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Abstract—Federated Distillation (FD), a popular variant of
Federated Learning (FL), has attracted researchers’ attention
due to its ability to support heterogeneous model training. Gen-
erally, FD allows clients to upload logits associated with public
datasets for knowledge transfer, yet logits may pose privacy risks.
In this study, we provide the first demonstration of the impact
of privacy risks caused by logits. Specifically, we design a data
reconstruction attack against logits named L-Attack which can
reveal sensitive information about the target client without access
to the target model. Via the zeroth-order optimization technique,
L-Attack involves training a server-side generator that unveils
certain features of private data owned by the target client. To
defend against L-Attack, we propose a label aggregation-based
FD algorithm called LabelAvg which allows clients to upload
predicted hard labels for knowledge transfer instead of logits. Due
to the insufficient information in labels for distillation, LabelAvg
provides a voting-based label smoothing mechanism that enables
the server to construct smooth labels from received labels. The
generated smooth labels which stand for the consensus among all
clients, indicate the approximate probability distribution. Thus,
these smoothed labels bear a striking similarity to logits and can
be used for distillation. Analysis and experimental results prove
LabelAvg is superior to baselines in terms of accuracy, privacy,
and communication data volume.

Index Terms—Federated Distillation, Privacy Leakage, Logits
Attack, Distributed Training

I. INTRODUCTION

Federated Distillation (FD) [1], a popular variant of Feder-

ated Learning (FL) [2], has risen to prominence recently. FD

aggregates local models among clients via knowledge distilla-

tion, enabling heterogeneous training where participating local

models need not have the same size, structure, or even model

types.

From the perspective of data exchange, existing FD variants

can be categorized into two paradigms: 1) model-based FD [3]

and 2) logits-based FD [4], [5]. The former requires clients to

send local models to the server for distillation, e.g., let all

local models distill a global model on the server. In the latter,

clients need to share logits 1 related to a public dataset with

the server for knowledge transfer.

For model-based FD, due to the distillation operation,

privacy-preserving techniques such as homomorphic encryp-

tion [6] may not be applied to uploaded local models. There-

fore, local models in model-based FD may suffer from ’white-

box’ attacks such as model inversion attacks [7], [8]. Logits-

based FD can effectively avoid ’white-box’ attacks since the

1Logits (a.k.a., Class Scores) are predictions output from the neural net-
work. Logits can be regarded as ’soft labels’ containing predictive probability
information for each category.

local model is inaccessible to the public. However, recent

studies [9], [10] have raised concerns regarding privacy risks

from logits, but no prior work has reported how to obtain

privacy information from logits.

In this study, we design a GAN-based attack called Logits

Attack (L-Attack) to reconstruct certain features of private

data from logits related to public datasets. To the best of our

knowledge, our work is the first to employ a specific attack

method to validate that, in addition to parameters, gradients,

and activations, logits related to the public dataset may also

potentially cause privacy leakage risks in certain scenarios.

While following FD protocols, such as FedMD [4] and FedED

[4], the server has the ability to reveal sensitive information

of clients via L-Attack.

Different from attacks against parameters, L-Attack against

logits in FD has two key issues due to the access restrictions

of local models: 1) how to construct a GAN silently in FD

system? and 2) how to obtain the gradient used to update

the server-side generator? L-Attack can handle the above

challenges by 1) ingeniously designing the target model to

act as a discriminator of GAN during FD training, and 2)

computing approximate gradients used to update the server-

side generator via zeroth-order optimization techniques. As a

result, the trained server-side generator will construct simu-

lated samples that are placed in the public dataset to steal

private information by utilizing the discriminative power of

the local model of the target client.

To defend L-Attack, perturbing logits, such as adopting

Differential Privacy (DP) techniques [9], may be one of the

effective ways, but these methods may cause a loss of trained

model accuracy. Anomaly detection techniques are another

methods that can defend against L-Attack. However, most

anomaly detection techniques, such as clustering-based or

statistical-based approaches, may incur significant computa-

tional overhead when dealing with a substantial number of

samples during each communication round. Besides, these

methods may suffer from high false positive rates.

In this paper, we propose a novel label aggregation-

based FD algorithm called Label Averaging (shortened to

LabelAvg), which allows clients to upload predicted hard

labels instead of logits for knowledge transfer, so as to address

attacks from logits including L-Attack. However, using these

hard labels for distillation may not be conducive to knowledge

transfer among clients, as hard labels lack useful information

such as probability distribution. To address this issue, La-

belAvg provides a voting-based label smoothing mechanism
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that lets the server construct smoothed labels (bearing a

similarity to logits) containing an approximate probability

distribution based on received hard labels. More specifically,

the approximate probability distribution is obtained by voting,

that is, determining the frequency of each class by counting the

number/vote of received labels for each class. Thus, generated

smoothed labels can be regarded as the global consensus

similar to average logits, and used for distillation. In particular,

due to the lack of inter-class information in transmitted hard

labels, LabelAvg instructs clients to send related label weights

for better modeling probability distribution. In addition, due to

the designed mechanism, LabelAvg can reduce communication

data volume effectively while ensuring accuracy and protecting

data privacy.

Contributions. Our contributions are as follows:

• Attack. A GAN-based attack named L-Attack is intro-

duced. L-Attack can reconstruct private data from logits

related to public data via ingenious design and zeroth-

order optimization. Our work is the first to employ a

specific attack method to validate that logits may pose

privacy risks in FD.

• Defense. A defense method against L-Attack called La-

belAvg is proposed. LabelAvg allows clients to send

hard labels instead of logits for aggregation and enables

the server to construct smoothed labels containing an

approximate probability distribution for distillation. Rel-

evant analysis and comprehensive experiments regarding

LabelAvg are provided.

II. RELATED WORK

A. Federated Distillation

Recent work introduces codistillation [11], a distributed

distillation algorithm, which can distill several models into a

single model so as to accelerate distributed training. Inspired

by codistillation, some researchers proposed an FL framework

called FedMD [5] which lets clients upload logits related to

public datasets to the server for aggregation instead of model

parameters. FedMD allows the server to calculate the average

logits based on the received logits, which are then sent back to

the clients. The clients utilize these average logits to align the

outputs of their local models. Different from FedMD, under

FedED [4] settings, average logits are utilized for distilling a

global model on the server side.

In order to protect privacy, some Differential Privacy (DP)-

based FDs, such as FedMD-LDP and FedMD-NFDP intro-

duced in the literature [9], require each client to adopt DP

techniques before uploading their logits to the server. Besides,

some researchers propose FedDF [3] that aggregates the global

model by combining FedAvg and Knowledge Distillation

(KD) so as to improve the ability of data privacy protection.

FedKT [1] reduces the risk of privacy leakage by a two-

tier knowledge transfer structure. However, FedKT needs to

perform distillation on the client and server sides, which brings

a lot of computational overhead.

In order to reduce communication overhead, recent work

[12] presents one-shot federated learning, where a central

server learns a global model over all received local models in a

single round of communication by drawing on ensemble learn-

ing and knowledge aggregation so as to reduce communication

overhead. Recent work [13] presents a novel method named

FedKD that is both communication-efficient and effective,

based on adaptive mutual knowledge distillation and dynamic

gradient compression techniques. Besides, some variants of

FedMD are proposed for reducing communication data [14].

