executed by

libc, we run the evaluation on two different libc versions in

two different Linux distributions, targeting two different x86-

64 micro-architectural support levels [74]. The first instance

188

zpoline 1.23x

lazypoline without xstate preservation 1.66x

lazypoline 2.38x

SUD 20.8x

baseline with SUD enabled (selector=ALLOW) 1.42x

TABLE II: Microbenchmarking overhead compared to baseline.

Standard deviation is below 0.19%.

1.00 1.25 1.50 1.75 2.00 2.25 2.50

Overhead Factor Relative to Baseline

zpoline

lazypoline

without SUD

enabling SUD

preserving xstate

Fig. 4: lazypoline’s overhead breakdown.

runs Ubuntu 20.04 with glibc 2.31, targeting x86-64-v1, which

only assumes the availability of the legacy x87 FPU state and

the first eight xmm registers. The second instance runs Intel’s

Clear Linux (version 41040) with glibc 2.39, targeting up to

x86-64-v4, but containing dynamic CPU feature checks that

only enable x86-64-v3 code paths on the AMD Ryzen 7 PRO

5850U (Zen 3) CPU we used for this evaluation. The higher

micro-architectural support level reflects a deployment scenario

where an optimized libc is able to use more of the extended

state components.

Table III summarizes the results. Overall, across both

distributions and all evaluated utilities, we found that the

vast majority of executed syscalls do not suffer from any

compatibility issues when only preserving general purpose

registers. However, many programs contain at least one affected

syscall for which some extended state components should be

preserved. In Ubuntu 20.04, 40% of the evaluated coreutils

are affected by the same pthread initialization issue, which we

described in Listing 1. Similarly, in Clear Linux, all programs

are affected by a singular issue, this time in ptmalloc_init,
when prepopulating an xmm register to intialize some of

the main_arena state. The program expects an intervening

get_random syscall to preserve the relevant xmm register. Our

evaluation indicates that there exists a large potential for

users of lazypoline to avoid needlessly suffering the xstate
preservation cost in a majority of cases. Our Pin tool can help

users make informed implementation choices in that regard.

b) Macrobenchmarks: Following the microbenchmarks,

we want to evaluate whether our exhaustiveness and compat-

ibility improvements have a significant performance impact

on real-world, syscall-intensive workloads. We selected two

representative workloads we set out to scale to: lighttpd [75]

version 1.4.73, and nginx [76] version 1.25.3. We evaluate

the overhead of interposing all syscalls when serving static

content of different sizes, once using only a single worker,

and once in a more realistic, 12-worker configuration. Syscall

interposition traditionally impacts single-threaded performance,

since the additional work involved does not introduce additional

processes or threads, and does not voluntarily yield to the

Coreutils Ubuntu 20.04 Clear Linux
ls � �
pwd � �
chmod � �
mkdir � �
mv � �
cp � �
rm � �
touch � �
cat � �
clear � �

TABLE III: Ten popular coreutils evaluated with our Pin tool on

two different Linux distributions. � indicates that the program

expected an extended state component to be preserved across

at least one syscall. � means we found no such issues.

scheduler. Hence, the overhead will be most clear on the

single-worker deployment, with the multi-worker configuration

included as reference.

We used the wrk client [77] with 36 threads to continu-

ously request the same static resource for 30 seconds via a

keepalive connection, repeating the test 10 times. The client

and server run on a different set of physical cores on the

same machine; 12 for the server and 36 for the client, set via

taskset [78]. They communicate over localhost to create a

maximally intensive workload that is not artificially slowed

down by arbitrary throughput limits. Apart from lazypoline,

we also evaluate zpoline and a typical SUD deployment in the

same scenario. Figure 5 visualizes the results.

For fairness, we first compare zpoline against lazypoline

without xstate preservation. In the very worst case out of all

single-worker benchmarks, our hybrid design still maintains

94.72% of the baseline throughput in nginx, and 94.81% in

lighttpd, which is respectively only 3.60pp and 2.40pp slower

than zpoline when serving the same content, while guaranteeing

exhaustive syscall interposition. The results also show that the

overhead of preserving xstate is at most 4.70pp compared to

not preserving it, in the most syscall-intensive single-worker

configuration. This xstate-preserving deployment provides

us with an equally expressive environment as SUD, at almost

twice the throughput in many cases. As expected, the overhead

difference between all evaluated interposition mechanisms

becomes smaller as the size of the served content increases,

since that diminishes the syscall intensity of the web server.

