
Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips:
Experimental Characterization and Analysis

İsmail Emir Yüksel1 Yahya Can Tuğrul1,2 F. Nisa Bostancı1 Geraldo F. Oliveira1

A. Giray Yağlıkçı1 Ataberk Olgun1 Melina Soysal1 Haocong Luo1

Juan Gómez-Luna1 Mohammad Sadrosadati1 Onur Mutlu1

1ETH Zürich 2TOBB University of Economics and Technology

We experimentally analyze the computational capability of
commercial off-the-shelf (COTS) DRAM chips and the robust-
ness of these capabilities under various timing delays between
DRAM commands, data patterns, temperature, and voltage
levels. We extensively characterize 120 COTS DDR4 chips
from two major manufacturers. We highlight four key results of
our study. First, COTS DRAM chips are capable of 1) simulta-
neously activating up to 32 rows (i.e., simultaneous many-row
activation), 2) executing a majority of X (MAJX) operation where
X>3 (i.e., MAJ5, MAJ7, and MAJ9 operations), and 3) copying
a DRAM row (concurrently) to up to 31 other DRAM rows,
which we call Multi-RowCopy. Second, storing multiple copies
of MAJX’s input operands on all simultaneously activated rows
drastically increases the success rate (i.e., the percentage of
DRAM cells that correctly perform the computation) of the
MAJX operation. For example, MAJ3 with 32-row activation (i.e.,
replicating each MAJ3’s input operands 10 times) has a 30.81%
higher average success rate than MAJ3 with 4-row activation
(i.e., no replication). Third, data pattern affects the success
rate of MAJX and Multi-RowCopy operations by 11.52% and
0.07% on average. Fourth, simultaneous many-row activation,
MAJX, and Multi-RowCopy operations are highly resilient to
temperature and voltage changes, with small success rate varia-
tions of at most 2.13% among all tested operations. We believe
these empirical results demonstrate the promising potential
of using DRAM as a computation substrate. To aid future re-
search and development, we open-source our infrastructure at
https://github.com/CMU-SAFARI/SiMRA-DRAM.

1. Introduction
Modern computing systems move vast amounts of data between
main memory (DRAM) and processing elements (e.g., CPU,
GPU, TPU, and FPGA) [1, 2]. Unfortunately, this data move-
ment is a major bottleneck that consumes a large fraction of exe-
cution time and energy in many modern applications [1–28]. To
address this problem, Processing-In-Memory (PIM) [13, 14, 24–
26, 29–121] is a promising paradigm to alleviate data move-
ment bottlenecks [64, 65, 68, 70, 76, 79, 80, 122, 123]. There
are two main approaches to PIM [2, 11]: 1) Processing-Near-
Memory (PNM) [13, 14, 24–26, 29–61, 99, 108], where compu-
tation logic is added near the memory arrays (e.g., in a DRAM
chip or at the logic layer of a 3D-stacked memory [124–126]);
and 2) Processing-Using-Memory (PUM) [56, 62–98, 100–
107, 109, 127, 128], where computation is performed by lever-
aging the analog operational properties of the memory circuitry.

A subset of PIM proposals devise mechanisms that en-
able PUM using DRAM cells for computation, including data

copy and initialization [67, 72, 77, 78, 89, 104, 127], Boolean
logic [56, 64–66, 68, 70, 72, 76, 79, 122, 127–129], majority-
based arithmetic [64, 66, 69, 72, 91, 127, 130, 131], and lookup
table based operations [82, 106, 107, 132]. We refer to DRAM-
based PUM as Processing-Using-DRAM (PUD) and the com-
putation performed using DRAM cells as PUD operations.

PUD benefits from the bulk data parallelism in DRAM de-
vices to perform bulk bitwise PUD operations. Prior works show
that bulk bitwise operations are used in a wide variety of impor-
tant applications, including databases and web search [64, 67,
79, 130, 133–140], data analytics [64, 141–144], graph process-
ing [56, 80, 94, 130, 145], genome analysis [60, 99, 146–149],
cryptography [150, 151], set operations [56, 64], and hyper-
dimensional computing [152–154].

Recent works [72, 86, 89, 129, 155] experimentally demon-
strate that some of these PUD operations can be realized in
commercial off-the-shelf (COTS) DRAM chips by operating
beyond manufacturer-recommended DRAM timing parameters.
To do so, these works [72, 86, 89, 129, 155] carefully engineer
a sequence of DRAM commands that allows the DRAM chip
to activate (i.e., open) multiple (e.g., 2 or 4) DRAM rows si-
multaneously depending on the DRAM row addresses, via a
process that we refer to as multiple row activation. By per-
forming multiple row activation, prior works can 1) copy data
between two DRAM rows [72, 89], 2) perform three-input ma-
jority computation [72, 129, 155], and 3) generate true-random
numbers [86, 89]. To investigate the effectiveness of PUD op-
erations in COTS DRAM chips, such works perform extensive
characterization of real DDR3 and DDR4 chips to identify the
appropriate timing delays between DRAM commands that lead
to PUD operations.

Even though prior works show that COTS DRAM chips
can perform PUD operations, there are several questions about
the effectiveness and robustness of PUD operations in COTS
DRAM chips that should be answered to develop a rigorous un-
derstanding of the computational capabilities of modern DRAM
chips, including:

Q1. In a DRAM subarray with many DRAM rows (512–1024),
is it possible to robustly perform simultaneous activation of
more than four DRAM rows (i.e., simultaneous many-row acti-
vation)?

Q2. What other PUD operations can be realized in COTS
DRAM chips by leveraging simultaneous many-row activation?

Q3. How robustly can PUD operations using simultaneous
many-row activation be performed in COTS DRAM chips?

Q4. Can the robustness of PUD operations be improved?

Q5. What are the effects of various DRAM operating conditions

99

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00024

(i.e., voltage and temperature scaling, data pattern dependence,
and different timing delays between DRAM commands) on the
robustness of PUD operations?

Our goal is to experimentally analyze the computational
capability of COTS DRAM chips and the robustness of such
capability under various operating conditions by answering the
five key questions above. To this end, we conduct real DRAM
chip experiments on 120 COTS DDR4 chips from two major
DRAM manufacturers contained within 18 DRAM modules
and back up our results with circuit-level simulations. Based on
our real DRAM chip experiments, we make 18 new empirical
observations and share 7 key takeaway lessons that provide
answers to the five key questions above.

Answering Q1. COTS DRAM chips are capable of activating
up to 32 DRAM rows, which we call simultaneous many-row
activation. We observe that carefully crafted DRAM commands
simultaneously activate 2, 4, 8, 16, and 32 rows (§4). We hy-
pothesize that the hierarchical row decoder design, present in
high-performance and high-density DRAM chips, is the pri-
mary reason behind the simultaneous many-row activation phe-
nomenon we observe in COTS DRAM chips. Based on this
hypothesis and the obtained mappings between the target row
address and the observed activated DRAM rows, we derive a
row decoder circuitry design that allows simultaneous many-
row activation (§7.1).

Answering Q2. We observe that simultaneous many-row ac-
tivation allows COTS DRAM chips to execute two PUD op-
erations that prior works do not cover. COTS DRAM chips
are capable of 1) executing a majority-of-X (MAJX) operation
where X>3, i.e., MAJ5, MAJ7, and MAJ9 (§5); 2) copying one
source DRAM’s row content concurrently into multiple (e.g.,
31) destination DRAM rows (Multi-RowCopy) (§6).

Answering Q3. We observe that the success rate of a PUD
operation (i.e., the percentage of DRAM cells that reliably and
correctly perform PUD operation) significantly varies across
PUD operations. Our analysis shows that 1) MAJ3, MAJ5, MAJ7,
and MAJ9 operations achieve 99.00%, 79.64%, 33.87%, and
5.91% average success rate, respectively (§5); and 2) copying
one row’s content to 1, 3, 7, 15, and 31 DRAM rows have an
average success rate of 99.996%, 99.989%, 99.998%, 99.999%,
and 99.982% (§6).

Answering Q4. We observe that input replication is a promis-
ing approach to improve the success rate of PUD operations.
Storing multiple copies of MAJX’s input operands on all simulta-
neously activated rows drastically increases the success rate. For
example, our results show that performing MAJ3 with 32-row ac-
tivation provides a 30.81% higher success rate than performing
MAJ3 with 4-row activation (§5 and §7.2).

Answering Q5. Data pattern stored in simultaneously acti-
vated rows affects the success rate of the MAJX and Multi-
RowCopy operations. We observe that data pattern affects the
success rate by 11.52% and 0.07% on average for MAJX oper-
ations and Multi-RowCopy operations. Temperature and volt-
age scaling has a small impact on the success rate of simulta-
neous many-row activation, MAJX, and Multi-RowCopy opera-
tions. Our results show that success rate changes by only 2.13%
(1.32%) across all tested operations when the temperature (volt-
age) changes from 50 ◦C (2.5V) to 90 ◦C (2.1V).

By leveraging our 18 observations and 7 takeaways from
extensive experiments on real DRAM chips, we demonstrate the
performance benefits of supporting MAJX and Multi-RowCopy
in COTS DRAM chips on 1) seven microbenchmarks and 2) a
cold boot attack prevention mechanism.

This paper makes the following key contributions:
• We demonstrate, through an extensive experimental charac-
terization of 120 modern DRAM chips from two major man-
ufacturers, that modern DRAM chips can robustly activate up
to 32 DRAM rows simultaneously.

• We demonstrate a proof-of-concept that COTS DRAM chips
are capable of 1) executing MAJ5, MAJ7, MAJ9, and Multi-
RowCopy operations and 2) the increasing success rate of
MAJX by replicating the input operands of MAJX.

• We show the effect of DRAM operating parameters (i.e.,
timing delays between DRAM commands, data pattern, tem-
perature, and voltage) on simultaneous many-row activation,
MAJX, and Multi-RowCopy operations.
We believe that our findings can be used as a basis for

building new and robust PUD mechanisms into DRAM chips
and DRAM standards in the future. We hope that changes
to the DRAM interface and DRAM chips, inspired by our
proof-of-concept results, can enable PUD mechanisms with
lower overhead and larger performance benefits than what
we demonstrate. To aid future research and development,
we open-source our infrastructure at https://github.com/
CMU-SAFARI/SiMRA-DRAM.

2. Background
We briefly describe 1) DRAM organization, operation, timings,
and 2) Processing-Using-DRAM (PUD) in commercial off-the-
shelf (COTS) DRAM chips.

2.1. DRAM Organization, Operation and Timing
DRAM Organization. Fig. 1 shows the organization of DRAM-
based memory systems. A memory channel connects the pro-
cessor (CPU) to a DRAM module, where a module consists of
multiple DRAM ranks. A rank is formed by a set of DRAM
chips operated in lockstep. A DRAM chip has multiple DRAM
banks, each composed of many DRAM subarrays. Within a
subarray, DRAM cells form a two-dimensional structure inter-
connected over bitlines and wordlines. The row decoder in a
subarray decodes the row address and drives one wordline out
of many. A row of DRAM cells on the same wordline is re-
ferred to as a DRAM row. The DRAM cells in the same column
are connected to the sense amplifier via a bitline. A DRAM
cell stores the binary data value in the form of electrical charge
on a capacitor (VDD or 0 V) and this data is accessed through
an access transistor, driven by the wordline to connect the cell
capacitor to the bitline.