Recently, decentralized FD has attracted re-

searchers’attention since it can avoid dependence on the

server. Def-KT [15] is an effective decentralized FD that

allows clients to share their local models for mutual

knowledge transfer. Different from Def-KT, CMFD [16]

allows clients to share logits related to public datasets for

knowledge transfer instead of models.

To sum up, FDs mentioned above can be classified into two

paradigms based on the type of data exchange, namely, logits-

based FD, such as FedMD and FedMD-LDP, and model-based

FD, such as FedDF and FedKT. Moreover, existing FDs can

perform distillation operations on either the server or client

side based on specific requirements, and most FDs require a

public dataset for knowledge transfer. Table I compares the

differences among mainstream FD algorithms.
TABLE I

DIFFERENCES AMONG MAINSTREAM FD ALGORITHMS.

Terms References

Logits-based FD [4], [5], [9], [10], [14], [16]
Model-based FD [1], [3], [12], [15]
Distillation on the server side. [1], [3], [4], [11], [12]
Distillation on the client side. [1], [5], [9], [10], [14]–[16]
With the help of public datasets [1], [3]–[5], [9]–[12], [14]
Distillation for global model updating [1], [3], [4], [11], [12]
Distillation for local model updating [5], [9], [10], [14], [15]
Central FD [1], [3]–[5], [9]–[12], [14]
Decentralized FD [15], [16]

B. Attacks against FL

Many existing works have studied the security [17] and

risks [18], [19] in FL/FD, including risks from parameters,

gradients, activation values, and logits, respectively.

Parameters. Inversion attack [8], [20] is one of the common

threats to FL in which adversaries attempt to steal and infer

sensitive information about training data from models. In the

literature [7], authors design a GAN-based inversion attack

to reconstruct raw data from the target model. This work

assumes there exists a malicious client that can utilize GAN to

extract sensitive information about target clients against model

parameters downloaded from the server.

Gradients. Existing works [21], [22] convey that adver-

saries can reconstruct raw data from gradients. In the lit-

erature [23], authors design a reconstruction attack called

DLG, an optimization algorithm that reconstructs raw data

by minimizing the distance between mimicking gradients and

captured real gradients. Subsequently, several variants of DLG

are successively proposed [24]. Simultaneously, many defenses

against gradient leakage are also introduced in the literature

[25], [26]. In literature [27], authors propose Fragmented

Federated Learning (FFL), a lightweight solution against
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gradient-based reconstruction attacks. To reduce privacy risks

from gradients, FFL contains a gradient-obscuring algorithm

that allows clients to select some safe layers’ gradients for

submission. In literature [28], researchers provide an analysis

of observations, explaining how data presentation leaks from

gradients. Based on their observation, they propose a defense

called Soteria which learns to perturb data representation (i.e.,

gradients). These perturbed data representations can prevent

reconstruction attacks while keeping FL performance. De-

fenses introduced in [27], [28] can prevent gradient-based data

reconstruction attacks in typical FL. However, the mentioned

above defenses are not applicable to FD since the server

and clients communicate with each other by logits instead of

gradients. Our work proposes a novel defense that can resist

logits-based data reconstruction attacks in FD.

Activations. Activations exchanged in Split Learning (one

of FL variants) [29], [30] may suffer from reconstruction

attacks [31], [32]. In the literature [31], authors propose a

defense mechanism to prevent attacks against activations.

Logits. Recent studies [9], [10] have raised concerns regard-

ing the privacy risks from logits, and proposed two DP-based

FDs based on FedMD to perturb logits for privacy protection.

Until now, there has been no empirical demonstration of the

privacy risk caused by logits via specific attack methods.

III. PRELIMINARIES

Suppose that there are N clients ({Pi}Ni=1) in a FD system.

Each client (Pi) holds a private dataset (D(i)
pri) and its local

model parameters (θ
(i)
local). The structure of the local models

can be different. In addition, the server holds a public dataset

(Dpub) that everyone can access. Typically, the objective of FD

training is to improve the performance of the local model by

allowing local training on the private dataset and leveraging

knowledge transfer from other clients with the help of the

public dataset. For each local model (θ
(i)
local), the objective can

be simply defined as follows:

min
θ
(i)
local

[Llocal(θ
(i)
local,D(i)

pri) + Lkd(θ
(i)
local,Dpub)], (1)

where Llocal(·) and Lkd(·) denote the training optimization

procedure on the private dataset and the distillation optimiza-

tion procedure on the public dataset, respectively. In this paper,

we introduce the proposed attack under the basic setup of

FedMD which is one of the mainstream FD algorithms. The

details of FedMD are illustrated in Figure 1. Note that the

proposed attack can also be applied to other FD algorithm

settings such as FedED.

IV. L-ATTACK: PRIVACY RISKS FROM LOGITS

A. Threat Model

In general, our threat model follows literature [7], where

there is a semi-honest adversary in the system along with other

honest participants. Different from literature [7], the adversary

in our work is concealed on the server side rather than the

client side. More specifically, all participants adopt an FD

protocol such as FedED [4] or FedMD [5] for distributed

The procedure of FedMD

The server holds a public dataset (Dpub) for distil-

lation. The entire training procedure consists of the

initialization phase and the distillation phase.

Initialization Phase: Each client (Pi) trains its local

model over several iterations on the private dataset

(D(i)
pri) and public dataset (Dpub).

Distillation Phase: N clients follow 4 steps below to

train their model:

Step 1: The server distributes the public dataset

(Dpub) to all clients. Each client (Pi) computes logits

(fi(xpub)) on public dataset (Dpub) and then transmits

the result to the server.

Step 2: The server computes average logits for each

sample (xpub) of the public dataset based on received

logits:

f(xpub) :=
1

N

N−1∑
i=0

fi(xpub), xpub ∈ Dpub. (2)

Step 3: Each client downloads all average logits

(f(xpub)) and uses them to compute the loss of distil-

lation:

loss := E(xpub)∼Dpub
[�kd(fi(xpub), f(xpub))]. (3)

Step 4: Each client (Pi) trains its local model over

several iterations on private dataset(D(i)
pri).

The training repeats the above 4 steps until each local

model reaches a convergence point.

Fig. 1. The procedure of FedMD

training. We assume that the attacker (i.e., the server) does

not have information about the clients participating in FD, in-

cluding private data, model types, and training configurations.

All clients are willing to trust that logits-based FD is reliable,

so they only follow the basic operations of the typical FD

procedure, meaning they do not employ additional techniques

to detect public samples and encrypt logits. As a result, all

clients are potential victims.

Objectives. Based on special requirements, the server (ad-

versary) chooses a client as a target (victim), and tries to reveal

information about a class of data it does not hold. Also, the

adversary surreptitiously influences the learning procedure to

deceive a victim into releasing details about the target class.