For instance, from 64 KB on, the overhead difference between

zpoline and lazypoline practically vanishes. Yet, when serving

256 KB files, the slowdown of SUD still remains noticeable in

both nginx and lighttpd. Even at such larger file sizes, where

there is little discernible overhead for the xstate preservation,
the benefit of using lazypoline instead of SUD for interposition

is apparent. Hence, we conclude from our evaluation that

lazypoline achieves its main goal of interposing syscalls with

the exhaustiveness and expressiveness of SUD at an efficiency

level similar to pure binary rewriting.

189

0KB 4KB 16KB 64KB 256KB

File Size

0

2 × 104

4 × 104

6 × 104

8 × 104

T
h
ro

u
g
h
p
u
t

(r
e
q
/s

e
c
)

baseline

zpoline

lazypoline without preserving xstate

lazypoline with preserving xstate

SUD

0KB 4KB 16KB 64KB 256KB

File Size

0

2 × 105

4 × 105

6 × 105

8 × 105

T
h
ro

u
g
h
p
u
t

(r
e
q
/s

e
c
)

baseline

zpoline

lazypoline without preserving xstate

lazypoline with preserving xstate

SUD

(a) nginx with 1 (upper) and 12 (lower) worker processes. Standard
deviation is below 1.82%.

0KB 4KB 16KB 64KB 256KB

File Size

0

2 × 104

4 × 104

6 × 104

8 × 104

1 × 105

1.2 × 105

T
h
ro

u
g
h
p
u
t
(r
e
q
/s
e
c
)

baseline

zpoline

lazypoline without preserving xstate

lazypoline with preserving xstate

SUD

0KB 4KB 16KB 64KB 256KB

File Size

0

2 × 105

4 × 105

6 × 105

8 × 105

1 × 106

1.2 × 106

1.4 × 106

T
h
ro

u
g
h
p
u
t
(r
e
q
/s
e
c
)

baseline

zpoline

lazypoline without preserving xstate

lazypoline with preserving xstate

SUD

(b) lighttpd with 1 (upper) and 12 (lower) worker processes. Standard
deviation is below 2.92%.

Fig. 5: Performance impact of lazypoline and prior art on web servers.

VI. D i scuss ion

In this section, we discuss possible extensions, and opportu-

nities for future research enabled by our contributions.

Multi-OS Support: Our binary rewriting techniques are

applicable to various OSes similar to previous work [36].

However, we are not aware of exhaustive mechanisms with

similar characteristics to SUD on other OSes. Hence, we believe

lazypoline can currently not support other OSes without using

hardware or OS modifications.

Multi-Architecture Support: SUD is a recent kernel

interface and we expect it to be fully supported on multiple ar-

chitectures in the near future. Similar to previous work [36], our

binary rewriting techniques are not applicable to architectures

that have fixed-length instructions and prohibit jumps to un-

aligned virtual addresses. However, we can use different binary

rewriting techniques to overcome such limitations [6, 43].

Security: Our work, like other efficient user-space syscall

interposition approaches [6, 36, 43], does not provide any

security guarantees against attackers who specifically target

the user-space interposer. If we wish to do so, we need to

protect the interposer’s sensitive state, e.g., the SUD selector
byte. Similar to recent work [24–27, 60, 67, 79–91], we can

leverage commodity hardware primitives like MPK [92] to

isolate the interposer’s memory from the attacker-controlled

application code. Interestingly, memory isolation itself typically

requires expressive interposition of some potentially harmful

syscalls [23–25, 51, 67, 93], such as open and mmap. Several
of these are executed very frequently by some applications [51],

and failing to interpose even a single one may allow attackers

to completely bypass the intended memory isolation [23, 25,

51, 93]. Hence, where previous work resorted to kernel and

even hardware changes to meet these demands, our contribution

of simultaneously efficient and exhaustive user-space syscall

interposition may itself be used to secure the interposer.

VII . Related Work

In this section, we discuss some additional syscall interpo-

sition work that does not solely rely on binary rewriting or

standard kernel interfaces (see Section II for those).