Figure 1: DRAM module, chip, bank, and subarray organization.
DRAM Operation. Data stored in a subarray is accessed at
row granularity. To access a row, the memory controller issues

100

an ACT (ACTIVATE) command to assert the wordline and enable
the sense amplifier. When the wordline is asserted, the cell
capacitor connects to the bitline and shares its charge, causing
a perturbation on the bitline voltage. After the sense amplifier
is enabled, it senses and amplifies the voltage deviation on the
bitline towards VDD or 0 V. Once the data is fetched to the sense
amplifiers, the memory controller may issue WR/RD commands
to write to/read from the row. To access another row, the bank
needs to be in the precharged state. To do so, the memory
controller issues a PRE (PRECHARGE) command to disable the
sense amplifiers, de-assert the wordline, and precharging the
bitlines to VDD/2. Once the bank is precharged, the memory
controller can access another row.

DRAM Timing. To ensure correct operation, the memory con-
troller must obey the DRAM timing parameters specified in
the DRAM interface standards (e.g., DDR4) by the Joint Elec-
tron Device Engineering Council (JEDEC) [156]. We describe
the most relevant timing constraints in the scope of this paper.
The memory controller must wait for the latency of sensing
the row’s data and fully restoring a DRAM cell’s charge (tRAS)
before issuing a PRE command after an ACT command. To open
another row, the memory controller must wait for the latency of
de-asserting a wordline and precharging the bitlines to VDD/2
(tRP) before issuing another ACT command. For more details on
DRAM timing, we refer the reader to prior works [21, 157–159].

2.2. Processing Using COTS DRAM Chips
Simultaneous Many-Row Activation. Current DRAM stan-
dards do not officially support PUD operations. Yet, the design
of COTS DRAM chips does not prevent users from activating
multiple DRAM rows at once by issuing an ACT → PRE → ACT
command sequence (called APA) with violated tRAS and tRP tim-
ing constraints [72, 86, 89, 129, 155, 160]. By doing so, two fun-
damental PUD operations can be performed in COTS DRAM
chips: 1) in-DRAM majority-of-three (as in Ambit [64, 79])
and 2) in-DRAM row copy (as in RowClone [67]).

In-DRAM Majority-of-Three (MAJ3). Prior works [64, 79] in-
troduces the concept of simultaneously activating three rows in
a DRAM subarray (i.e., triple-row activation) through modifica-
tions to the DRAM circuitry. When three rows are concurrently
activated, three cells connected to each bitline share charge
simultaneously and contribute to the perturbation of the bit-
line [64, 79]. Upon sensing the perturbation of the three simulta-
neously activated rows, the sense amplifier amplifies the bitline
voltage toVDD or 0 V if at least two of the three DRAM cells are
charged or discharged, respectively. As such, simultaneously
activating three rows results in a Boolean majority-of-three
operation (MAJ3). Prior works [72, 129, 155] demonstrate that
COTS DRAM chips are capable of performing MAJ3 by simul-
taneously activating multiple rows in the same subarray. The
state-of-the-art mechanism, FracDRAM [129], shows that a
DRAM cell in COTS DDR3 chips can store fractional values
(e.g., VDD/2). FracDRAM uses fractional values to perform
MAJ3 operations while simultaneously activating four DRAM
rows in the same subarray.

In-DRAM Row Copy. RowClone [67] enables data move-
ment within DRAM at row granularity without incurring the
energy and execution time costs of transferring data between

the DRAM and the computing units. An intra-subarray Row-
Clone operation [67] works by issuing two back-to-back ACT
commands: the first ACT copies the contents of the source row A
into the sense amplifiers. The second ACT connects the DRAM
cells in the destination row B to the bitlines. Because the sense
amplifiers have already sensed and amplified the source data
by the time row B is activated, the data in each cell of row B
is overwritten by the data stored in the sense amplifiers (i.e.,
row A’s data). Building on this observation, prior works [72, 89]
experimentally demonstrate that COTS DRAM chips are capa-
ble of performing RowClone operation by enabling consecutive
activation of two DRAM rows in the same subarray.

3. Methodology
We describe our methodology for two analyses. First, we ex-
perimentally characterize the computational capability of 120
commercial off-the-shelf (COTS) DRAM chips from two ma-
jor manufacturers in terms of simultaneously activating many
DRAM rows (§3.2), performing majority operations (§3.3), and
copying one row’s content (concurrently) to multiple rows, i.e.,
Multi-RowCopy (§3.4). Second, to back up our observations
from real-device experiments, we conduct SPICE [161, 162]
simulations (§3.5).

3.1. DRAM Testing Infrastructure
We conduct real DRAM chip experiments using DRAM Ben-
der [155, 163], a DDR4 testing infrastructure that provides
precise control of the DRAM commands issued to a module.
Fig. 2 shows our experimental setup, which consists of six main
components: 1 a Xilinx Alveo U200 FPGA board [164] pro-
grammed with DRAM Bender, 2 a host machine that generates
DRAM commands used in our tests, 3 rubber heaters that
clamp the 4 DRAM module on both sides to avoid fluctua-
tions in ambient temperature, 5 a MaxWell FT200 temperature
controller [165] that keeps the DRAM chips at the target tem-
perature, and 6 an external TTi PL068-P power supply [166],
which enables us to control DRAM wordline voltage (i.e., VPP)
at the precision of ±1 mV.1

DRAM
Module

PCI-e Connection
to the Host Machine

Heater
Pads

FT200
Temperature

Controller

TTi PL068-P
Power Supply

Xilinx Alveo U200
FPGA Board

(with DRAM Bender)

6 1

2 3

4 5

Figure 2: DDR4 DRAM Bender [155] experimental setup.
Real DDR4 DRAM Chips Tested. Table 1 shows the 120 (18)
real DDR4 DRAM chips (modules) from two major DRAM
manufacturers that we focus our analysis on. To demonstrate
that our observations are not specific to a certain DRAM ar-
chitecture/process but rather common across different designs
and generations, we test a variety of DRAM chips spanning

1Modern DRAM chips use two separate voltage rails [156, 167–170]:

1) VDD, used to operate the core DRAM array and peripheral circuitry, and

2) VPP, used exclusively to assert a wordline during a DRAM row activation.

101

different die densities and die revisions.2

Table 1: Summary of DDR4 DRAM chips tested.
DRAM Mfr. #Modules #Chips Die Rev. Density Org. Subarray Size
SK Hynix 7 56 M 4Gb x8 512 or 640

(Mfr. H) 5 40 A 4Gb x8 512

Micron 4 16 E 16Gb x16 1024

(Mfr. M) 2 8 B 16Gb x16 1024

Metric. We define a metric to evaluate the robustness of PUD
operations: the success rate. Success rate refers to the percent-
age of DRAM cells that produce correct output in all test trials
of a PUD operation. Hence, we have two data points here. If a
DRAM cell produces an incorrect result at least once, we refer
to this DRAM cell as an unstable cell that cannot be used to
perform PUD operations. For example, if an operation has a
25% success rate, it means that a quarter of the DRAM cells
always produce correct results in the simultaneously activated
rows and can be used to reliably perform that operation. We
report the success rate distribution, which comes from all tested
row groups in all DRAM chips.
tRAStRAStRAS and tRPtRPtRP Scaling. We test various reduced timing delays 1)
between ACT and PRE commands, i.e., t1, and 2) between PRE
and ACT commands, i.e., t2. All experiments are conducted at
the timing delays that achieve the highest success rate for the
tested PUD operations unless stated otherwise.
Temperature Scaling. We perform our experiments at five
temperature levels: 50◦C, 60◦C, 70◦C, 80◦C, and 90◦C. All
experiments are conducted at 50◦C unless stated otherwise.
VPPVPPVPP Voltage Scaling. We test five VPP levels: 2.5V, 2.4V, 2.3V,
2.2V, and 2.1V. All experiments are conducted at the nominal
VPP level (i.e., 2.5V) unless stated otherwise. In our analysis,
we focus on the effects of VPP on PUD computation. Even
though both VPP and VDD can affect a DRAM chip’s computa-
tion robustness, changing VDD can negatively impact DRAM
reliability in ways unrelated to computation inside a DRAM
subarray (e.g., I/O circuitry instabilities) because VDD supplies
power to all logic elements within the DRAM chip. In con-
trast, VPP affects only the wordline voltage. Therefore, we
expect VPP to influence computation inside a subarray, without
adversely affecting DRAM chip components outside a subar-
ray. VPP also affects data retention [170] and access latency
characteristics [172] of a DRAM chip. Such effects of VPP are
out of the scope of our analyses.
Data Patterns. We use two types of data patterns: random
and fixed data patterns. For the random data pattern, we gen-
erate uniformly distributed random data and fill each activated
row with the random data, where each activated row has a dif-
ferent data pattern. For fixed data patterns (i.e., 0x00/0xFF,
0xAA/0x55, 0xCC/0x33, 0x66/0x99), we fill each activated
row either with 1) all 0x00 or all 0xFF, 2) all 0xAA or all 0x55,
3) all 0xCC or all 0x33, and 4) all 0x66 or all 0x99. All ex-
periments are conducted using the random data pattern (where
we observe the lowest success rate across tested data patterns)
unless stated otherwise.
Number of Instances Tested. We randomly select three sub-
arrays in each bank (a total of 16 banks) per DRAM module.

2We also test Samsung chips; however, we observe no successful PUD

operations. We hypothesize why we do not observe all tested PUD operations

in Samsung chips in §9. We provide much more detail on all tested DRAM

chips in the extended version of this paper [171].

Within each subarray, we randomly test 100 different groups of
rows that are simultaneously activated each for 2-, 4-, 8-, 16-,
and 32-row activation, which results in testing a total of 24K
different groups of simultaneously activated rows per module.
Finding Subarray Boundaries. To understand the compu-
tational capability of PUD operations performed in a DRAM
subarray, we follow the methodology used in prior works to
identify subarray boundaries [72, 86, 89, 129, 155, 160]. We
leverage the observation that it is possible to copy a row’s data
to another row (i.e., RowClone operation [67]) within the same
subarray by leveraging the shared bitlines. We repeatedly per-
form RowClone across all row pairs. If we can copy a row’s
data to another row, we infer that these two rows are within a
subarray. By conducting this experiment, we reverse engineer
the subarray sizes (listed in Table 1) and subarray boundaries in
all tested DRAM modules.

3.2. Simultaneous Many-Row Activation Experiments
In our experiments, we use the ACT RF

t1−→ PRE
t2−→ ACT RS

(APA) DRAM command sequence, where RF is the firstly acti-
vated row (i.e., RowFirst), RS is the secondly activated row (i.e.,
RowSecond), and t1 and t2 are timing delays between command
pairs in the command sequence.
Testing Methodology. Our experiment consists of three steps.
First, we initialize a whole subarray with a predefined data
pattern. Second, we issue an APA command sequence to si-
multaneously activate multiple rows in the subarray. Third, we
issue a WR command with a different data pattern from the prede-
fined data pattern by respecting the timing parameters. This WR
command causes the sense amplifiers to overdrive their bitlines
and thus updates the values of the cells in all simultaneously
activated DRAM rows [86, 173]. After the three-step procedure,
we precharge the bank and read each row in the subarray while
adhering to the nominal timing parameters. When we read all
rows in the subarray, we expect that simultaneously activated
rows store the exact data pattern sent with the WR command.

We test every possible RF and RS combination in the APA
command sequence and various t1 and t2 timing parameters for
each tested subarray. We observe that not all simultaneously ac-
tivated rows fully store the exact data pattern (i.e., simultaneous
many-row activation is not 100% robust.). Hence, we report the
success rate of this simultaneous many-row activation as the
percentage of simultaneously activated rows’ cells that store the
exact data pattern sent with the WR command.