Conditions. The adversary has access to a public dataset

(Dpub) that is similar to the clients’ private dataset. In each

communication round, the server receives logits from all

clients regarding Dpub. Also, we assume that the server period-

ically distributes partial samples of the updated public dataset

to all clients, which is allowed in real-world applications

since public datasets require continuous supplementation and

refinement to enhance the performance of FD [5].
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Fig. 2. The procedure of L-Attack

Ideas. The adversary employs a GAN-based attack by

surreptitiously utilizing logits associated with public data to

train a generator. This generator is used for reconstructing

private data. Simultaneously, the adversary follows the proto-

col specification as viewed by his victims. E.g., the adversary

sends and receives logits as required by the FD training.

B. The Procedure of L-Attack

The core of L-Attack is to train a distributed GAN used for

generating data that simulates real data. These simulated data

can ultimately infer sensitive information about private data.

Figure 2 demonstrates the procedure of L-Attack. L-Attack

is ingeniously designed to enable the local model (θlocal)
of the target client to act as a discriminator of distributed

GAN. Simultaneously, L-Attack trains the server-side gener-

ator (G and its parameter θg) of GAN with the help of the

discriminative power of the target client’s local model. As a

result, the generator generates fake data that mimics certain

characteristics of the private data of the target client. Due

to the access restriction of the target model, the server can

not access gradients used to update the generator. To alleviate

this issue, L-Attack computes approximate gradients via the

zeroth-order optimization technique. Algorithm 1 describes

details of L-Attack. L-Attack allows the server to engage in

FD as usual while enabling the server to silently attack the

target client during certain communication rounds. All steps

of the procedure are as follows:

Step 1: The server distributes the public dataset (Dpub) to

all clients. In particular, in attacking rounds, some simulated

samples (xfake) generated by the generator are put into the

public dataset (Dpub) (Lines 5-7 in Algorithm 1).

Step 2: The target client trains its local model over several

iterations on the private dataset (Dpri), followed by computing

logits (ftarget(xpub)) on the public dataset (Dpub) and trans-

mitting the result to the server (Lines 9-10 in Algorithm 1).

Step 3: Based on received logits, the server computes

average logits (f(xpub)) for each sample (xpub) of the public

dataset. In normal rounds, the server returns average logits

directly to the target client without any operation (Line 18 in

Algorithm 1). In attacking rounds, the server makes use of the

target client’s logits associated with simulated samples to com-

pute approximate gradients via the zeroth-order optimization

technique. These approximate gradients are used to update the

server-side generator (Line 14 in Algorithm 1). In addition, to

ensure that the target client continues the training procedure,

the server takes the raw logits received from the target client

as average logits and sends them back (Lines 11-15).

Step 4: After receiving average logits, the target client

computes the loss of distillation so as to improve local model

performance (Line 21 in Algorithm 1).

Algorithm 1 L-Attack Based on Zeroth-Order Optimization

1: Input: Dpri,Dpub, θg, θlocal, x ∈ Dpri, xpub ∈ Dpub

2: Output: fake data (xfake) ≈ x
3: for t in [0, T ) do
4: Server:
5: xfake ← G(θg)
6: Dpub ← Dpub ∪ xfake

7: Distribute public dataset Dpub

8: Target Client:
9: θ

(t)
local ← update(θ

(t−1)
local ,Dpri)

10: ftarget(xpub) ← inference(xpub)
11: if it is an attacking round then
12: Server:
13: Compute ∂L

∂x
by Eq. (6)

14: Update θg by Eq. (4-5)
15: Return ftarget(xpub) to the target client
16: else
17: Server:
18: Compute and return f(xpub)
19: end if
20: Target Client:
21: Compute loss := Lkd(fi(xpub), f(xpub))
22: end for

C. Gradient Approximation

Training GAN needs to alternately update the discriminator

(i.e., local model of target client) and generator (θg on the

server side). In particular, the parameters of the generator are

updated by gradient descent:

θ(t+1)
g := θ(t)g − η�θgL, (4)

where η and �θgL denote the learning rate and the derivative

of the loss function of the local model (L), respectively. Based

on Chain Rule, �θgL can be decomposed into two components

as shown in Eq. (5):

�θgL :=
∂L
∂θg

:=
∂L
∂x

× ∂x

∂θg
. (5)

Since the server does not have access to the local model of

the target client (i.e., the local model is a ’black box’), the

server can not obtain gradients (∂L∂x ) associated with simulated

samples calculated by the target model. To cope with this issue,

L-Attack lets the server approximately compute ∂L
∂x by zeroth-

order optimization techniques.

Zeroth-order optimization [33], [34] refers to all optimiza-

tion methods that do not require gradient information, while in

general, it refers to optimization algorithms that estimate the
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direction of parameter updates based on the idea of parameter

sampling and differencing. In this paper, we estimate ∂L
∂x by

Forward Differences Method [33] defined by Eq. (6):

∂L
∂x

≈ 1

m

m∑
i=1

d
f(x+ εui)− f(x)

ε
ui, (6)

where ui is a random variable drawn from a d dimensional

unit sphere with uniform probability and ε is a small positive

constant called the smoothing factor. The gradient can be

estimated by computing the forward difference using m ran-

dom directions(u1, ..., um). Under L-Attack setting, random

variables (x + εui, i ∈ [1,m]) associated with x act as

simulated samples and are distributed to the target client.

D. Impact and Significance.
In practice, an adversary from the server only needs to

stealthily maintain a generator on the server during FD

training. Afterward, in addition to performing basic logits

aggregation operations, the server utilizes L-Attack to optimize

the generator model until the generated simulated images can

leak private information. In certain scenarios, L-Attack makes

the training of logits-based FDs very vulnerable. Our attack

method can acquire information about the private data of

the victim (target client) regarding specified categories/labels,

obtaining an understanding of original samples’ content. Fur-

thermore, our work opens up a research door that explores

generative models to trigger data reconstruction attacks in

logits-based FD. We believe that future enhancements based

on L-Attack may increase privacy risks targeting logits, calling

for further research on defense algorithms.

V. LABELAVG: DEFENSE AGAINST L-ATTACK

A. The Procedure of LabelAvg
As described in Algorithm 2, after the initialization phase,

LabelAvg carries out the following steps in several epochs:
Communication: For each public data sample, each client

infers/predicts several ’hard’ labels, and computes the corre-

sponding weights for these labels. At the end of this step, all

labels and weights are sent to the server for aggregation.
Aggregation: After receiving predicted labels and relevant

labels’weights, the server computes the updated consensus,

i.e., smoothed labels, and then sends them to clients for

distillation.
Distillation2: After receiving the updated consensus, each

client trains its model to approach the consensus related to the

public dataset, i.e., distillation operations.
Revisit: Each client trains its local model on their private

dataset for several local epochs.
There exists two challenges in the above-mentioned pro-

cedure. Challenge 1: How to incorporate more inter-class

information by computing weights when clients upload ’hard’

labels? Challenge 2: How to utilize the received labels to

construct smoothed labels that bear a similarity to logits?

LabelAvg provides a voting-based label smoothing mechanism

to address them.

2In literature, the distillation phase is also named by digest phase.