Function-Level Interposition: Some work interposes

syscall wrapper functions instead of syscalls directly [2, 79, 94,

95]. The performance impact of these solutions is minimal but

comes at the cost of exhaustiveness, since syscall instructions

can also appear outside of wrapper functions. In addition,

function-level interposers must identify all syscall wrapper

functions and map them to the syscalls they perform, which

does not scale in practice [6, 36].

Intrusive Approaches: A vast amount of existing work

with stringent security and/or performance requirements resorts

to kernel or hardware modifications to achieve the common goal

of efficient, exhaustive, and expressive syscall interposition [21–

26, 42, 50, 66, 96–104]. The major disadvantage of hardware

and kernel changes is, however, that they are error-prone, hard

to maintain, and frequently do not see widespread adoption.

In addition, these approaches increase the Trusted Computing

Base (TCB), which majorly impacts the security guarantees of

not only the interposer, but of the entire system.

VIII . Conclusion

In this work, we present the first non-intrusive syscall interpo-

sition design that is simultaneously exhaustive, expressive, and

efficient. We achieve this through a novel, hybrid design that

combines the efficiency of binary rewriting with the exhaustive

190

syscall interception of standard kernel interfaces. We implement

our design in the lazypoline prototype, and extensively evaluate

its performance impact in both micro- and macrobenchmarks.

The results indicate that lazypoline is a suitable interposition

tool even for workloads with extreme syscall intensity.

We open-source lazypoline to foster future research and al-

low the community to reuse and extend our work. Our prototype

and benchmarks are available at https://github.com/lazypoline/.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Timo

Hönig, for their helpful feedback. This research is partially

funded by the Research Fund KU Leuven, by the Flemish

Research Programme Cybersecurity, and by the EU H2020

MSCA-ITN action 5GhOSTS, grant agreement no. 814035.

References

[1] “gdb,” Last accessed 2023. [Online]. Available:

https://man7.org/linux/man-pages/man1/gdb.1.html

[2] “ltrace,” Last accessed 2023. [Online]. Available:

https://man7.org/linux/man-pages/man1/ltrace.1.html

[3] “strace,” Last accessed 2023. [Online]. Available:

https://man7.org/linux/man-pages/man1/strace.1.html

[4] P. Hosek and C. Cadar, “Safe software updates via

multi-version execution,” in International Conference
on Software Engineering (ICSE), 2013.

[5] L. Pina, D. Grumberg, A. Andronidis, and C. Cadar, “A

dsl approach to reconcile equivalent divergent program

executions,” in USENIX Annual Technical Conference,
2017.

[6] P.-A. Arras, A. Andronidis, L. Pina, K. Mituzas, Q. Shu,

D. Grumberg, and C. Cadar, “Sabre: Load-time selective

binary rewriting,” International Journal on Software
Tools for Technology Transfer, 2022.

[7] L. Pina, A. Andronidis, M. Hicks, and C. Cadar,

“Mvedsua: Higher availability dynamic software updates

via multi-version execution,” in International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019.

[8] P. Hosek and C. Cadar, “Varan the unbelievable: An ef-

ficient n-version execution framework,” in International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[9] D. Bruschi, L. Cavallaro, and A. Lanzi, “Diversified

process replicæ for defeating memory error exploits,” in

IEEE Performance, Computing, and Communications
Conference (IPCCC), 2007.

[10] S. Volckaert, B. De Sutter, T. De Baets, and K. De Boss-

chere, “GHUMVEE: efficient, effective, and flexible

replication,” in International Symposium on Foundations
and Practice of Security (FPS), 2012.

[11] S. Volckaert, B. Coppens, and B. De Sutter, “Cloning

your gadgets: Complete ROP attack immunity with multi-

variant execution,” IEEE Transactions on Dependable
and Secure Computing (TDSC), 2016.

[12] A. Voulimeneas, D. Song, F. Parzefall, Y. Na, P. Larsen,

M. Franz, and S. Volckaert, “Distributed heterogeneous

n-variant execution,” in Conference on Detection of
Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2020.

[13] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra:

intrusion detection using parallel execution and moni-

toring of program variants in user-space,” in European
Conference on Computer Systems (EuroSys), 2009.

[14] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and

V. P. Kemerlis, “sysfilter: Automated system call filtering

for commodity software,” in International Symposium
on Research in Attacks, Intrusions and Defenses (RAID),
2020.

[15] T. Kim and N. Zeldovich, “Practical and effective

sandboxing for non-root users,” in USENIX Annual
Technical Conference, 2013.