3.3. Bitwise Majority Computation Experiments
Key Idea. Our key idea to perform an in-DRAM majority-of-
X (MAJX) operation consists of four steps. First, we issue an
ACT RF command to assert the wordline of the RF , connecting
RF to the bitline. Second, we issue a PRE command immedi-
ately after the first ACT while greatly violating tRAS. This way,
RF does not have sufficient time to fully share its charge with
the bitline. Third, we issue the second ACT command to an-
other row by greatly violating tRP. This prevents the DRAM
control circuitry from de-asserting RF and activates multiple
rows. All activated rows share their charge with the bitline,
which results in a perturbation in the bitline that corresponds
to a majority operation across these rows. Finally, the sense
amplifier amplifies the perturbation on the bitline. If the MAJX

102

is successful, the sense amplifier overwrites the bitline and all
activated rows’ content with the MAJX’s result. For example, if
we activate three cells at once, and they have A, B, and B values,
after a successful MAJ3 operation, these three cells would have
B as their value.

Replicating Inputs of MAJX. To perform MAJX operation with N-
row activation (i.e., simultaneously activating N rows), we repli-
cate each MAJX input operand (i.e., a total of X input operands)
�N/X� times.3 For example, if we perform MAJ3 with 32-row
activation, we replicate each input ten (i.e., �32/3�= 10) times.
If the number of DRAM rows opened is not a multiple of X (i.e.,
N%X > 0), we initialize N%X of the activated DRAM rows
in a way that they do not contribute to bitline voltage, using a
Frac [129] operation (§2.2).4 We call these rows neutral rows.
For example, if we perform MAJ3 with 32-row activation, we
set the remaining two (32%3= 2) DRAM rows neutral.

Testing Methodology. We characterize the MAJX operation in
five steps: 1) store MAJX’s input operands (a total of X operands)
in X rows, 2) replicate inputs of MAJX into remaining simultane-
ously activated rows 3) initialize neutral rows using the Frac
operation, if it is needed, 4) perform the MAJX operation by

issuing ACT RF
t1−→ PRE

t2−→ ACT RS command sequence, 5) wait
for tRP, and 6) read back the values in the row buffer.5

3.4. Multi-RowCopy Experiments

Key Idea. Copying one source DRAM row’s content to multiple
destinations DRAM rows at once (Multi-RowCopy) comprises
of four steps in our real chip evaluation. First, we issue ACT to
the source row (i.e., RF) to assert the wordline and to connect
RF to the bitlines. Second, we issue PRE after waiting for
tRAS. This ensures the sense amplifier senses RF correctly and
drives bitlines to the source row’s charge. Third, we issue the
second ACT command by greatly violating tRP (i.e., ≤ 3ns).6

The second ACT command interrupts the PRE command. By
doing so, it 1) prevents the bitline from being precharged to
VDD/2, 2) keeps RF and the sense amplifier enabled, and 3)
simultaneously activates many rows. Finally, the sense amplifier
overwrites all activated rows with the source row’s data. If the
Multi-RowCopy is successful, all the simultaneously activated
rows with an APA command have the source row’s data.

Testing Methodology. We characterize the Multi-RowCopy
operation in four steps: we 1) initialize all destination rows with
a predetermined data pattern, 2) initialize the source row with
a different data pattern from the predetermined data pattern, 3)
perform the Multi-RowCopy operation, 4) precharge the bank
and individually read each destination row while adhering to
the manufacturer-recommended DRAM timing parameters.

3In Boolean algebra, when MAJ inputs are replicated, MAJ maintains the

functionality, e.g., MAJ6(A,B,C,A,B,C)=MAJ3(A,B,C).
4We use Frac parameters that achieve the best success rate for MAJX opera-

tion (i.e., the number of Frac operations, the timing delay, and the location of

neutral rows). We refer the reader to FracDRAM [129] for more detail.
5For Mfr. M, Frac operation is not supported. However, we observe that the

sense amplifiers of these modules are always biased to one or zero. Initializing

the neutral rows with all zeros/ones enables a MAJX operation.
6Prior works [72, 89, 155] perform in-DRAM copy operation from one row

to another using APA by waiting for more between PRE and ACT than Multi-
RowCopy does (e.g., for 6ns). This results in consecutive activation of two rows.

3.5. SPICE Simulations
To provide insights into our real-chip-based experimental ob-
servations, we conduct SPICE [162] simulations to measure
the bitline and cell voltage levels. We extend a DRAM model
used in prior work [172] that allows us to perform multiple-row
activation. We use LTspice [161] with the reference 55 nm
DRAM model from Rambus [174] and scale it based on the
ITRS roadmap [175, 176] to model the 22 nm technology node
following the PTM transistor models [177].7 To account for pro-
cess variation, we perform Monte-Carlo simulations [178] over
104 iterations by randomly varying the capacitor and transistor
parameters 10%, 20%, 30%, and 40% for each run.

4. Characterization of Simultaneous Many-Row
Activation in COTS DRAM Chips

We provide two key analyses on simultaneous many-row ac-
tivation in COTS DRAM chips. First, we characterize the
robustness of simultaneous many-row activation by analyzing
the effect of 1) timing delay between each command pair in the
ACT→ PRE→ ACT (APA) sequence, 2) DRAM chip temperature,
and 3) wordline voltage underscaling. Second, we analyze how
the power consumption of simultaneous many-row activation
measures against standard DRAM operations.

Effect of Timing Delay. Fig. 3 shows the distribution of the
success rate for different numbers of simultaneously activated
rows across all tested row groups in all DRAM chips in a box
and whiskers plot for different combinations of t1, the timing
between ACT and PRE (rows of subplots) and t2, the timing
delay between PRE and ACT (columns of subplots).8 We make
Observations 1 and 2 from Fig. 3.

Figure 3: Effect of t1(ns) and t2(ns) on the success rate of simulta-
neous many-row activation.

Observation 1. COTS DRAM chips can simultaneously
activate up to 32 rows with a >99.85% success rate.

When we issue an APA with the best timing delay (i.e., t1 =
3ns, t2 = 3ns), we can perform 2-, 4-, 8-, 16-, and 32-row
activation with an average success rate of 99.99%, 99.99%,
99.99%, 99.99%, and 99.85%. We derive Takeaway 1 from
Observation 1.

Takeaway 1. COTS DRAM chips are capable of simultane-
ously activating 2, 4, 8, 16, and 32 rows at very high success
rates.

7We do not expect SPICE simulation and real-world experimental results to

be identical because a circuit model cannot simulate a real DRAM chip’s exact

behavior without proprietary design and manufacturing information.
8In a box-and-whiskers plot, the box is lower-bounded by the first quartile

and upper-bounded by the third quartile. The inter-quartile range (IQR) is the
distance between the first and third quartiles (i.e., box size). Whiskers show the

minimum and maximum values.

103

Observation 2. If t1 or t2 are lower than 3ns, we observe a
drastic decrease in success rate.

For example, for 8-row activation, choosing t1=t2=1.5ns de-
creases the average success rate by 21.74% compared to the
best timing delay configuration (i.e, t1=1.5ns and t2=3ns). We
hypothesize that the row decoder circuitry [173] cannot fully
activate all cells in the to-be-activated rows due to the very low
delay (t1+t2=3ns) between two ACTs in APA command sequence.

Temperature Scaling. Fig. 4a shows the average success rate
(y-axis) of simultaneously activating various numbers of rows
(x-axis) under five temperature levels: 50 ◦C, 60 ◦C, 70 ◦C,
80 ◦C, and 90 ◦C. We make Observation 3 from Fig. 4a.

(a) (b)

Figure 4: Average success rate of simultaneous many-row activa-
tion with varying (a) temperature and (b) wordline voltage.

Observation 3. Increasing temperature up to 90 ◦C has a
small effect on the success rate.

We observe only a 0.07% average success rate decrease on
average on simultaneous many-row activation when the tem-
perature is increased from 50 ◦C to 90 ◦C. We hypothesize
that since simultaneous many-row activation experiments use
I/O peripheral circuitry to perform WR commands, temperature
could affect not only the subarray elements and their operation
(e.g., DRAM cell, sense amplifiers, and charge-sharing) but
also peripheral circuitry and their operation (e.g., write driver-
s/buffers and driving bitlines with the data pattern sent with WR
command [173]). We believe that fully understanding the effect
of temperature on the reliability of simultaneous many-row ac-
tivation begs more investigation at the circuit level, which we
leave for future work.

Voltage Scaling. Fig. 4b shows the average success rate (y-axis)
of simultaneously activating various numbers of rows (x-axis)
under five VPP levels (in different line colors): 2.5V, 2.4V, 2.3V,
2.2V, and 2.1V.9 We make Observation 4 from Fig. 4b.

Observation 4. Reducing the wordline voltage only slightly
affects the success rate of simultaneous many-row activation.

Underscaling voltage from 2.5V to 2.1V decreases the aver-
age success rate by at most 0.41%.

We derive Takeaway 2 from Observations 3 and 4.

Takeaway 2. Simultaneous many-row activation is highly
resilient to temperature and wordline voltage in COTS DRAM
chips.

Power Consumption. We evaluate the power consumption
of simultaneous many-row activation operations and standard
DRAM operations (i.e., RD, WR, ACT+PRE, and REF) using one
DRAM module.10 Fig. 5 shows the average power consumption

9We test two DRAM modules due to time and infrastructure limitations.
10We provide a detailed description of how we conduct this experiment in

the extended version of this paper [171]

measured for each operation. Dashed lines represent standard
DRAM operations. We make Observation 5 from Fig. 5.

Figure 5: Power consumption of simultaneous many-row activa-
tion and standard DRAM operations.

Observation 5. Simultaneous many-row activation power
draw likely meets the power budget of DDR4 chips.

The power consumption of simultaneously activating 32
rows is 21.19% smaller than the most power-consuming single
DRAM operation’s (i.e., REF) power consumption.

5. Characterization of Majority Operations in
COTS DRAM Chips

We experimentally characterize the robustness of majority-of-X
(MAJX) operations, where X ∈ {3,5,7,9}, under four operating
parameters: 1) timing delay between each command pair in the
APA sequence, 2) data pattern, 3) DRAM chip temperature, and
4) wordline voltage.

Effect of Timing Delay. Fig. 6 shows the distribution of the
MAJ3’s success rate for different numbers of simultaneously
activated rows in a box and whiskers plot for different combina-
tions of t1 (i.e., the timing between ACT and PRE) and t2 (i.e., the
timing delay between PRE and ACT).8 We replicate the MAJ3’s
input operands 1, 2, 5, and 10 times when performing the MAJ3
operation with 4-, 8-, 16-, and 32-row activation, respectively
(§3.3). We make Observations 6 and 7 from Fig. 6.

Figure 6: Effect of t1(ns), t2(ns), and the number of simultaneously
activated rows on MAJ3 operation.

Observation 6. Storing multiple copies of MAJ3’s input
operands drastically increases the success rate of MAJ3.

MAJ3 with 32-row activation achieves 30.81% higher success
rate than MAJ3 with 4-row activation. We hypothesize that MAJ3
with 4-row activation has a lower success rate than MAJ3 with
32-row activation because the deviation in a bitline’s voltage
is less likely to exceed the reliable sensing margin. For such a
bitline, the sense amplifier fails to reliably produce correct MAJX
results. Storing multiple copies of MAJ3’s input operands could
increase the deviation on the bitline voltage, which results in
an increased success rate (the circuit-level simulations in §7.2
supports our observation and hypothesis).

104

Observation 7. Timing delays between commands in the APA
command sequence heavily affects the success rate of MAJ3.