Algorithm 2 The Procedure of LabelAvg

1: Input: Private datasets {D(i)|i ∈ {1, ..., N}}, Public dataset
Dpub, T , N

2: Output: Local models parameters {θi|i ∈ {1, ..., N}}.
3: Initialization: Each client i trains its local model to convergence

on Dpub and D(i).
4: for t ∈ {1, .., T} do
5: for i ∈ {1, .., N} parallel do
6: Communication: client i uploads labels and weights com-

puted by Eq.(7),(8),(9),(10).
7: end for
8: Aggregation on the server: 1) Converts labels,weights into

v and w,respectively. 2) Constructs vsmooth by Eq.(11)-(12).
3) Sends vsmooth to all clients.

9: for i ∈ {1, .., N} parallel do
10: Distillation: client i trains θi on Dpub by minimizing

distillation loss ← CrossEntropy(ŷ, vsmooth).
11: Revisit: client i iteratively trains θi on D(i).
12: end for
13: end for

Fig. 3. The basic idea of LabelAvg. The dashed box can be seen as a process
resembling ensemble learning. Note that the displayed process does not adopt
the voting-based label smoothing mechanism.

B. Voting-Based Label Smoothing

Figure 3 illustrates the basic idea of LabelAvg and we

design the core mechanism based on this idea. As usual, client

P uses its local model (θP ) to compute logits (ŷ) on the public

dataset, and then infers ’hard’ labels (ζ) according to logits.

Concretely, for each public data sample (xi), Client P selects

index values of the top K maximum element values of ŷ as

potential labels, that is,

ŷi := f(θP , xi), (7)

(SP )i := {ζi|ŷi,ζi > κ}, (8)

where (SP )i denotes the set of predicted labels for the given

sample (xi) and contains K labels that need to be sent to the

server. In particular, ŷi,ζi and κ denote the value of the ζi-th
column of ŷi and the value of the Kth largest elements of

ŷi, respectively. Actually, ŷζi indicates the probability of ζi-th
class label. ζi ∈ {0, C − 1}, where C denotes the number of

categories.

Sending labels can reduce the provision of excessive infor-

mation to the public, but it is not conducive to knowledge

transfer during the distillation, that is, uploading labels alone

may not fully capture inter-class information, which could

limit the server’s ability to obtain the probability distribution.
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Solution to Challenge 1. To compensate for more inter-

class information, the proposed mechanism calculates the

weight for each uploaded label based on the relative mag-

nitudes of element values of the corresponding logits, as the

relative magnitudes of the element values can reflect the local

model’s preference for each category without disclosing the

specific element values. Let ŷ = [ŷ0, ŷ1, ..., ŷC ] denote logits

containing C classes. The computation of weights is defined

as follows:

ζmax := argmax
ζ

ŷζ , (9)

βζ :=
ŷζ

ŷζmax

, ζ ∈ S, (10)

where ŷζmax
denotes the maximum element value of original

predicted logits (ŷ) and βζ is the weight corresponding to label

ζ. Consequently, these weights, together with the correspond-

ing labels, are sent to the server. On the server side, these

weights are converted into vectors (wP ) of client P , and used

for computing vsmooth by Eq. (11).

Solution to Challenge 2. The proposed mechanism profiles

the predicted probability distribution via voting, where each

received label contributes one vote. More specifically, for the

prediction of each public data sample, the server receives KN
’hard’ labels from N clients (K labels per client). Inspired

by voting-based ensemble methods, LabelAvg determines the

frequency of each class by counting the number/vote of

received labels for each class, and then derives probabilities

of category from these frequencies. In addition, LabelAvg

assigns additional labels’ weights to better profile probabilities

of categories. Finally, LabelAvg assembles probabilities of

categories into a normalized vector resembling logits. For each

public sample, the above operations can be defined as follows:

vsmooth :=
1

KN

N∑
P=1

wP � vP , (11)

where vP denotes multi-hot vector transformed from label set

(SP ) belonging to client P . vsmooth denotes the smoothed

label where each column indicates the probability for each

class. wP denotes the labels’ weight and can be configured to

all-ones vector. In our work, we configure weights calculated

in Eq. (10) as wP . In particular, � denotes element-wise multi-

plication operations between two vectors. From the perspective

of voting-based ensemble methods, smoothed labels (vsmooth)

can be seen as the final decision obtained by voting on the

outputs of several local models which can be viewed as base

models.

In particular, LabelAvg designs a mixing factor to adjust the

confidence of the label with the maximum number of votes,

so as to better profile predicted probabilities distribution:

(vsmooth)i := (1− α) · (vmain)i + α · (vsmooth)i, (12)

where (vmain)i denotes the one-hot vector transformed from

the label with the maximum number of votes regarding sample

i. Besides, α(0 ≤ α ≤ 1) denotes the mix factor. For labeled

public datasets, the ground-truth label regarding the public

sample can be considered as (vmain)i, and it is blended into

the generated smoothed label ((vsmooth)i) so as to reduce class

bias caused by label smoothing.
After aggregation, the server returns generated smoothed

labels to clients. Subsequently, for each public data sample

{((xpub)i, (vsmooth)i)} ∈ Dpub, clients calculate the distilla-

tion loss to update local models via cross-entropy instead of

KL divergence:

Lce((vsmooth)i, ŷi) := −
C−1∑
j=0

(vsmooth)i,j log((ŷ)i,j), (13)

where ŷi is the local model’s prediction for public data sample

((xpub)i). In practice, the implementation is similar to existing

FD algorithms like FedMD, with the main difference being

that clients only need to send K predicted labels and their

corresponding weights for each public data sample. During the

aggregation process, for each client’s label and corresponding

weights, the server needs to transform them into vectors

separately for ease of calculation.

C. Analysis and Discussion
We analyze and discuss LabelAvg to answer the following

questions (Q):
Q1: Why can LabelAvg effectively transfer knowledge

via smoothed labels?
Clients transfer knowledge through smoothed labels (i.e.,

the global consensus) under LabelAvg settings. We discuss

the effectiveness of LabelAvg by analyzing smoothed labels

from several perspectives.
• Profiling the Approximate Probability Distribution.

The smoothed label, the consensus among all clients under

the LabelAvg settings, may indicate an approximate ground-

truth distribution. More specifically, In FD, the aggregated

consensus, such as average logits in FedMD, and the generated

smoothed labels in LabelAvg, can be considered as outputs

from teacher models guiding client-side local models (student

models). Thus, the probability distribution indicated by these

outputs is crucial for the effectiveness of knowledge transfer

in the distillation. The relevant evaluations are presented in

the following experimental section.
• Applying Effective Regularization. The aggregated

consensus in LabelAvg can be regarded as a variant of

smoothed label regularization, in which we replace the uniform

distribution with a probability-based distribution. More specifi-

cally, Label Smoothing (LS) [35]–[37] is employed to consider

the non-ground truth distribution by setting non-ground truth

terms to small weighted values instead of zeros, so that the

model may not be too confident about the ground truth. Via

LS, training models can avoid over-fitting. Instead of using

hard labels for loss computing, typical LS [35] utilizes soft

labels that are generated by mixing a uniform distribution with

the distribution of hard labels. In particular, the probability

(q′(c|xi)) of the data sample(xi) being class c in the smoothed

label can be defined as:

q′(c|xi) = (1− α)q(c|xi) + αu(c|xi), (14)
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where α and u(c|xi) = 1
C denote the mixing factor and

the uniform distribution used to smooth labels, respectively.

q(c|xi) can be regarded as the probability needed to be

’smooth’. Instead of the uniform distribution, LabelAvg as-

signs probabilities of non-target categories based on voting.