[16] C. Canella, M. Werner, D. Gruss, and M. Schwarz, “Au-

tomating seccomp filter generation for linux applications,”

in Cloud Computing Security Workshop (CCSW), 2021.
[17] S. Ghavamnia, T. Palit, and M. Polychronakis, “C2c:

Fine-grained configuration-driven system call filtering,”

in ACM Conference on Computer and Communications
Security (CCS), 2022.

[18] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychron-

akis, “Confine: Automated system call policy generation

for container attack surface reduction,” in International
Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2020.

[19] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis,

“Temporal system call specialization for attack surface

reduction,” in USENIX Security Symposium, 2020.

[20] V. L. Rajagopalan, K. Kleftogiorgos, E. Göktaş, J. Xu,

and G. Portokalidis, “Syspart: Automated temporal

system call filtering for binaries,” in ACM Conference on
Computer and Communications Security (CCS), 2023.

[21] T. Garfinkel, “Traps and pitfalls: Practical problems

in system call interposition based security tools,” in

Symposium on Network and Distributed System Security
(NDSS), 2003.

[22] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl,

M. Schwarz, S. Mangard, and D. Gruss, “Donky:

Domain keys – efficient in-process isolation for risc-

v and x86,” in USENIX Security Symposium, 2020.

[23] A. Voulimeneas, J. Vinck, R. Mechelinck, and S. Vol-

ckaert, “You shall not (by) pass! practical, secure, and

fast pku-based sandboxing,” in European Conference on
Computer Systems (EuroSys), 2022.

[24] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte,

P. Druschel, and D. Garg, “Erim: Secure, efficient in-

process isolation with memory protection keys,” in

USENIX Security Symposium, 2019.

[25] D. Schrammel, S. Weiser, R. Sadek, and S. Mangard,

“Jenny: Securing syscalls for PKU-based memory isola-

tion systems,” in USENIX Security Symposium, 2022.

[26] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L.

191

Scott, K. Shen, and M. Marty, “Hodor: Intra-process

isolation for high-throughput data plane libraries,” in

USENIX Annual Technical Conference, 2019.
[27] M. Gülmez, T. Nyman, C. Baumann, and J. T. Mühlberg,

“Rewind & discard: Improving software resilience using

isolated domains,” in IEEE/IFIP Conference on Depend-
able Systems and Networks (DSN), 2023.

[28] “Wine,” Last accessed 2023. [Online]. Available:

https://www.winehq.org/

[29] J. Dike, “User-mode linux,” in Annual Linux Showcase
& Conference (ALS, 2001.

[30] H.-C. Kuo, D. Williams, R. Koller, and S. Mohan, “A

linux in unikernel clothing,” in European Conference on
Computer Systems (EuroSys), 2020.

[31] R. Nikolaev and G. Back, “Virtuos: An operating system

with kernel virtualization,” in ACM Symposium on
Operating Systems Principles (SOSP), 2013.

[32] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravin-

dran, “A binary-compatible unikernel,” in Conference
on Virtual Execution Environments (VEE), 2019.

[33] A. Raza, T. Unger, M. Boyd, E. B. Munson, P. Sohal,

U. Drepper, R. Jones, D. B. De Oliveira, L. Woodman,

R. Mancuso, J. Appavoo, and O. Krieger, “Unikernel

linux (ukl),” in European Conference on Computer
Systems (EuroSys), 2023.

[34] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. De-

limitrou, R. Van Renesse, and H. Weatherspoon, “X-

containers: Breaking down barriers to improve per-

formance and isolation of cloud-native containers,” in

International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2019.

[35] L. Soares and M. Stumm, “{FlexSC}: Flexible system

call scheduling with {Exception-Less} system calls,” in

USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

[36] K. Yasukata, H. Tazaki, P.-L. Aublin, and K. Ishiguro,

“zpoline: a system call hook mechanism based on binary

rewriting,” in USENIX Annual Technical Conference,
2023.

[37] R. Jansen, J. Newsome, and R. Wails, “Co-opting linux

processes for High-Performance network simulation,” in

2022 USENIX Annual Technical Conference (USENIX
ATC 22). Carlsbad, CA: USENIX Association,

Jul. 2022, pp. 327–350. [Online]. Available: https:

//www.usenix.org/conference/atc22/presentation/jansen

[38] T. Garfinkel, B. Pfaff, M. Rosenblum et al., “Ostia: A
delegating architecture for secure system call interposi-

tion.” in Symposium on Network and Distributed System
Security (NDSS), 2004.