Choosing t1 = 1.5ns and t2 = 3ns to perform MAJ3 with 32-
row activation achieves 99.00% average success rate, which
is 45.50% higher than the second highest average success rate
achieved by a different timing configuration (i.e., t1 = t2 =
3ns). We have two hypotheses to explain Observation 7. First,
every activated row should contribute equally to the charge-
sharing process to achieve the highest possible success rate in
the MAJX operation. To achieve this, the timing delay between
two ACT commands (t1 + t2) should be kept as low as possible
since increasing this delay could cause the first activated row
of the APA sequence (i.e., RF) to share its charge more than
others. Second, too small a delay between PRE and ACT may
prevent (e.g., choosing t2 = 1.5ns) the assertion of intermediate
signals in the row decoder circuitry, leading to an inability to
simultaneously activate multiple rows. Consequently, choosing
t1 = 1.5ns and t2 = 3ns achieves the highest success rate.

Data Pattern. We analyze the effect of data pattern on the
success rate for MAJ3, MAJ5, MAJ7, and MAJ9 operations11 as
we vary the number of simultaneously activated rows. Fig. 7
shows the success rate distribution of MAJ3, MAJ5, MAJ7, and
MAJ9 operations across DRAM cells for five tested data patterns.
We make Observations 8-10 from Fig. 7.

Figure 7: Success rates of MAJ3, MAJ5, MAJ7, and MAJ9 operations
with different data patterns.

Observation 8. We can perform MAJ5, MAJ7, and MAJ9 opera-
tions in COTS DRAM chips.

COTS DRAM chips are capable of performing MAJ5, MAJ7,
and MAJ9 operations. We observe that performing MAJ5, MAJ7,
and MAJ9 operations with 32-row activation achieves average
success rates (across tested groups of rows that are simultane-
ously activated) of 79.64%, 33.87%, and 5.91%, respectively.

We derive Takeaway 3 from Observation 8.

Takeaway 3. COTS DRAM chips are capable of performing
MAJ5, MAJ7, and MAJ9 operations.

Observation 9. Data pattern significantly affects the success
rate of the MAJX operation.

Fixed data patterns (i.e., 0x00/0xFF, 0xAA/0x55, 0xCC/0x33,
and 0x66/0x99 data patterns) have a small and similar effect on
the success rate of the MAJX operation, whereas uniformly dis-
tributed random data pattern significantly decreases the success
rate of the MAJX operation. For example, when using 32-row
activation, MAJ3, MAJ5, MAJ7, and MAJ9 operations with ran-

11We omit MAJX operations that have <1% success rate at most (i.e., MAJ11+
for Mfr. H, and MAJ9+ for Mfr. M).

dom data pattern have 0.68%, 13.85%, 32.56%, and 16.51%
lower average success rates than MAJ3, MAJ5, MAJ7, and MAJ9
operations with all 0x00/0xFF data pattern, respectively.

Observation 10. Storing multiple copies of MAJX’s input
operands increases the success rate of not only MAJ3 but also
MAJ5, MAJ7, and MAJ9 operations.

For example, storing multiple copies increases the average
success rate of MAJ5, MAJ7, and MAJ9 with random data pattern
by 56.27%, 35.15%, and 13.11%.

We derive Takeaway 4 from Observations 6 and 10.

Takeaway 4. Storing multiple copies of MAJX’s input
operands significantly increases the success rate of the MAJX
operation in COTS DRAM chips.

Temperature Scaling. Fig. 8 shows the success rate distribution
of the MAJX operation with various simultaneously activated
rows at five different temperature levels: 50 ◦C, 60 ◦C, 70 ◦C,
80 ◦C, and 90 ◦C. We make Observations 11 and 12 from Fig. 8.

Figure 8: Success rate of MAJX at different DRAM chip tempera-
tures.

Observation 11. Temperature slightly affects the success rate
of the MAJX operation.

For example, from 50 ◦C to 90 ◦C, the average success rate
varies by 4.25% on average across all the tested operations.
We hypothesize that increasing the temperature could reduce
the threshold voltages of cells’ access transistors, and thus, the
charge-sharing operation among activated rows and bitlines
happens faster and stronger [179, 180]. Consequently, the MAJX
operation exhibit higher success rates at higher temperatures.

Observation 12. Storing multiple copies of MAJX’s input
operands lowers the effect of temperature on success rate.

For example, performing MAJ3 with 32-row activation has at
most 1.65% success rate variations, whereas MAJ3 with 4-row
activation has at most 15.20%.

Voltage Scaling. Fig. 9 shows the success rate distribution
of the MAJX operation at five different wordline voltage (VPP)
levels: 2.5V, 2.4V, 2.3V, 2.2V, and 2.1V.9 We make Observation
13 from Fig. 9.

Figure 9: Effect of wordline voltage on the success rate of the MAJX
operation.

105

Observation 13. Wordline voltage slightly affects the success
rate of the MAJX operation.

Success rate of the MAJX operation has a 1.10% variation on
average across all the tested operations.

We derive Takeaway 5 from Observations 9, 11, and 13.

Takeaway 5. Wordline voltage and temperature only slightly
affect the success rate of the MAJX operation, whereas data
pattern has a significant effect on success rate.

6. Characterizing Multi-Row Initialization
We experimentally characterize the Multi-RowCopy operation
where one source row’s content can concurrently be copied to
up to 31 destination rows. We evaluate the robustness of the
Multi-RowCopy operation under four key parameters: 1) timing
delay between each command pair in the APA sequence, 2) data
pattern, 3) chip temperature, and 4) wordline voltage.

Effect of Timing Delay. Fig. 10 shows the distribution of the
success rate for different numbers of destination rows in a box
and whiskers plot8 for different combinations of t1, the timing
between ACT and PRE and t2, the timing delay between PRE and
ACT. We make Observations 14 and 15 from Fig. 10.

Figure 10: Effect of t1(ns), t2(ns) and the number of simultaneously
activated rows on the success rate of the Multi-RowCopy operation.

Observation 14. COTS DRAM chips can copy one row’s
content to up to 31 rows with a >99.98% success rate.

When we use the timing delays that achieve the highest suc-
cess rate (i.e., t1=36ns and t2=3ns), copying one source row’s
content to 1, 3, 7, 15, and 31 destination rows has an average
success rate of 99.996%, 99.989%, 99.998%, 99.999%, and
99.982%. We hypothesize that waiting for the tRAS timing pa-
rameter (i.e., t1=36ns) before issuing a PRE in the APA command
sequence ensures that the sense amplifier senses the source row
correctly and drives the bitlines to the source row’s charge level.

Observation 15. Low t1 (i.e., t1 = 1.5ns) has a significantly
lower success rate than other timing configurations.

When we choose t1 as 1.5ns, Multi-RowCopy achieves
49.79% lower success rate than the second worst timing config-
uration. We hypothesize that decreasing t1 (e.g., to t1 = 1.5ns)
could cause the sense amplifiers to not fully drive the bitlines
with the source row’s charge, which results in low success rates.

Takeaway 6. COTS DRAM chips are capable of copying
one row’s data to 1, 3, 7, 15, and 31 other rows at very high
success rates.

Data Pattern. Fig. 11 shows the average success rate of Multi-
RowCopy (y-axis) for different numbers of destination rows (x-
axis) with three data patterns (in different line colors). We make
Observation 16 from Fig. 11.

Figure 11: Data pattern dependence of Multi-RowCopy.

Observation 16. Copying all-1s to 31 rows has a slightly
lower success rate than copying other data patterns.

Although copying up to 15 rows has a small (i.e., at most
0.11%) success rate difference among tested data patterns, when
we copy all-1s to 31 rows, we observe a 0.79% decrease in
success rate compared to all-0 and random data patterns.
Temperature Scaling. Fig. 12a shows the average success rate
of Multi-RowCopy (y-axis) for different numbers of destination
rows (x-axis) at five temperature levels (in different line colors):
50 ◦C, 60 ◦C, 70 ◦C, 80 ◦C, and 90 ◦C. We make Observation
17 from Fig. 12a.

(a) (b)

Figure 12: Average success rate of Multi-RowCopy operations with
varying (a) temperature and (b) wordline voltage scaling.

Observation 17. Increasing temperature up to 90 ◦C has a
very small effect on the success rate of all the tested Multi-
RowCopy operations.

Increasing the DRAM chip temperature from 50 ◦C to 90 ◦C
has 0.04% success rate variation on average of all the tested
Multi-RowCopy operations.
Voltage Scaling. Fig. 12b shows the average success rate of
Multi-RowCopy (y-axis) for different numbers of destination
rows (x-axis) at five voltage levels (in different line colors):
2.5V, 2.4V, 2.3V, 2.2V, and 2.1V.9 We make Observation 18
from Fig. 12b.

Observation 18. Reducing the wordline voltage has a small
impact on the success rate.

Underscaling the VPP by 0.4V decreases the success rate by
1.32% at most across all the tested Multi-RowCopy operations.

We derive Takeaway 7 from Observations 16-18.

Takeaway 7. Multi-RowCopy in COTS DRAM chips is
highly resilient to changes in data pattern, temperature, and
wordline voltage.

7. PUD Operations in COTS DRAM Chips:
Hypothesis & Underlying Mechanisms

We have experimentally demonstrated that COTS DRAM chips
are capable of performing PUD operations by violating DRAM

106

timing parameters and leveraging simultaneous many-row acti-
vation. To fundamentally understand the reasons of this capabil-
ity, one would have to obtain access to the micro architectural
design of the DRAM modules we test, which, unfortunately, is
not publicly available. However, based on the known literature
on modern DRAM chips [72, 86, 129, 155, 173, 181–183], open-
sourced SPICE models of DRAM arrays [159, 184, 185], and
our observations (§4-6), we draw two hypotheses to shine light
on our experimental observations. First, we hypothesize that si-
multaneous many-row activation is possible in real DRAM
chips due to the hierarchical DRAM row decoder modern
DRAM devices employ (§7.1). Second, we hypothesize that
input replication improves the success rate of MAJX operation by
increasing bitline voltage perturbation toward a margin that the
DRAM sense amplifier can produce correct MAJX result (§7.2).