According to Eq. (11)-(12), for each non-target category (c),
LabelAvg assigns its probabilities (u(c|xi)) by:

u(c|xi) := (vsmooth)c =

∑N
P=1(wP )c(vP )c

KN
. (15)

Compared with typical LS, the smoothed label generated by

LabelAvg can profile the predicted probability distribution.

Evaluations are shown in the following experimental section.

• Reducing Overfitting and Enhancing Robustness. As

indicated by the dashed box in Figure 3, the aggregation pro-

cess of LabelAvg can be viewed as a voting-based ensemble

learning process. Intuitively, LabelAvg enables local models

to act as base models, and voting-based label smoothing

mechanism can be considered a meta-model that outputs the

most accurate predictions by combining all labels received

from local models. During each distillation procedure, La-

belAvg can provide higher confidence and stable predictions

(i.e., smoothed labels) used for aligning the outputs of local

models. Compared with logits, aligning with smoothed labels

can reduce overfitting. As a result, LabelAvg can enhance the

robustness of local models, indicating its effective handling

of data heterogeneity. Our experiments demonstrate that La-

belAvg performs well across scenarios under four different

Non-IID settings.

Q2: What advantages does LabelAvg have compared to
existing techniques?

We discuss LabelAvg along with existing defense tech-

niques such as Anomaly Detection, Differential Privacy-based

Logits, and Sparse Logits in terms of accuracy, costs, and

privacy preservation.

• LabelAvg vs. Anomaly Detection. Detecting public

data before the start of each round has proven to be an

effective method. Anomaly detection techniques can keep the

accuracy of the trained model. Compared with LabelAvg,

several anomaly detection techniques have some shortcomings.

In terms of privacy preservation, some anomaly detection

techniques may achieve high false positive rates which some-

times may not prevent L-Attack. In terms of computational

and communication costs, some techniques such as clustering-

based or statistical-based approaches may incur significant

computational overhead when dealing with a substantial num-

ber of samples during each communication round.

• LabelAvg vs. Differential Privacy-based Logits. In FD

training, Differential privacy techniques can effectively deal

with the trade-off between accuracy and the ability to protect

logits by appropriately configuring hyperparameters. LabelAvg

achieves higher accuracy and privacy protection capabilities.

Importantly, it significantly reduces communication overhead

compared to Differential Privacy-based Logits during training.

Therefore, in some communication-sensitive FD scenarios,

LabelAvg may be a preferable choice over differential privacy.

• LabelAvg vs. Sparse Logits. LabelAvg enables clients

to send Top-K hard labels and their re-normalized weights. It

appears that LabelAvg sparsifies logits before communication.

Therefore, a question arises: why do we design LabelAvg

instead of directly sparsing logits? In practice, we find that

using sparse logits for knowledge transfer results in signifi-

cant accuracy losses. We believe that, during the distillation

process, aligning the outputs of local models with sparse

logits may lead to model overfitting. Particularly, in sparse

logits, some elements of the raw logits are still retained.

Consequently, there remains a potential risk of privacy leakage

in sparse logits.
VI. EXPERIMENTS

We first demonstrate experimental results regarding L-

Attack, followed by the evaluation regarding LabelAvg.

A. L-Attack Demonstration

Experimental Methodology. Our simulation system in ex-

periments regarding L-Attack demonstration follows FedMD

protocol [5], which is one of the common FDs. Figure 1 shows

details of FedMD. Some important hyperparameters regarding

simulation are as follows: The dimension of noise (i.e., the

input of the generator) is set to 100. The parameter ’ε’ (used in

the forward differences method) is set to 0.1. For ’m’ (used in

the forward differences method), it is tailored to datasets, with

values set to 5, 10, and 20. The learning rate and batch size

are set to 0.001 and 100, respectively. Note that, we adopt the

early stopping strategy and do not stop training until generated

images satisfy the requirement.

In a simulation system with several clients adhering to

FedMD’s training protocol, the server uses L-Attack to steal

sensitive information about the training data of target clients.

Datasets used for demonstration are MNIST, Fashion-MNIST,

and CelebA3. To simulate the distribution of the public dataset,

for each experiment, 1/3 of the dataset is divided into the

public dataset samples and each client only holds samples

of two categories. Note that, in order to ensure the relia-

bility of the conclusion, the divided public dataset does not

include relevant samples about the categories owned by the

target client. We believe that, via the above-mentioned data

partitioning strategy, the public dataset and the private dataset

can be considered as two independently unrelated datasets. For

example, in the experiments on MNIST, the private dataset can

be regarded as a handwritten digit dataset containing digits 0-

6, while the public dataset can be seen as a handwritten digit

dataset containing digits 7-9.

Gradient Visualization. We compare the differences be-

tween estimated gradients and real gradients by the gradi-

ent distribution histogram. Figure 4 demonstrates differences

among real gradients in hindsight, as well as the estimated

gradients with respect to FedMD and LabelAvg. We observed

that L-Attack can approximate the distribution of the true

gradient from unprotected logits, but it fails to effectively

estimate the distribution of update gradients from smoothed

3https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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labels. This observation indicates that smoothed labels are

effective in preventing the computation of approximate gradi-

ents, implying that LabelAvg can defend against L-Attack. Our

data reconstruction attack simulation demonstrates the ability

to protect data privacy (shown in Figure 13). Note that we

only show a few representative examples, and most gradient

examples during the training indicate similar results.

Fig. 4. Gradient visualization. Figures display the distribution range of
element values in the gradients. Two subfigures respectively illustrate compar-
isons for two cases, where ’gradient 1’ represents the real gradient, ’gradient
2’ represents the gradient estimated by L-Attack from the logits regarding
FedMD, and ’gradient 3’ represents the gradient estimated by L-Attack from
the smoothed labels regarding LabelAvg.The more similar the distribution
shapes, the closer the associated gradients approximate each other.

Experiments on MNIST. In these experiments, clients

holding samples corresponding to labels ”0”, ”1”, and ”6” are

regarded as target clients (victims). The goal of the server

is to steal private information related to labels ”0”, ”1”, and

”6”. The experimental results are shown in Figure 5. From

the results, we can observe that information about private

samples can be captured by the server-side generator. The data

with labels ”0”, ”1” and ”6” represent the local data of the

handwritten numbers ”0”, ”1” and ”6”, respectively.
Experiments on Fashion-MNIST. As in MNIST experi-

mental setup, these groups of experiments assume that target

clients have samples related to labels of ”0”, ”3”, and ”9”

respectively. The results are shown in Figure 6. From the

results, simulated images generated by the server-side gener-

ator reveal information about private samples, i.e., the private

samples labeled with ”0”, ”3”, and ”9” represent the class of

images about shirts, skirts, and shoes, respectively. In sum, we

believe that simulated images reconstructed by the generator

Fig. 5. Privacy leakage from logits. Each digit represents an image sample.
Row 1, 3, and 5 respectively display raw MNIST images labeled as ’0’, ’1’,
and ’6’. Row 2, 4, and 6 respectively display simulated images generated by
the server-side generator corresponding to label ’0’, ’1’, and ’6’. We observe
that simulated images and raw images with the same label bear high similarity.

reveal certain features of the raw data. In some cases, these

features are of crucial importance to users, potentially enabling

adversaries to deduce more sensitive information.