[39] “ptrace,” Last accessed 2023. [Online]. Available:

http://man7.org/linux/man-pages/man2/ptrace.2.html

[40] “Syscall user dispatch,” Last accessed 2023. [Online].

Available: https://www.kernel.org/doc/html/latest/admin-

guide/syscall-user-dispatch.html

[41] “seccomp,” Last accessed 2023. [Online]. Avail-

able: https://man7.org/linux/man-pages/man2/seccomp.2.

html

[42] S. Volckaert, B. Coppens, A. Voulimeneas, A. Homescu,

P. Larsen, B. D. Sutter, and M. Franz, “Secure and

efficient application monitoring and replication,” in

USENIX Annual Technical Conference, 2016.
[43] “syscall_intercept,” Last accessed 2023. [Online].

Available: https://github.com/pmem/syscall_intercept

[44] “V8 javascript engine,” Last accessed 2023. [Online].

Available: https://v8.dev/

[45] “Upx – the ultimate packer for executables,” Last

accessed 2023. [Online]. Available: https://upx.github.io/

[46] J. Zhang, Z. Li, Y. Liu, Z. Sun, and Z. Wang, “Safte: A

self-injection based anti-fuzzing technique,” Computers
and Electrical Engineering, vol. 111, p. 108980, 2023.

[47] “Tigress jitter,” Last accessed 2023. [Online]. Available:

https://tigress.wtf/jitter.html

[48] X. Xu, M. Ghaffarinia, W. Wang, K. W. Hamlen,

and Z. Lin, “CONFIRM: Evaluating compatibility and

relevance of control-flow integrity protections for mod-

ern software,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1805–1821.

[49] “Tigress jitdynamic,” Last accessed 2023. [Online].

Available: https://tigress.wtf/jitDynamic.html

[50] J. Vinck, B. Abrath, B. Coppens, A. Voulimeneas, B. D.

Sutter, and S. Volckaert, “Sharing is caring: Secure and

efficient shared memory support for mvees,” in European
Conference on Computer Systems (EuroSys), 2022.

[51] R. J. Connor, T. McDaniel, J. M. Smith, and

M. Schuchard, “PKU pitfalls: Attacks on pku-based

memory isolation systems,” in USENIX Security Sympo-
sium, 2020.

[52] J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella,

H. Franke, T. Feldman-Fitzthum, D. Skarlatos, D. Gruss,

and T. Xu, “Programmable system call security with

ebpf,” arXiv preprint arXiv:2302.10366, 2023.
[53] J. Corbet, “Reconsidering unprivileged bpf,” https://lwn.

net/Articles/796328/, Aug. 2019.

[54] “CVE-2020-8835.” Available from MITRE, CVE-ID

CVE-2020-8835., 2020. [Online]. Available: https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835

[55] “CVE-2021-31440.” Available from MITRE, CVE-

ID CVE-2021-31440., 2021. [Online]. Avail-

able: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2021-31440

[56] “CVE-2021-33200.” Available from MITRE, CVE-

ID CVE-2021-33200., 2021. [Online]. Avail-

able: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2021-33200

[57] “CVE-2021-3490.” Available from MITRE, CVE-ID

CVE-2021-3490., 2021. [Online]. Available: https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490

[58] “CVE-2021-29154.” Available from MITRE, CVE-

ID CVE-2021-29154., 2021. [Online]. Avail-

able: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2021-29154

192

[59] A. Agache, M. Brooker, A. Iordache, A. Liguori,

R. Neugebauer, P. Piwonka, and D.-M. Popa, “Fire-

cracker: Lightweight virtualization for serverless ap-

plications,” in 17th USENIX symposium on networked
systems design and implementation (NSDI 20), 2020, pp.
419–434.

[60] I. Bumjin, Y. Fangfei, T. Chia-Che, L. Michael, V.-O.

Anjo, and D. Nathan, “The endokernel: Fast, secure, and

programmable subprocess virtualization,” arXiv preprint
arXiv:2108.03705, 2021.

[61] B. Chamith, B. J. Svensson, L. Dalessandro, and R. R.

Newton, “Instruction punning: Lightweight instrumen-

tation for x86-64,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 2017.