7.1. Hypothetical Row Decoder Design
We explain how a hierarchical DRAM row decoder cir-
cuitry [181], which is used to construct high-performance and
high-density DRAM chips, could allow for simultaneous acti-
vation of many DRAM rows. The row decoder circuitry in a
DRAM bank decodes the n-bit row address (RA) and asserts
a wordline out of 2n wordlines. Modern DRAM chips have
multiple tiers of decoding stages to reduce latency, area, and
power consumption [181–183]. We analyze the row decoder
circuitry of a COTS DRAM chip [186], which has 216 rows in
a bank. We observe that in this chip, each subarray consists
of 29 rows and the number of subarrays in a bank is 27. We
present a hypothesis regarding the row decoder circuitry that
allows simultaneous many-row activation and the sequence of
operations that occur in the row decoder when consecutive ACT
and PRE commands are issued.
Row Address Indexing. We observe that the lower-order 9
bits of the RA are used to index a row in a subarray, while the
higher-order 7 bits are used to index a subarray in a bank. To
do so, we carefully reuse the DRAM row adjacency reverse
engineering methodology described in prior works [160, 187].
Detailed Row Decoder Design. Fig. 13 illustrates a hypothet-
ical row decoder circuitry in a bank that consists of two com-
ponents: 1) Global Wordline Decoder (GWLD) (1) and 2)
Local Wordline Decoder (LWLD) (2). When an ACT command
is issued, three operations occur in the following order. First,
GWLD decodes the higher-order 7 bits of the RA (RA[9:15])
and drives the Global Wordline (GWL) that enables the LWLD
of a subarray (e.g., GWL0 enables LWLD of SA0 in Fig. 13).
Second, Stage 1 of LWLD predecodes the lower-order 9 bits
of the RA (RA[0:8]) in five tiers of predecoders (Predecoder
A, B, C, D, and E; 3) and latches the predecoded address bits
(PA0,PA1, ...,PE3). Third, Stage 2 of LWLD decodes the pre-
decoded P signals to assert the corresponding Local Wordline
(LWL) in Stage 2 (4). When a PRE command is issued with
standard DRAM timing parameters, the latched predecoded P
signals are correctly de-asserted the corresponding LWL.
Activating Multiple Rows: A Walk-Through. Reducing the
latency between PRE and the second ACT commands (i.e., tRP)
allows the predecoders to latch the next RA without deasserting
the RA targeted by the first ACT command. Hence, after the
second ACT command, depending on the target addresses of
APA sequence, multiple latches of each predecoder in LWLD

SA 1

SA 127

GWL1

GWL127

1

X

2

Predecoder A

L

2

X

4

Predecoder B

PB3

PB1
PB2

PA0

PA1

2

X

4

Predecoder E
PE0

PE3

PE1
PE2

……

RA[0]

PB0

M
W
L
0
•
P
E
0
•
P
D
0
•
P
C
0

…

PB0

PA1

PA0

PB3

PA1

PA0

… …
LWL1…

LWL6

LWL7

…

LWL504

LWL505

LWL510

LWL511

Stage 1 Stage 2

RA[1]

RA[2]

RA[7]

RA[8]

RA[9]

RA[10]

RA[15]

…

GWL0

L

L

L

L

L

L

L

L

L

LWL0

…

PB0

PA1

PA0

PB3

PA1

PA0

M
W
L
0
•
P
E
3
•
P
D
3
•
P
C
3

SA 0

L
W
L
D

4
3

2

SA 1

SA 127

GWL1

GWL127

…

G
W
L
D

1

Figure 13: Hypothetical row decoder design.
can be set. By changing the row addresses targeted by two ACT
commands, we can control the number and addresses of the
simultaneously activated rows in a subarray.

Fig. 14 demonstrates an example of simultaneously activating
four rows in the same subarray when the ACT 0 → PRE→ ACT
7 is issued with violated timings.The memory controller issues
each command (shown in orange boxes below time axis) at the
corresponding tick mark, and asserted signals are highlighted
in red. The bank is initially precharged and no signals in the
row decoder circuitry are asserted (1).

1

X

2

Predecoder A

L

2

X

4

Predecoder B

PB3

PB1
PB2

PA0

PA1
RA[0]

PB0
RA[1]

RA[2]

L

L

L

L

L

G
W
L
0
•
P
E
0
•
P
D
0
•
P
C
0

PB0

PA1

PA0

PB1

PA1

PA0

LWL1

LWL2

LWL3

LWL0

PB2

PA1

PA0

PB3

PA1

PA0

LWL5

LWL6

LWL7

LWL4

1

X

2

Predecoder A

2

X

4

Predecoder B

PB3

PB1
PB2

PA0

PA1

RA[0]

=0

PB0RA[1]

=0
RA[2]

=0

L

L

L

G
W
L
0
•
P
E
0
•
P
D
0
•
P
C
0

PB0

PA1

PB1

PA1

LWL1

LWL2

LWL3

LWL0

PB2

PA1

PB3

PA1

LWL5

LWL6

LWL7

LWL4

Predecoder A

2

X

4

Predecoder B

PB3

PB1
PB2

PA0

PA1

PB0RA[1]

=1
RA[2]

=1

G
W
L
0
•
P
E
0
•
P
D
0
•
P
C
0

PB0

PA1

PB1

PA1

LWL1

LWL2

LWL3

LWL0

PB2

PA1

PB3

PA1

LWL5

LWL6

LWL7

LWL4

1 Initial State 2 Activating Row 0 3 Activating Four Rows

time

tRAS

ACT Row 0 PRE

<3ns

�

�

�

�

ACT Row 7�

L

L

L

PA0

PA0

PA0

PA0

L

L

L

L

L

L

PA0

PA0

PA0

PA0

1

X

2

RA[0]

=1

Figure 14: Example of activating multiple rows in hypothetical
row decoder design. Red represents asserted signals.

We simultaneously activate four rows in X steps. First,
we issue an ACT command to Row 0 (a), and wait for the
manufacturer-recommended tRAS (b). This results in the pre-
decoders asserting PA0 and PB0 signals, which drive LWL0 and
activate Row 0 (2). Second, we issue a PRE command (c)
with violated tRP timing, e.g., <3ns (d), and we issue another
ACT command to Row 7 (e). Issuing back-to-back PRE→ACT
asserts PA1 and PB3 signals without de-asserting PA0 and PB0
(3). As a result, PA0, PA1, PB0, and PB3 signals are set simulta-
neously, and thus the decoder tree asserts LWL0, LWL1, LWL6,
and LWL7 wordlines, thereby simultaneously activating rows 0,
1, 6, and 7.

We formulate our observation as follows: to activate 2N rows,
N different predecoders have to latch two predecoded P signals.
For instance, as illustrated in Fig. 14, to activate 4 rows, we
issue APA command sequence that targets the rows that only
latch the two different predecoders’ (i.e., Predecoders A and
B) two outputs (i.e., {PA0, PA1} and {PB0, PB3}). Hence, to
activate 32 rows, an APA sequence needs to target such rows
that make all predecoders latch two outputs (e.g., ACT 127 →
PRE→ ACT 128). We hypothesize that the upper bound for the
number of rows that are simultaneously activated depends on
the number of predecoders. The examined module likely has
five predecoders, and thus, we can activate up to 25 rows.

7.2. Increasing Success Rate by Leveraging Input
Replication

Current DRAM standards do not officially support the MAJX
operation. Yet, by leveraging the fundamental design and opera-

107

tional principles of COTS DRAM chips, it is possible to perform
MAJX by issuing APA with violated timing parameters: tRAS and
tRP (§5). Doing so can reduce the bitline voltage perturbation
compared to a standard DRAM activation operation (i.e., single
row activation), as multiple cells are simultaneously connected
to the same bitline. As a result, the reduced bitline voltage
perturbation is less likely to exceed reliable sensing margin,
and the sense amplifier fails to reliably produce correct MAJX
results. We hypothesize that by storing multiple copies of MAJX
input operands on all simultaneously activated rows (which we
call input replication), the bitline voltage can be increased and
perturbed towards a safer margin and, thus, potentially increase
the success rate of MAJX operations.

To test our hypothesis, we conduct SPICE simulations and
analyze the effect of input replication on the success rate of one
example MAJX operation, MAJ3(1,1,0). Fig. 15 shows the effect
of process variation on the sensing operation for MAJ3(1,1,0)
with N-row activation, where N ∈ {1,4,8,16,32}. Fig. 15a de-
picts the bitline perturbation distribution right before the sensing
operation (y-axis) across 1000 different sets of N DRAM cell(s)
(e.g., for 4-row activation, we test 1000 different sets of four
cells) for different process variation percentages (x-axis). Each
N = 1 box represents the bitline bitline perturbation distribution
for a single-row activation. Boxes for other N values show
the bitline perturbation distribution for 4-, 8-, 16-, and 32-row
activation. Fig. 15b shows the success rate of MAJ3(1,1,0) with
N-row activation, where N ∈ {4,8,16,32}.

� �� �� �� ��
��������	
��
�������

����

�

���

���

�
��
��

�
��
�
�
�
�
�
�

�
��

�	

�

�� � � 	 �
 ��

(a)

� �� �� �� ��
��������	
��
�������

��

��

���

�
�
�
�
�
�
�
��

�
�
��
�
�

�
�

	

�

��

(b)

Figure 15: (a) Effect of input replication on the bitline deviation (b)
and the success rate of MAJ3 for N-row activation across different
process variations using SPICE simulations

We make three key observations based on Fig. 15. First, in-
creasing the number of simultaneously activated rows increases
the bitline perturbation in every process variation percentage.
On average, performing MAJ3 with 32-row activation (i.e., ten
copies for each input operand) has 159.05% higher bitline volt-
age perturbation than performing MAJ3 with 4-row activation on
average. Second, activating more than eight rows always results
in a higher bitline perturbation than single-row activation on
average for every process variation percentage. Third, input
replication results in a higher success rate under all process
variation percentages. The success rate of MAJ3 with 4-row
activation reduces by 46.58% when process variation increases
from 0% to 40%. In contrast, the success rate of MAJ3 with
32-row activation reduces only by 0.01%. We conclude that
higher success rates observed with replicated inputs in COTS
DRAM chips (§5) due to bitline voltage is perturbed towards a
more reliable sensing margin than no replication.

8. Case Studies
We study the potential performance benefits of enabling the new
PUD operations (i.e., MAJ5, MAJ7, MAJ9, and Multi-RowCopy)

we demonstrated in COTS DRAM chips. We analyze the po-
tential performance gain using new PUD operations in 1) seven
majority-based arithmetic & logic operations and 2) content
destruction operations for cold-boot attack prevention.

8.1. Majority-Based Computation
Majority-Based Boolean and Arithmetic Operations. Major-
ity operations can be used to implement 1) logic operations such
as AND/OR [64, 65, 72, 76, 79, 90, 130]) and XOR [188], and
2) full addition [72, 90, 127, 130]. These operations can be used
as basic building blocks for more complex PUD computation
(e.g., multiplication) [72, 80, 90, 131].

Experimental Methodology. We evaluate the execution time of
seven arithmetic & logic microbenchmarks implemented using
MAJX operations (MAJ3, MAJ5, and MAJ7 for Mfr. M and MAJ3,
MAJ5, MAJ7, and MAJ9 for Mfr. H). We perform 32-bit logic
(AND, OR, and XOR) and arithmetic (addition, subtraction,
multiplication, and division) computations on 8KB elements.

We use DRAM Bender [155] to tightly schedule the DRAM
commands to perform MAJX, Multi-RowCopy, and RowClone
operations and measure their latency. To measure the latency of
MAJX operations with N-row activation, we perform RowClone
to copy the MAJX inputs into X number of rows and replicate
the input operations into N rows using Multi-RowCopy op-
erations. We use the empirical success rates (obtained from
DRAM chips) and calculate the throughput for each MAJX oper-
ation. We then choose the group of rows that are simultaneously
activated, which produces the highest throughput across all
18 tested DRAM modules for each MAJX operation. We ana-
lytically model the execution time of the arithmetic and logic
microbenchmarks using the highest throughput values. For the
baseline, we use the highest throughput of MAJ3 with 4-row ac-
tivation and RowClone operations, which is the state-of-the-art
for PUD operations.

Performance Evaluation. Fig. 16 shows the execution time
speedup of seven microbenchmarks that use MAJX operations
in DRAM chips from two manufacturers normalized to the
baseline (i.e., MAJ3 with 4-row activation), the blue dashed line.
We make three key observations. First, new MAJX operations
(i.e., MAJ5, MAJ7, and MAJ9) improve performance over MAJ3
in all microbenchmarks. On average, new MAJX operations
provide 121.61% (46.54%) higher performance over using only
MAJ3 in Mfr. M (Mfr. H). Second, increasing the number of
input operands in MAJX improves performance. MAJ7 provides
62.10% (31.71%) higher performance than MAJ5 in Mfr. M (Mfr.
H). Third, in Mfr. H, MAJ9 leads to performance degradation
of 114.12%. This is because MAJ9 has a poor success rate
(shown in Fig. 7), which requires repeatedly performing the
MAJ9, resulting in higher execution time. We conclude that
enabling new MAJX operations has great potential to improve
the performance of majority-based computation.