Fig. 6. Privacy leakage from logits. Each digit represents an image sample.
Row 1, 3, and 5 respectively display raw Fashion-MNIST images labeled
as ’0’, ’3’, and ’9’. Row 2, 4, and 6 respectively display simulated images
generated by the server-side generator corresponding to label ’0’, ’3’, and ’9’.
We observe that simulated images and raw images with the same label bear
high similarity.

Fig. 7. Privacy leakage from logits. Each digit represents an image sample.
The first row shows raw CelebA images. The second row shows simulated
images reconstructed by the server.

Experiments on CelebA. Figure 7 demonstrates the exper-

imental results on CelebA dataset. Different from experiments

on MNIST and Fashion-MNIST, in CelebA experiments, the

server does not have a reliable public dataset and uses dummy
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samples as public dataset samples during the training. Besides,

each client trains a binary classification model for the face

recognition task. From the results, we conclude that, the server

is able to steal private information about the target client’s

data even when it does not have available public datasets.

In addition, the generator without any information can reveal

certain features of face images. For people who place a high

value on the privacy of their personal identity, even partial

information can evoke fear.
Similarity Measure. Table II displays the similarity be-

tween raw data and generated data. Specifically, as in the

literature [38], we calculate the cosine similarity between

intermediate features of raw and generated images. These

features are extracted by VGGNet-16. Additionally, we utilize

randomly generated noisy images as a baseline. Note that

other metrics such as SSIM are not applicable in this work.

Experimental results unmistakably demonstrate a substantial

similarity between the generated and private images, which

quantitatively proves the hidden danger of L-Attack.

TABLE II
SIMILARITY MEASURE (LARGER IS BETTER)

samples MNIST Fashion-MNIST CelebA

Noisy images vs. Raw images -0.623 -0.529 -0.333
Generated images vs. Raw images 0.962 0.923 0.948

Attacks’ Effectiveness in Training with Defense. L-

Attack achieves effective attack results in training under simple

defense settings. Based on the experimental setup regarding

MNIST, we add noise to logits so as to defend against L-

Attack. The noise is generated based on Laplace distribution.

Figure 8 demonstrates results. Interestingly, L-Attack can

effectively obtain private information. Although attacks by

L-Attack may not always succeed under this experimental

setting, the experimental results indicate that defending against

L-Attack requires superior defense methods.

(a) Generated images related to ’0’ (b) Generated images related to ’1’

Fig. 8. Data reconstruction from perturbed logits

Summary. In practice, fully mimicking the raw data proves

challenging for L-Attack. Despite the limitations of L-Attack,

the aforementioned risks must be considered for security-

sensitive FD applications. Even if the generated samples only

reveal certain features of the raw data, they can still pose

a significant privacy risk to users in specific scenarios. For

instance, consider a user whose mobile phone contributes

to a logits-based FD system used to train a photo-enhanced

model. In such a case, the server could employ L-Attack to

extract scene features from the user’s home photos, potentially

exposing the user’s address (real-world instances of such

privacy breaches do exist). Moreover, if the user’s phone

contains private nude photos, even simulated images created

by an attacker can evoke fear in the user [39], despite these

images containing only partial information.

B. LabelAvg Evaluation

Experimental Settings. We build an FD system with differ-

ent physical machines acting as clients/server. All approaches

are implemented by PyTorch4. Each result is the average

obtained from 3 experiments under different random seeds.

1) Datasets. Several well-established datasets are used in

our experiments, including MNIST, FEMNIST, CIFAR-

10, CINIC-10, and CIFAR-100. To demonstrate the gen-

erality of the proposed algorithm, the following several

groups of experiments are conducted under different

popular Non-IID settings, including the Dirichlet dis-

tribution [40] setting and the label distribution skew

introduced in the Google research’s literature [2].

2) Baselines. Five representative approaches are chosen as

baselines: FedMD, FedMD-LDP, FedED, FedKD [10],

and One-sided Training. In particular, FedMD-LDP [9]

is a typical FD that perturbs logits by privacy differences

and One-sided Training is the standalone training with-

out FL settings. Besides, in some experiments, we also

use FedMD with sparse logits as the baseline.

3) Models. Five representative DNNs including ResNet-18,

ResNet-34, VGGNet-16, CNN, and MLP are trained via

the above-mentioned approaches. The convolution filter

in the 3-layer CNN has a shape of (5x5). The hidden

layer dimension of MLP is set to 200. Specifically,

under the heterogeneous setting, 1/3 of clients train

VGGNet-16, 1/3 of clients train ResNet-18, and the rest

train VGGNet-19. Specifically, under the heterogeneous

setting, 1/3 of clients train VGGNet-16, 1/3 of clients

train ResNet-18, and the rest train VGGNet-19.

4) Hyperparameters. Hyperparameters are tailored to

datasets. E.g., the configurations regarding FMNIST

and CIFAR-100 experiments align with those in the

literature [5]. Here, we specifically elaborate on the hy-

perparameter configurations for experiments on CIFAR-

10. Hyperparameter settings are listed in Table III. In

experiments on CIFAR-10, we use Exp. I and Exp.

II to refer to the experiments where CINIC-10 and

CIFAR-100 serve as the public dataset, respectively.

Due to varying knowledge transfer complexities across

different public datasets, there are slight differences

in hyperparameter settings between the two groups of

CIFAR-10 experiments.
TABLE III

SETINGS REGARDING EXPERIMENTS ON CIFAR-10

Hyperparameter Value
The number of clients 10
The number of epochs 100 for Exp. I and 200 for Exp. II.

The number of local epochs 2
The number of distillation epochs 1
The number of pre-trained epochs 20

The size of the mini-batch in local training 128
The size of the mini-batch in distillation 128 for Exp. I and 256 for Exp. II.
The size of the mini-batch in pre-training 128

The learning rate 0.1
The weight decay 1e-5

4https://pytorch.org
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Fig. 9. KL divergence comparison under different Non-IID settings (regarding
σ). We measure the KL divergence between the ground-truth distribution
and the distributions generated by FedMD, FedMD-LDP, and LabelAvg,
respectively. Lower is better. The y-axis represents the KL divergence. As
the number of iterations increases, KL divergence between the ground-truth
distribution and ours remains consistently low.