[62] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary

rewriting without control flow recovery,” in ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), 2020.

[63] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska,

and H. Bos, “An In-Depth analysis of disassembly

on Full-Scale x86/x64 binaries,” in USENIX Security
Symposium, 2016.

[64] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis,

B. Mao, and J. Xu, “Sok: All you ever wanted to know

about x86/x64 binary disassembly but were afraid to

ask,” in IEEE Symposium on Security and Privacy (S&P),
2021.

[65] G. K. Bertazi, “Efficient syscall emulation

on linux,” Open Source Summit
Europe, Oct. 2020. [Online]. Available:

https://static.sched.com/hosted_files/osseu2020/5c/

Gabriel_Krisman_Bertazi-Efficient-syscall-emulation-

for-gaming-on-linuxsyscall-emulation-dark.pdf

[66] A. J. Gaidis, V. Atlidakis, and V. P. Kemerlis, “SysX-

CHG: Refining Privilege with Adaptive System Call

Filters,” in ACM Conference on Computer and Commu-
nications Security (CCS), 2023.

[67] M. Xie, C. Wu, Y. Zhang, J. Xu, Y. Lai, Y. Kang,

W. Wang, and Z. Wang, “Cetis: Retrofitting intel cet

for generic and efficient intra-process memory isolation,”

in ACM Conference on Computer and Communications
Security (CCS), 2022.

[68] C. Wu, M. Xie, Z. Wang, Y. Zhang, K. Lu, X. Zhang,

Y. Lai, Y. Kang, M. Yang, and T. Li, “Dancing with

wolves: An intra-process isolation technique with privi-

leged hardware,” IEEE Transactions on Dependable and
Secure Computing (TDSC), 2022.

[69] “zpoline,” Last accessed 2023. [Online]. Available:

https://github.com/yasukata/zpoline/tree/master

[70] Intel Inc., Intel 64 and IA-32 Architectures. Software
Developer’s Manual, 2021.

[71] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,

“Pin: building customized program analysis tools with

dynamic instrumentation,” Acm sigplan notices, vol. 40,

no. 6, pp. 190–200, 2005.

[72] “Tiny c compiler,” Last accessed 2024. [Online].

Available: https://bellard.org/tcc/

[73] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmark-

ing: requirements and solutions,” International Journal
on Software Tools for Technology Transfer, vol. 21, pp.
1–29, 2019.

[74] x86-64 psABI Authors, “System v application

binary interface – amd64 architecture processor

supplement (with lp64 and ilp32 programming

models) version 1.0,” 2024. [Online]. Avail-

able: https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/

artifacts/master/raw/x86-64-ABI/abi.pdf?job=build

[75] “lighttpd,” Last accessed 2023. [Online]. Available:

https://www.lighttpd.net/

[76] “nginx,” Last accessed 2023. [Online]. Available:

https://nginx.org/

[77] “wrk,” Last accessed 2023. [Online]. Available:

https://github.com/wg/wrk

[78] “taskset,” Last accessed 2024. [Online]. Available:

https://man7.org/linux/man-pages/man1/taskset.1.html

[79] X. Wang, S. Yeoh, P. Olivier, and B. Ravindran, “Secure

and efficient in-process monitor (and library) protection

with intel mpk,” in European Workshop on System
Security (EuroSec), 2020.

[80] A. Ghosn, M. Kogias, M. Payer, J. R. Larus, and

E. Bugnion, “Enclosure: Language-based restriction

of untrusted libraries,” in International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2021.

[81] T. Park, K. Dhondt, D. Gens, Y. Na, S. Volckaert, and

M. Franz, “Nojitsu: Locking down javascript engines,” in

Symposium on Network and Distributed System Security
(NDSS), 2020.

[82] P. Kirth, M. Dickerson, S. Crane, P. Larsen,

A. Dabrowski, D. Gens, S. Volckaert, and M. Franz,

“Pkru-safe: Automatically locking down the heap be-

tween safe and unsafe languages,” in European Confer-
ence on Computer Systems (EuroSys), 2022.

[83] M. Gülmez, T. Nyman, C. Baumann, and J. T. Mühlberg,

“Friend or foe inside? exploring in-process isolation to

maintain memory safety for unsafe rust,” in 2023 IEEE
Secure Development Conference (SecDev), 2023, pp.
54–66.