Majority-based Error Correction Operations. Majority oper-
ations could be useful for many systems that experience errors
frequently, such as systems in space environments [189–191].
One common reliability technique for mitigating these errors
is triple modular redundancy (TMR) [189, 192]. TMR stores
three copies of the original data and performs majority voting
to decide the correct output. A single bit error in TMR does

108

Figure 16: Speedup of using MAJ5, MAJ7, and MAJ9 over the state-
of-the-art (MAJ3) in seven arithmetic & logic microbenchmarks.

not produce any error as the majority operation would calcu-
late the correct result based on the other two correct copies of
data [189, 192].
MAJ3 operations can be leveraged to perform majority voting

and thus could be useful for such systems. Since we observe
that off-the-shelf DRAM chips can perform up to seven input
majority operations (i.e., MAJ9), MAJX operations can be used
to correct not only a single fault but up to three faults in the
systems. Due to space limitations, we leave the exploration of
this use case to future work.

8.2. Content Destruction-Based Cold-Boot Attack
Prevention

Cold-Boot Attack Prevention Mechanism. A cold boot attack
is a physical attack on DRAM that involves hot-swapping a
DRAM chip and reading out the contents of the DRAM chip
[193–202]. Cold boot attacks are possible because the data
stored in DRAM is not immediately lost when the chip is pow-
ered off. This is due to the capacitive nature of DRAM cells
that can hold their data up to several minutes [193, 195, 203–
206]. A practical and secure way to mitigate cold boot at-
tacks is to destroy the DRAM content rapidly during power-
off/on [92, 207]. Off-the-shelf PUD operations (i.e., Row-
Clone [67, 72, 89], Frac [129], and Multi-RowCopy (§6)) can
be used to rapidly destroy the DRAM content.
Experimental Methodology. We schedule DRAM command
sequences to perform all content destruction operations (i.e.,
RowClone, Frac, and Multi-RowCopy) and measure the la-
tency of each operation using DRAM Bender [155]. We then
use an analytical model to calculate the total time to overwrite
all data in a DRAM bank. The three PUD operation-based con-
tent destruction operations (i.e., RowClone-based, Frac-based,
and Multi-RowCopy-based) can be implemented as follows: 1)
RowClone-based content destruction is a two-step process.
First, we issue a WR command to write predetermined data to
an arbitrary row. Second, we perform RowClone from that
row to all other DRAM rows, rewriting all original content.
2) Frac-based content destruction is implemented to repeat-
edly send the Frac operation to every row to place all DRAM
rows into a neutral state, making them store VDD/2. 3) Multi-
RowCopy-based content destruction is implemented with vary-
ing numbers of rows that are simultaneously activated, from
2 to 32, in two steps. First, we issue a WR command to write
predetermined data to an arbitrary row. Second, we perform up
to 32-row activation with Multi-RowCopy operation to rapidly
destroy the data in all rows.
Performance Evaluation. Fig. 17 shows the speedup in execu-
tion time for content destruction normalized to the RowClone-
based content destruction’s execution time.

Figure 17: Speedup over RowClone-based content destruction

We make two key observations based on Fig. 17. First,
Multi-RowCopy-based content destruction with 4-, 8-, 16- and
32-row activation outperforms both RowClone-based and Frac-
based content destruction by up to 20.87× and 7.55×, respec-
tively. Second, increasing the number of simultaneously acti-
vated rows increases the speedup of the Multi-RowCopy-based
technique, as increasing the number of operands in Multi-
RowCopy decreases the total number of operations. We conclude
that Multi-RowCopy-based content destruction has a great po-
tential to enable rapid destruction of DRAM content.

9. Limitations of Tested COTS DRAM Chips
We identify three key limitations of COTS DRAM chips in
performing PUD operations.12

Limitation 1. Some COTS DRAM chips do not support
all PUD operations. While we test COTS DRAM chips from
all three major manufacturers (i.e., SK Hynix, Samsung, and
Micron), we report major positive results and detailed evalu-
ations in DRAM chips from Micron (Mfr. M) and SK Hynix
(Mfr. H), which share more than half of the DRAM market
(i.e., 55.8%) [208]. we can simultaneously activate many rows
in a subarray, and thus, we can perform all the tested PUD
operations. In the tested Samsung chips13 (a total of 64 DRAM
chips), we do not observe simultaneous activation of more than
one row in a subarray. Hence, we do not observe any tested
PUD operations in Samsung chips. We hypothesize that these
DRAM chips have internal circuitry that ignores the PRE com-
mand or the second ACT command when the timing parameters
(tRP and tRAS) are greatly violated, which is in line with the
hypotheses provided by prior work [160]. If such a limitation
were not imposed, we believe these DRAM chips are also fun-
damentally capable of performing the operations we examine
in this work.

Limitation 2. Tested COTS DRAM chips support only con-
secutive activation of two rows and simultaneous activation
of 2, 4, 8, 16, and 32 rows. In our experiments, we observe that
we cannot control how many rows that DRAM chips simultane-
ously activate: either we can consecutively activate two rows or
simultaneously activate 2, 4, 8, 16, and 32 rows. We hypothesize
that this is due to our current infrastructure limitations, where
we can issue DRAM commands at intervals of only 1.5ns. Con-
trolling the number of activated rows may require finer-grained
timing control between DRAM commands (e.g., 0.1ns). Having
fine-grained control would allow us to deassert/assert desired
intermediate signals in the row decoder circuitry, which could
result in different numbers of simultaneously activated rows
than 2, 4, 8, 16, and 32.

12We provide more details and limitations that we identify in the extended

version [171].
13We provide more details on every tested chip (including Samsung chips) in

the extended version of this paper [171].

109

Limitation 3. Performing PUD operations potentially have
an effect on transient errors in DRAM chips. We perform
each test 10000 times for each simultaneously activated row
group and check for bitflips in the whole DRAM bank. We do
not observe any errors in rows outside of the simultaneously
activated row group across any of the tested DRAM chips. We
believe that investigating all potential effects (e.g., on transient
errors requires a much more extensive exploration of various
aspects, which warrants its own study.

Our goal is to understand the undocumented computational
capability of DRAM chips and the reliability of such computa-
tion capability. Despite the limitations mentioned above, our
results can inspire future works to make PUD operations more
reliable and/or leverage these operations in new ways in dif-
ferent applications with different requirements. We hope that
future work builds on our study and that the resulting body of
work enables DRAM manufacturers to reliably support opera-
tions that we demonstrate in future DRAM standards.

10. Related Work
To our knowledge, this is the first work that 1) rigorously char-
acterizes the robustness of simultaneously activating up to 32
rows 2) demonstrates MAJX operations where X>3 3) demon-
strated concurrently copying one row’s content to up to 31 other
rows (i.e., Multi-RowCopy), and 4) shows the success rate of
MAJX can be improved by replicating the input operands of MAJX
in COTS DDR4 DRAM chips. We discuss related works in two
synergistic directions: 1) Processing-Using-DRAM (PUD) in
COTS DRAM chips and 2) PUD in modified DRAM chips.

10.1. PUD in COTS DRAM Chips
Multiple Row Activation-based PUD Operations. Several
prior works demonstrate bulk bitwise and data copy oper-
ations in COTS DRAM devices using multiple row activa-
tion [72, 86, 89, 128, 129, 155, 160]. ComputeDRAM [72] 1)
activates three rows simultaneously (i.e., triple-row activa-
tion [64, 65, 68, 76, 77, 79]) to perform three-input majority and
two-input AND and OR operations [64, 65, 68, 76, 77, 79] and
2) demonstrates copying one row’s content to another row (i.e.,
the RowClone [67] operation) in COTS DDR3 chips. Frac-
DRAM [129] shows that a DRAM cell in COTS DDR3 chips
can store fractional values (e.g., VDD/2). FracDRAM uses
fractional values to perform MAJ3 operations while simultane-
ously activating four DRAM rows in the same subarray. DRAM
Bender [155, 163] demonstrates two-input AND and OR oper-
ations in COTS DDR4 chips. PiDRAM [89, 209] provides a
flexible end-to-end FPGA-based framework that enables real
system studies of PuD techniques, such as RowClone [67, 72].
A concurrent work [128] demonstrates that COTS DRAM chips
are capable of 1) performing NOT and up to 16-input AND,
NAND, OR, and NOR operations and 2) simultaneously ac-
tivating up to 48 DRAM rows in two neighboring subarrays.
None of these works 1) characterize the robustness of simultane-
ous many-row activation, 2) demonstrate MAJX, where X>3, 3)
demonstrate copying one row’s content to up to 31 other rows
(Multi-RowCopy), and 4) provide a detailed hypothetical row
decoder design that explains how and why many rows can be
simultaneously activated.

Other works enable different functionalities using simultane-
ous many-row activation. QUAC-TRNG [86] introduces quadru-
ple row activation and exploits this phenomenon to generate
true random numbers in off-the-shelf DRAM chips. Our ob-
servations (e.g., Multi-RowCopy and simultaneously activating
up to 32 DRAM rows) could also be leveraged to generate true
random numbers. HiRA [160] demonstrates that real DRAM
chips are capable of activating two rows (in quick succession)
in electrically isolated (i.e., not physically adjacent) subarrays
(called hidden row activation). This work uses hidden row acti-
vation to parallelize a DRAM row’s refresh operation with the
refresh or activation of other rows in the same bank.
Security Primitives. Prior works propose DRAM-based mech-
anisms to implement true random number generators (TRNGs)
and physical unclonable functions (PUFs). DRAM-based
TRNGs generate true random numbers by violating timing pa-
rameters [210, 211], using data retention failures [212, 213]
and using startup values [214, 215]. DRAM-based PUFs gener-
ate signatures by using retention-based failures [212, 213, 216],
violating timing parameters [87], exploiting write access laten-
cies [217], and using startup values [218].

10.2. PuD in Modified DRAM Chips
Prior works [64–68, 70, 71, 76, 78–80, 110, 122, 219–239] en-
able bulk operations in DRAM chips by modifying the DRAM
circuitry. We demonstrate that COTS DRAM chips are capa-
ble of performing PUD operations without any modification
to DRAM chips or interface. We believe truly and robustly
supporting operations that we demonstrate in DRAM requires
proper modifications to DRAM circuitry and standards. Yet,
our demonstration shows that existing COTS DRAM chips are
already quite capable of computation, and such proper modi-
fications to DRAM are very promising and likely to be very
fruitful.

11. Conclusion
We presented our extensive characterization study on the com-
putational capability of COTS DRAM chips and the robustness
of these capabilities in 120 COTS DDR4 DRAM chips. Our
study leads to 18 new empirical observations and shares 7 key
takeaway lessons, which demonstrate that COTS DRAM chips
are capable of performing MAJ5, MAJ7, MAJ9, and copying one
row’s content to up to 31 DRAM rows. We believe that our
rigorous empirical results demonstrate the potential of using
DRAM as a powerful computation substrate. We hope future
works build upon our comprehensive study to better character-
ize, understand, and enhance the computational capability of
DRAM chips.

Acknowledgements
We thank the anonymous reviewers of DSN 2024 for their
encouraging feedback. We thank the SAFARI Research Group
members for providing a stimulating intellectual environment.
We acknowledge the generous gifts from our industrial partners,
including Google, Huawei, Intel, and Microsoft. This work is
supported in part by the Semiconductor Research Corporation
(SRC), the ETH Future Computing Laboratory (EFCL), and the
AI Chip Center for Emerging Smart Systems (ACCESS).