Evaluation of Smoothed Labels’ Effectiveness. To ana-

lyze the distribution indicated by smoothed labels, we compare

it with the probability distribution indicated by logits from an

ideal teacher model. In particular, we assume there exists an

ideal teacher model that possesses knowledge from all private

and public data, and the probabilities distribution indicated

in its logits aligns with the ground-truth distribution. In this

work, we consider the converged CNN trained on CIFAR-10

(private data) and CINIC-105(public data) as an ideal teacher

model. KL divergence analysis is shown in Fig. 9. Compared

with FedMD and FedMD-LDP, the probability distribution

obtained via LabelAvg is closer to that obtained via the

ideal model, which may explain why client-side models in

LabelAvg achieve better performance. We also show the label

information generated from LabelAvg and FedMD concerning

several samples in Figure 10. Moreover, the depicted ideal

distribution is derived from the same ideal model setting

mentioned earlier. Note that, the value in each column of

smoothed labels and logits (vector form) represents the pre-

dicted probability for each class. From Figure 10, we observe

that, with respect to some non-target categories, the differences

between LabelAvg and the output of the ideal model are

negligibly small. However, probabilities of those non-target

categories under FedMD setting may be assigned larger values,

which may disturb the discriminative ability of the trained

model. E.g., category 0, 4, and 7 in Figure 10.

Comparison with Different ’K’ Settings. Since LabelAvg

transmits ’hard’ labels and corresponding weights with the

server instead of logits, it can naturally avoid attacks from

logits. However, different numbers of transmitted labels (re-

garding K) may affect the accuracy of trained models. To

evaluate the effect, we conduct experiments on FEMNIST

and CIFAR-100 with different K settings, respectively. Cases

1- 10 in Table IV record experimental results. From the

results, we conclude that LabelAvg can achieve comparable

accuracy under different K settings. In general, the difference

ranges from 1% to 3%. However, experiments regarding

5https://github.com/BayesWatch/cinic-10

Fig. 10. Label information generated by different methods concerning several
samples (one sample per subfigure). The x-axis represents categories, and the
y-axis represents values(i.e., probabilities). The red, blue, and green lines
correspond to labels generated from the ideal model, LabelAvg, and FedMD,
respectively. Also, this group of figures can be regarded as a probability
distribution comparison.

different datasets exhibit varying effectiveness under different

K settings. Therefore, we configure the K values according

to datasets in the following experiments so as to achieve the

best performance. Note that we only configure K from 2

to 6, as configuring K to larger values may not reduce the

communication data volume for LabelAvg.

Comparison under Homogeneous Settings. We conduct

four groups of experiments with different settings: 1) training

CNN on FEMNIST (MNIST as a public dataset) under the

Non-IID setting introduced in the FedMD’s literature [5], 2)

training VGGNet-16 on CIFAR-10 (CIFAR-100 as a public

dataset) under the Non-IID setting introduced in the literature

[2], 3) training VGGNet-16 on CIFAR-10 (CINIC-10 as a

public dataset) under the Dirichlet Non-IID setting, and 4)

training CNN on CIFAR-100 (CIFAR-10 as a public dataset)

under the Non-IID settings introduced in the literature [5].

Experimental results are shown in Table IV. Specifically,

unlike other baselines, the purpose of FedED and FedKD is

to train a global model. Therefore, we focus on the accuracy

of the global model (recorded in the average column of Table

IV). In general, LabelAvg is superior to baselines in terms of

maximum, minimum, and average performance on all datasets

under different Non-IID settings (Cases 11-34). In particular,

LabelAvg can improve accuracy by 2-8% compared to one-

sided training. From the results, we observe that the accuracy

difference between LabelAvg and FedMD is smaller. However,

LabelAvg can resist L-Attack while reducing communication

volume based on configurations. Also, although in some cases

the differences between LabelAvg, FedED, and FedKD are

minimal, LabelAvg has the advantage of supporting personal-

ized training. From the results in Table IV, we can observe that

although LabelAvg outperforms baselines overall, the accuracy

of all algorithms is generally low. We believe one of the main

reasons contributes to the observed results: we set strict criteria

for both private and public dataset configurations, including

sample size and categories, so as to make the distribution of

data more aligned with real-world applications [5]. As a result,

the training task becomes more challenging, which leads to a

decrease in accuracy. In particular, on one hand, the number of
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TABLE IV
ACCURACY (%) COMPARISON UNDER DIFFERENT SETTINGS. THE

MAXIMUM, MINIMUM, AND AVERAGE VALUES RECORD THE BEST

ACCURACY, THE WORST ACCURACY, AND THE AVERAGE ACCURACY OF

LOCAL MODELS AMONG CLIENTS, RESPECTIVELY.

Cases Datasets Public Datasets Models Baselines K Maximum Minimum Average

Comparison with different K
1

FEMNIST MNIST CNN LabelAvg

2 70.58 54.20 62.84
2 3 74.06 53.75 61.55
3 4 81.43 56.96 64.62
4 5 74.85 54.71 63.87
5 6 78.29 54.87 64.60
6

CIFAR-100 CIFAR-10 CNN LabelAvg

2 48.50 40.40 43.07
7 3 47.97 41.97 42.91
8 4 47.20 39.43 42.42
9 5 47.80 41.89 42.29
10 6 46.96 40.53 42.17

Comparison under homogeneous settings
11

FEMNIST MNIST CNN

One-sided Training - 66.46 47.06 55.82
12 FedMD - 71.43 51.69 63.17
13 FedMD-LDP - 71.06 52.37 62.13
14 FedED - - - 58.91
15 FedKD - - - 59.33
16 LabelAvg 4 81.43 56.96 64.62
17

CIFAR-10 (σ = 0.5) CINIC-10 VGGNet-16

One-sided Training - 72.49 44.92 56.00
18 FedMD - 73.57 53.83 60.17
19 FedMD-LDP - 72.18 53.33 56.22
20 FedED - - - 60.38
21 FedKD - - - 60.57
22 LabelAvg 5 74.08 54.33 60.77
23

CIFAR-10 CIFAR-100 VGGNet-16

One-sided Training - 77.91 73.29 74.71
24 FedMD - 78.14 74.69 75.72
25 FedMD-LDP - 77.42 75.16 75.33
26 FedED - - - 75.86
27 FedKD - - - 75.9
28 LabelAvg 5 78.33 75.79 76.03
29

CIFAR-100 CIFAR-10 CNN

One-sided Training - 44.96 34.99 38.78
30 FedMD - 46.77 40.40 42.2
31 FedMD-LDP - 47.19 40.40 41.20
32 FedED - - - 40.13
33 FedKD - - - 41.7
34 LabelAvg 3 47.97 41.97 42.91

Comparison under heterogeneous settings
35

CIFAR-10 (σ = 0.1) CINIC-10
VGGNet-16
ResNet- 18
VGGNet-19

One-sided Training - 56.69 18.79 32.29
36 FedMD - 56.62 18.31 32.34
37 FedMD-LDP - 56.26 18.34 31.89
38 FedED - - - 33.5
39 FedKD - - - 34.01
40 LabelAvg 5 58.81 19.10 34.25
41

CIFAR-10 (σ = 0.5) CINIC-10
VGGNet-16
ResNet-18

VGGNet-19

One-sided Training - 73.15 45.76 55.89
42 FedMD - 72.56 49.67 57.58
43 FedMD-LDP - 73.57 50.61 57.52
44 FedED - - - 58.33
45 FedKD - - - 58.9
46 LabelAvg 5 73.89 52.53 59.37
47

CIFAR-10 (σ = 0.9) CINIC-10
VGGNet-16
ResNet-18

VGGNet-19

One-sided Training - 73.15 45.76 64.73
48 FedMD - 72.56 49.67 66.91
49 FedMD-LDP - 73.57 50.60 66.46
50 FedED - - - 67.93
51 FedKD - - - 67.33
52 LabelAvg 5 73.89 52.53 68.01

samples in the public dataset is limited. Our setting aligns with

real-world scenarios because suitable public dataset samples

are always limited in quantity. E.g., in two experiments regard-

ing CIFAR-10, the number of samples in the public datasets

(CIFAR-100 and CINIC-10) is only 3000. On the other hand,

as in literature [5], in the experiments regarding CIFAR-100,

we utilize superclasses (20 in total) instead of subclasses (100

in total) as data labels during training. However, we predict

the subclasses of test samples during testing. Such evaluation

effectively showcases the knowledge transfer effects in FD.