[84] X. Jin, X. Xiao, S. Jia, W. Gao, D. Gu, H. Zhang,

S. Ma, Z. Qian, and J. Li, “Annotating, tracking, and

protecting cryptographic secrets with cryptompk,” in

IEEE Symposium on Security and Privacy (S&P), 2022.
[85] I. Bang, M. Kayondo, H. Moon, and Y. Paek, “Trust: A

compilation framework for in-process isolation to protect

safe rust against untrusted code,” in USENIX Security
Symposium, 2023.

[86] W. Blair, W. Robertson, and M. Egele, “Mpkalloc:

Efficient heap meta-data integrity through hardware

memory protection keys,” in Conference on Detection
of Intrusions and Malware & Vulnerability Assessment

193

(DIMVA), 2022.
[87] ——, “Threadlock: Native principal isolation through

memory protection keys,” in ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2023.

[88] E. Rivera, S. Mergendahl, H. Shrobe, H. Okhravi,

and N. Burow, “Keeping safe rust safe with galeed,”

in Annual Computer Security Applications Conference
(ACSAC), 2021.

[89] H. Lei, Z. Zhang, S. Zhang, P. Jiang, Z. Zhong, N. He,

D. Li, Y. Guo, and X. Chen, “Put your memory in

order: Efficient domain-based memory isolation for

wasm applications,” in ACM Conference on Computer
and Communications Security (CCS), 2023.

[90] D. Peng, C. Liu, T. Palit, P. Fonseca, A. Vahldiek-

Oberwagner, and M. Vij, “μswitch: Fast kernel context
isolation with implicit context switches,” in IEEE Sym-
posium on Security and Privacy (S&P), 2023.

[91] L. Maar, M. Schwarzl, F. Rauscher, D. Gruss, and

S. Mangard, “Dope: Domain protection enforcement

with pks,” in Annual Computer Security Applications
Conference (ACSAC), 2023.

[92] J. Corbet, “Intel memory protection keys,” https://lwn.

net/Articles/643797/, 2015.

[93] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson,

S. Crane, C. Liebchen, P. Larsen, L. Davi, M. Franz et al.,
“Address oblivious code reuse: On the effectiveness of

leakage resilient diversity.” in Symposium on Network
and Distributed System Security (NDSS), 2017.

[94] B. Chamith, B. J. Svensson, L. Dalessandro, and R. R.

Newton, “Instruction punning: Lightweight instrumen-

tation for x86-64,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation

[100] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,

J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser,

“N-variant systems: A secretless framework for security

through diversity.” in USENIX Security Symposium,

2006.

(PLDI), 2017.
[95] “LD_PRELOAD,” Last accessed 2023. [Online].

Available: https://man7.org/linux/man-pages/man8/ld.so.

8.html

[96] “falco,” Last accessed 2023. [Online]. Available:

https://falco.org/

[97] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Maz-

ières, and C. Kozyrakis, “Dune: Safe user-level access

to privileged CPU features,” in USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2012.

[98] A. Voulimeneas, D. Song, P. Larsen, M. Franz, and

S. Volckaert, “dmvx: Secure and efficient multi-variant

execution in a distributed setting,” in European Workshop
on System Security (EuroSec), 2021.

[99] M. Xu, K. Lu, T. Kim, and W. Lee, “Bunshin: com-

positing security mechanisms through diversification,”

in USENIX Annual Technical Conference, 2017.
[101] S. Volckaert, B. Coppens, B. De Sutter, K. De Bosschere,

P. Larsen, and M. Franz, “Taming parallelism in a multi-

variant execution environment,” in European Conference
on Computer Systems (EuroSys), 2017.

[102] K. Lu, M. Xu, C. Song, T. Kim, and W. Lee, “Stopping

memory disclosures via diversification and replicated

execution,” IEEE Transactions on Dependable and
Secure Computing (TDSC), 2018.

[103] S. Österlund, K. Koning, P. Olivier, A. Barbalace, H. Bos,

and C. Giuffrida, “kMVX: Detecting kernel information

leaks with multi-variant execution,” in International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[104] X. Wang, S. Yeoh, R. Lyerly, P. Olivier, S.-H. Kim, and

B. Ravindran, “A framework for software diversification

with ISA heterogeneity,” in International Symposium on
Research in Attacks, Intrusions and Defenses (RAID),
2020.

194