110

References
[1] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Processing Data

Where It Makes Sense: Enabling In-Memory Computation,” MICPRO, 2019.
[2] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A Modern Primer

on Processing in Memory,” in Emerging Computing: From Devices to Systems —
Looking Beyond Moore and Von Neumann. Springer, 2021. [Online]. Available:
https://arxiv.org/abs/2012.03112

[3] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[4] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[5] J. Dean and L. A. Barroso, “The Tail at Scale,” CACM, 2013.
[6] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and

D. Brooks, “Profiling a Warehouse-Scale Computer,” in ISCA, 2015.
[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,

A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the Clouds: A Study of
Emerging Scale-Out Workloads on Modern Hardware,” in ASPLOS, 2012.

[8] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang
et al., “BigDataBench: A Big Data Benchmark Suite from Internet Services,” in
HPCA, 2014.

[9] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Enabling Practical
Processing in and Near Memory For Data-Intensive Computing,” in DAC, 2019.

[10] O. Mutlu, “Intelligent Architectures for Intelligent Machines,” in VLSI-DAT, 2020.
[11] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu, “Processing-in-

Memory: A Workload-Driven Perspective,” IBM JRD, 2019.
[12] G. F. Oliveira, J. Gómez-Luna, L. Orosa, S. Ghose, N. Vijaykumar, I. Fernandez,

M. Sadrosadati, and O. Mutlu, “DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.

[13] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google Workloads for
Consumer Devices: Mitigating Data Movement Bottlenecks,” in ASPLOS, 2018.

[14] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira, X. Ma, E. Shiu,
and O. Mutlu, “Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks,” in PACT, 2021.

[15] S. Wang and E. Ipek, “Reducing Data Movement Energy via Online Data Clustering
and Encoding,” in MICRO, 2016.

[16] D. Pandiyan and C.-J. Wu, “Quantifying the Energy Cost of Data Movement for
Emerging Smart Phone Workloads on Mobile Platforms,” in IISWC, 2014.

[17] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi, K. Kanellopoulos,
and O. Mutlu, “EDEN: Enabling Energy-Efficient, High-Performance Deep Neural
Network Inference Using Approximate DRAM,” in MICRO, 2019.

[18] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. S. Choi,
“Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling,” in
The Memory Forum, 2014.

[19] S. A. McKee et al., “Reflections on the Memory Wall.” CF, 2004.
[20] M. V. Wilkes, “The Memory Gap and the Future of High Performance Memories,”

CAN, 2001.
[21] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-

Level Parallelism (SALP) in DRAM,” in ISCA, 2012.
[22] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications of the

Obvious,” CAN, 1995.
[23] S. Ghose, T. Li, N. Hajinazar, D. S. Cali, and O. Mutlu, “Demystifying Complex

Workload–DRAM Interactions: An Experimental Study,” in SIGMETRICS, 2020.
[24] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory

Accelerator for Parallel Graph Processing,” in ISCA, 2015.
[25] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.
[26] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,

O. Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping (TOM): En-
abling Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA,
2016.

[27] Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. S. Kim, J. G. Luna,
M. Sadrosadati, N. M. Ghiasi et al., “FIGARO: Improving System Performance via
Fine-Grained In-DRAM Data Relocation and Caching,” in MICRO, 2020.

[28] R. Sites, “It’s the Memory, Stupid!” MPR, 1996.
[29] F. Devaux, “The True Processing in Memory Accelerator,” in Hot Chips, 2019.
[30] N. M. Ghiasi, J. Park, H. Mustafa, J. Kim, A. Olgun, A. Gollwitzer, D. S. Cali,

C. Firtina, H. Mao, N. A. Alserr et al., “GenStore: A High-Performance and
Energy-Efficient In-Storage Computing System for Genome Sequence Analysis,” in
ASPLOS, 2022.

[31] J. Gómez-Luna, I. El Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and O. Mutlu,
“Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-
in-Memory Hardware,” in CUT, 2021.

[32] J. Gómez-Luna, I. E. Hajj, I. Fernández, C. Giannoula, G. F. Oliveira, and O. Mutlu,
“Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-
in-Memory Architecture,” arXiv:2105.03814 [cs.AR], 2021.

[33] J. Gómez-Luna, I. El Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and O. Mutlu,
“Benchmarking a New Paradigm: Experimental Analysis and Characterization of a
Real Processing-in-Memory System,” IEEE Access, 2022.

[34] C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas, I. Fernandez,
J. Gómez-Luna, L. Orosa, N. Koziris, G. Goumas, and O. Mutlu, “SynCron: Effi-
cient Synchronization Support for Near-Data-Processing Architectures,” in HPCA,
2021.

[35] G. Singh, D. Diamantopoulos, C. Hagleitner, J. Gomez-Luna, S. Stuijk, O. Mutlu,
and H. Corporaal, “NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling,” in FPL, 2020.

[36] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park, K. Kang, J. Kim,
J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin, J. Won, M. Lee, H. Joo et al., “A

1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-Based Accelerator-in-Memory Supporting
1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning
Applications,” in ISSCC, 2022.

[37] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho, J. H. Kim,
Y. Kwon et al., “Near-Memory Processing in Action: Accelerating Personalized
Recommendation with AxDIMM,” IEEE Micro, 2021.

[38] C. Giannoula, I. Fernandez, J. Gómez-Luna, N. Koziris, G. Goumas, and O. Mutlu,
“SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-
in-Memory Systems,” in SIGMETRICS, 2022.

[39] A. Denzler, R. Bera, N. Hajinazar, G. Singh, G. F. Oliveira, J. Gómez-Luna, and
O. Mutlu, “Casper: Accelerating Stencil Computation using Near-Cache Processing,”
IEEE Access, 2023.

[40] D. Patterson, T. Anderson, N. Cardwell et al., “A Case for Intelligent RAM,” IEEE
Micro, 1997.

[41] D. G. Elliott, M. Stumm, W. M. Snelgrove et al., “Computational RAM: Implement-
ing Processors in Memory,” Design and Test of Computers, 1999.

[42] M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory: The Terasys Mas-
sively Parallel PIM Array,” in Computer, 1995.

[43] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki,
J. Brockman, A. Srivastava et al., “Mapping Irregular Applications to DIVA, a
PIM-Based Data-Intensive Architecture,” in SC, 1999.

[44] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi,
H. Zheng, and O. Mutlu, “LazyPIM: An Efficient Cache Coherence Mechanism for
Processing-in-Memory,” in CAL, 2016.

[45] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, N. Hajinazar, K. Hsieh,
K. T. Malladi, H. Zheng, and O. Mutlu, “LazyPIM: Efficient Support for Cache
Coherence in Processing-in-Memory Architectures,” arXiv:1706.03162 [cs.AR],
2017.

[46] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski,
“TOP-PIM: Throughput-Oriented Programmable Processing in Memory,” in HPDC,
2014.

[47] J. S. Kim, D. S. Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin,
C. Alkan, and O. Mutlu, “GRIM-Filter: Fast Seed Location Filtering in DNA Read
Mapping using Processing-in-Memory Technologies,” in APBC, 2018.

[48] P. C. Santos, G. F. Oliveira, D. G. Tomé, M. A. Z. Alves, E. C. Almeida, and L. Carro,
“Operand Size Reconfiguration for Big Data Processing in Memory,” in DATE, 2017.

[49] G. F. Oliveira, P. C. Santos, M. A. Alves, and L. Carro, “NIM: An HMC-Based
Machine for Neuron Computation,” in ARC, 2017.

[50] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube: A
Programmable Digital Neuromorphic Architecture with High-Density 3D Memory,”
in ISCA, 2016.

[51] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarungnirun,
K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng et al., “CoNDA: Efficient Cache
Coherence Support for Near-Data Accelerators,” in ISCA, 2019.

[52] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation,” in ICCD, 2016.

[53] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira, X. Ma,
E. Shiu, and O. Mutlu, “Mitigating Edge Machine Learning Inference Bottlenecks:
An Empirical Study on Accelerating Google Edge Models,” arXiv:2103.00768
[cs.AR], 2021.

[54] A. Boroumand, S. Ghose, G. F. Oliveira, and O. Mutlu, “Polynesia: Enabling High-
Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with
Hardware/Software Co-Design,” in ICDE, 2022.

[55] A. Boroumand, S. Ghose, G. F. Oliveira, and O. Mutlu, “Polynesia: Enabling Effec-
tive Hybrid Transactional/Analytical Databases with Specialized Hardware/Software
Co-Design,” arXiv:2103.00798 [cs.AR], 2021.

[56] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun, J. Beránek,
K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi, I. Stefan et al.,
“SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-
Memory Systems,” in MICRO, 2021.

[57] I. Fernandez, R. Quislant, C. Giannoula, M. Alser, J. Gomez-Luna, E. Gutierrez,
O. Plata, and O. Mutlu, “NATSA: A Near-Data Processing Accelerator for Time
Series Analysis,” in ICCD, 2020.

[58] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk, O. Mutlu,
and H. Corporaal, “NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning,” in DAC, 2019.

[59] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim, H. Shin
et al., “Hardware Architecture and Software Stack for PIM Based on Commercial
DRAM Technology: Industrial Product,” in ISCA, 2021.

[60] J. S. Kim, D. S. Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin,
C. Alkan, and O. Mutlu, “GRIM-Filter: Fast Seed Location Filtering in DNA Read
Mapping using Processing-in-Memory Technologies,” in APBC, 2018.

[61] P. C. Santos, G. F. Oliveira, J. P. Lima, M. A. Alves, L. Carro, and A. C. Beck,
“Processing in 3D Memories to Speed Up Operations on Complex Data Structures,”
in DATE, 2018.

[62] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME:
A Novel Processing-in-Memory Architecture for Neural Network Computation in
ReRAM-Based Main Memory,” in ISCA, 2016.

[63] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network Accel-
erator with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[64] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[65] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
arXiv:1905.09822 [cs.AR], 2019.

111

[66] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA: A
DRAM-Based Reconfigurable In-Situ Accelerator,” in MICRO, 2017.

[67] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. Mowry, “RowClone: Fast and
Energy-Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[68] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm: In-DRAM
Bulk Copy, Initialization, Bitwise AND and OR,” arXiv:1610.09603 [cs.AR], 2016.

[69] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “DrAcc: A DRAM Based
Accelerator for Accurate CNN Inference,” in DAC, 2018.

[70] X. Xin, Y. Zhang, and J. Yang, “ELP2IM: Efficient and Low Power Bitwise Opera-
tion Processing in DRAM,” in HPCA, 2020.

[71] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-Based
Accelerator for Deep Learning,” in HPCA, 2017.

[72] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-Memory Compute
Using Off-the-Shelf DRAMs,” in MICRO, 2019.

[73] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw, and
R. Das, “Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks,”
in ISCA, 2018.

[74] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das,
“Compute Caches,” in HPCA, 2017.

[75] D. Fujiki, S. Mahlke, and R. Das, “Duality Cache for Data Parallel Acceleration,” in
ISCA, 2019.

[76] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Buddy-RAM: Improving the Perfor-
mance and Efficiency of Bulk Bitwise Operations Using DRAM,” arXiv:1611.09988
[cs.AR], 2016.

[77] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data Move-
ment,” in Advances in Computers, Volume 106, 2017.

[78] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Accelerating
Data Movement and Initialization Using DRAM,” arXiv:1805.03502 [cs.AR], 2018.

[79] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch†, O. Mutlu, P. B.
Gibbons, and T. C. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” in CAL,
2015.

[80] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A Processing-in-Memory
Architecture for Bulk Bitwise Operations in Emerging Non-Volatile Memories,” in
DAC, 2016.

[81] J. D. Ferreira, G. Falcao, J. Gómez-Luna, M. Alser, L. Orosa, M. Sadrosadati, J. S.
Kim, G. F. Oliveira, T. Shahroodi, A. Nori et al., “pLUTo: In-DRAM Lookup Tables
to Enable Massively Parallel General-Purpose Computation,” arXiv:2104.07699
[cs.AR], 2021.