Comparison under Heterogeneous Settings. Theoreti-

cally, LabelAvg is the model-agnostic training approach, which

means it can perform well under both homogeneous and

heterogeneous settings. We conduct several groups of exper-

iments on CIFAR-10 (CINIC-10 as the public dataset) under

different Dirichlet distribution settings (α is set to 0.1, 0.5,

and 0.9, respectively). To simplify the experimental design, we

configure K as 5 in these experiments. Experimental results

are listed in Table IV (Cases 35-52). All experimental results

indicate that LabelAvg outperforms baselines. We demonstrate

convergence regarding different local models in Figure 11.

In FedED and FedKD, the global model is configured as

VGGNet-16. Besides, curves for FedED and FedKD are not

depicted in Figure 11, since these two algorithms naturally

focus on the performance of the global model instead of

client-side local models. Due to the different data distributions

among each client, the same algorithm or model may exhibit

variations across different clients. As a result, LabelAvg’s

performance may not be significant for individual client.

However, in general, except for Client 3 in Figure 11(d),

LabelAvg outperforms the baselines across most clients.

(a) VGGNet-16 on Client 0 (b) ResNet-18 on Client 1

(c) VGGNet-19 on Client 2 (d) VGGNet-16 on Client 3

(e) ResNet-18 on Client 4 (f) VGGNet-19 on Client 5

(g) VGGNet-16 on Client 6 (h) ResNet-18 on Client 7

(i) VGGNet-19 on Client 8 (j) VGGNet-16 on Client 9

Fig. 11. Performance of all client-sided models on CIFAR-10 under het-
erogeneous settings (α=0.9). The x-axis represents epochs while the y-axis
represents accuracy. The red line represents LabelAvg. All curves are smooth.

Communication Data Volume Comparison. In LabelAvg

implementation, K is a hyperparameter used to configure

the number of labels transmitted. In each communication

round(i.e., epoch), for each public data, each client needs

to send K pairs of weight-label and receive one smoothed

label. Thus, the smaller K, the less communication data

volume. Table V lists data volume exchanged during federated
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training via FedMD and LabelAvg, respectively. Compared

with FedMD, LabelAvg can effectively reduce the data volume

under the same setting (i.e., the number of public data samples

and communication rounds). Note that, FedMD and FedMD-

LDP send the same data type, hence their communication

volumes are similar.

TABLE V
COMMUNICATION DATA VOLUME COMPARISON

Cases
The number of

public data samples
The number of
types of labels

Epochs Algorithms Data Volume (MB)

FEMNIST
120

samples of MNIST

16,including
6 types of

public dataset’labels
50

FedMD ≈ 7.324
FedMD-LDP ≈ 7.324

LabelAvg(K=2) ≈ 4.577
LabelAvg(K=3) ≈ 5.035
LabelAvg(K=4) ≈ 5.493
LabelAvg(K=5) ≈ 5.950

CIFAR-10
3000

samples of CIFAR-100

16,including
6 types of

public dataset’labels
200

FedMD ≈ 732.42
FedMD-LDP ≈ 732.42

LabelAvg(K=2) ≈ 457.76
LabelAvg(K=3) ≈ 503.54
LabelAvg(K=4) ≈ 549.32
LabelAvg(K=5) ≈ 595.09

Computational Overhead Comparison. As in many stud-

ies, we evaluate the computational overhead of algorithms by

measuring GPU execution time (ms) in the same hardware

environment and configurations. In particular, the differences

in the computational overhead of algorithms primarily stem

from how the clients handle logits and the number of public

samples. Therefore, we compare the runtime of a single client

regarding VGGNet-16 inference on a public dataset (with

sample sizes of 1000, 3000, and 5000, respectively) across

different baselines. The results are shown in Figure 12, indi-

cating that apart from the sparsify method, the computational

overhead among other algorithms is not significantly different.

Note that, we do not compare FedED and FedKD because

these two methods handle logits in the same way as FedMD.

Fig. 12. Computational Overhead Comparison. Lower is better. Except for
FedMD with sparse logits (red bar), the proposed method’s execution time
(blue bar) is close to the baseline.

The Ability to Defend L-Attack. We adhere to the MNIST

experiment settings outlined in Section VI-A. We utilize

smoothed labels to estimate gradients, which are then used to

update the generator for data reconstruction. Experimental re-

sults are demonstrated in Figure 13. Clearly, L-attack is unable

to effectively extract data information. According to the results

of the above-mentioned gradient visualization experiments,

we believe that the estimated gradients based on smoothed

labels exhibit errors compared to real gradients. Indeed, we

have conducted experiments on additional datasets, and the

attacker’s generator fails to generate simulated images that

reveal sensitive information across all experimental results.

(a) (b) (c) (d) (e)

Fig. 13. Data reconstruction from smoothed labels

Smoothed Labels vs. Sparse Logits. In previous section,

we discussed the advantages of LabelAvg compared to sparsify

logits. In particular, we conducted experiments on FEMNIST

and CIFAR-10 following the settings mentioned above. The

experimental results are shown in Figure 14. For simplicity,

in this group of experiments, we refer to FedMD with sparse

logits as sparsify logits. We observe that, within the same com-

munication round, sparsify logits fail to reach a satisfactory

convergence point, as evidenced by the red line in Figure 14,

whereas LabelAvg achieves high accuracy on both CIFAR-

10 and FEMNIST. Compared with LabelAvg, sparsify logits

result in a greater loss of accuracy in the trained model.

(a) Experiments on FEMNIST (b) Experiments on CIFAR-100

Fig. 14. Comparison between LabelAvg and FedMD with sparse logits.

VII. CONCLUSION

In this paper, we design an attack called L-Attack which

reveals the risk from logits related to public datasets in FD.

Also, we propose LabelAvg, a novel FD algorithm that can

avoid L-Attack by transmitting weighted labels instead of

logits. Experimental results prove LabelAvg is superior to

baselines in terms of accuracy and communication overhead.

Moving forward, we aim to explore the following aspects

in our future work:

• We will further explore attacks against logits. For exam-

ple, we try to investigate other generative models, such as

diffusion models, to reconstruct private data information

from logits.

• We will explore new defense techniques against L-Attack.

For instance, we aim to enhance the performance of FD

algorithms based on logits sparsification, with the goal

of achieving higher accuracy in trained models when

sparsifying logits during training.
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