[82] J. D. Ferreira, G. Falcao, J. Gómez-Luna, M. Alser, L. Orosa, M. Sadrosadati, J. S.
Kim, G. F. Oliveira, T. Shahroodi, A. Nori et al., “pLUTo: Enabling Massively
Parallel Computation in DRAM via Lookup Tables,” in MICRO, 2022.

[83] J. Park, R. Azizi, G. F. Oliveira, M. Sadrosadati, R. Nadig, D. Novo, J. Gómez-Luna,
M. Kim, and O. Mutlu, “Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory,” in MICRO, 2022.

[84] M. S. Truong, L. Shen, A. Glass, A. Hoffmann, L. R. Carley, J. A. Bain, and
S. Ghose, “Adapting the RACER Architecture to Integrate Improved In-ReRAM
Logic Primitives,” JETCAS, 2022.

[85] M. S. Truong, E. Chen, D. Su, L. Shen, A. Glass, L. R. Carley, J. A. Bain, and
S. Ghose, “RACER: Bit-Pipelined Processing Using Resistive Memory,” in MICRO,
2021.

[86] A. Olgun, M. Patel, A. G. Yağlıkçı, H. Luo, J. S. Kim, N. Bostanci, N. Vijaykumar,
O. Ergin, and O. Mutlu, “QUAC-TRNG: High-Throughput True Random Number
Generation Using Quadruple Row Activation in Commodity DRAM Chips,” in
ISCA, 2021.

[87] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeoff in Modern Commodity DRAM Devices,” in HPCA, 2018.

[88] F. N. Bostancı, A. Olgun, L. Orosa, A. G. Yağlıkçı, J. S. Kim, H. Hassan, O. Ergin,
and O. Mutlu, “DR-STRaNGe: End-to-End System Design for DRAM-Based True
Random Number Generators,” in HPCA, 2022.

[89] A. Olgun, J. G. Luna, K. Kanellopoulos, B. Salami, H. Hassan, O. Ergin,
and O. Mutlu, “PiDRAM: A Holistic End-to-End FPGA-Based Framework for
Processing-In-DRAM,” TACO, 2022.

[90] M. F. Ali, A. Jaiswal, and K. Roy, “In-Memory Low-Cost Bit-Serial Addition Using
Commodity DRAM Technology,” in TCAS I, 2019.

[91] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan,
and Y. Xie, “SCOPE: A Stochastic Computing Engine for DRAM-Based In-Situ
Accelerator,” in MICRO, 2018.

[92] L. Orosa, Y. Wang, M. Sadrosadati, J. S. Kim, M. Patel, I. Puddu, H. Luo, K. Razavi,
J. Gómez-Luna, H. Hassan, N. Mansouri-Ghiasi, S. Ghose, and O. Mutlu, “CODIC:
A Low-Cost Substrate for Enabling Custom In-DRAM Functionalities and Opti-
mizations,” in ISCA, 2021.

[93] M. Sharad, D. Fan, and K. Roy, “Ultra Low Power Associative Computing with
Spin Neurons and Resistive Crossbar Memory,” in ADAC, 2013.

[94] C. Gao, X. Xin, Y. Lu, Y. Zhang, J. Yang, and J. Shu, “ParaBit: Processing Parallel
Bitwise Operations in NAND Flash Memory Based SSDs,” in MICRO, 2021.

[95] W. H. Choi, P.-F. Chiu, W. Ma, G. Hemink, T. T. Hoang, M. Lueker-Boden, and
Z. Bandic, “An In-Flash Binary Neural Network Accelerator with SLC NAND Flash
Array,” in ISCAS, 2020.

[96] R. Han, P. Huang, Y. Xiang, C. Liu, Z. Dong, Z. Su, Y. Liu, L. Liu, X. Liu, and
J. Kang, “A Novel Convolution Computing Paradigm Based on NOR Flash Array
with High Computing Speed and Energy Efficiency,” TCAS-I, 2019.

[97] F. Merrikh-Bayat, X. Guo, M. Klachko, M. Prezioso, K. K. Likharev, and
D. B. Strukov, “High-Performance Mixed-Signal Neurocomputing with Nanoscale
Floating-Gate Memory Cell Arrays,” TNNLS, 2017.

[98] P. Wang, F. Xu, B. Wang, B. Gao, H. Wu, H. Qian, and S. Yu, “Three-Dimensional
NAND Flash for Vector–Matrix Multiplication,” TVLSI, 2018.

[99] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim,
R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand et al., “GenASM: A
High-Performance, Low-Power Approximate String Matching Acceleration Frame-
work for Genome Sequence Analysis,” in MICRO, 2020.

[100] A. Nag, C. Ramachandra, R. Balasubramonian, R. Stutsman, E. Giacomin, H. Kam-
balasubramanyam, and P.-E. Gaillardon, “GenCache: Leveraging In-Cache Opera-
tors for Efficient Sequence Alignment,” in MICRO, 2019.

[101] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz, “An Energy-
Efficient VLSI Architecture for Pattern Recognition via Deep Embedding of Com-
putation in SRAM,” in ICASSP, 2014.

[102] Z. Wang, C. Liu, A. Arora, L. John, and T. Nowatzki, “Infinity Stream: Portable and
Programmer-Friendly In-/Near-Memory Fusion,” in ASPLOS, 2023.

[103] M. Kang, E. P. Kim, M.-s. Keel, and N. R. Shanbhag, “Energy-Efficient and High
Throughput Sparse Distributed Memory Architecture,” in ISCAS, 2015.

[104] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[105] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi, M. Patel,
M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu, “SIMDRAM: A Framework for
Bit-Serial SIMD Processing Using DRAM,” in ASPLOS, 2021.

[106] P. R. Sutradhar, S. Bavikadi, M. Connolly, S. Prajapati, M. A. Indovina, S. M. P.
Dinakarrao, and A. Ganguly, “Look-Up-Table Based Processing-in-Memory Ar-
chitecture with Programmable Precision-Scaling for Deep Learning Applications,”
TPDS, 2021.

[107] P. R. Sutradhar, M. Connolly, S. Bavikadi, S. M. P. Dinakarrao, M. A. Indovina,
and A. Ganguly, “pPIM: A Programmable Processor-in-Memory Architecture with
Precision-Scaling For Deep Learning,” in CAL, 2020.

[108] M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert, M. R. Stan,
and K. Skadron, “Fulcrum: A Simplified Control and Access Mechanism Toward
Flexible and Practical In-Situ Accelerators,” in HPCA, 2020.

[109] X. Peng, Y. Wang, and M.-C. Yang, “CHOPPER: A Compiler Infrastructure for
Programmable Bit-Serial SIMD Processing Using Memory In DRAM,” in HPCA,
2023.

[110] G. F. Oliveira, J. Gómez-Luna, S. Ghose, A. Boroumand, and O. Mutlu, “Acceler-
ating Neural Network Inference with Processing-in-DRAM: From the Edge to the
Cloud,” IEEE Micro, 2022.

[111] G. Singh, M. Alser, D. S. Cali, D. Diamantopoulos, J. Gómez-Luna, H. Corporaal,
and O. Mutlu, “FPGA-Based Near-Memory Acceleration of Modern Data-Intensive
Applications,” IEEE Micro, 2021.

[112] G. F. Oliveira, A. Kohli, D. Novo, J. Gómez-Luna, and O. Mutlu, “DaPPA: A Data-
Parallel Framework for Processing-in-Memory Architectures,” arXiv:2310.10168
[cs.AR], 2023.

[113] G. F. Oliveira, J. Gómez-Luna, S. Ghose, and O. Mutlu, “Methodologies, Work-
loads, and Tools for Processing-in-Memory: Enabling the Adoption of Data-Centric
Architectures,” in ISVLSI, 2022.

[114] G. F. Oliveira, A. Boroumand, S. Ghose, J. Gómez-Luna, and O. Mutlu, “Hetero-
geneous Data-Centric Architectures for Modern Data-Intensive Applications: Case
Studies in Machine Learning and Databases,” in ISVLSI, 2022.

[115] J. Chen, J. Gómez-Luna, I. E. Hajj, Y. Guo, and O. Mutlu, “SimplePIM: A Software
Framework for Productive and Efficient Processing-In-Memory,” in PACT, 2023.

[116] H. Gupta, M. Kabra, J. Gómez-Luna, K. Kanellopoulos, and O. Mutlu, “Evaluating
Homomorphic Operations on a Real-World Processing-In-Memory System,” in
IISWC, 2023.

[117] J. Gómez-Luna, Y. Guo, S. Brocard, J. Legriel, R. Cimadomo, G. F. Oliveira,
G. Singh, and O. Mutlu, “Evaluating Machine LearningWorkloads on Memory-
Centric Computing Systems,” in ISPASS, 2023.

[118] M. Item, J. Gómez-Luna, Y. Guo, G. F. Oliveira, M. Sadrosadati, and O. Mutlu,
“TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Sys-
tems,” in ISPASS, 2023.

[119] S. Diab, A. Nassereldine, M. Alser, J. Gómez Luna, O. Mutlu, and I. El Hajj, “A
Framework for High-Throughput Sequence Alignment Using Real Processing-In-
Memory Systems,” Bioinformatics, 2023.

[120] H. Mao, M. Alser, M. Sadrosadati, C. Firtina, A. Baranwal, D. S. Cali, A. Manglik,
N. A. Alserr, and O. Mutlu, “GenPIP: In-Memory Acceleration of Genome Analysis
via Tight Integration of Basecalling and Read Mapping,” in MICRO, 2022.

[121] G. Singh, D. Diamantopoulos, J. Gómez-Luna, C. Hagleitner, S. Stuijk, H. Corporaal,
and O. Mutlu, “Accelerating Weather Prediction Using Near-Memory Reconfig-
urable Fabric,” TRETS, 2022.

[122] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data Move-
ment,” in Adv. Comput., 2017.

[123] S. Angizi and D. Fan, “ReDRAM: A Reconfigurable Processing-in-DRAM Platform
for Accelerating Bulk Bit-Wise Operations,” in ICCAD, 2019.

[124] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification Rev. 2.0,”
http://www.hybridmemorycube.org/.

[125] JEDEC, “JESD235 High Bandwidth Memory (HBM) DRAM,” 2013.
[126] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-

Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” ACM
TACO, 2016.

[127] G. F. Oliveira, A. Olgun, A. G. G. Yaglikçi, N. Bostanci, J. Gómez-Luna, S. Ghose,
and O. Mutlu, “MIMDRAM: An End-to-End Processing-Using-DRAM System
for High-Throughput, Energy-Efficient and Programmer-Transparent Multiple-
Instruction Multiple-Data Processing,” HPCA, 2024.

[128] I. E. Yuksel, Y. C. Tugrul, A. Olgun, F. N. Bostanci, A. G. Yaglikci, G. F. de Oliveira,
H. Luo, J. G. Luna, M. Sadrosadati, and O. Mutlu, “Functionally-Complete Boolean
Logic in Real DRAM Chips: Experimental Characterization and Analysis,” in

112

HPCA, 2024.
[129] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “FracDRAM: Fractional Values in

Off-the-Shelf DRAM,” in MICRO, 2022.
[130] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi, M. Patel,

M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu, “SIMDRAM: A Framework for
Bit-Serial SIMD Processing Using DRAM,” in ASPLOS, 2021.

[131] S. Angizi and D. Fan, “GraphiDe: A Graph Processing Accelerator Leveraging
In-DRAM-Computing,” in GLSVLSI, 2019.

[132] Q. Deng, Y. Zhang, M. Zhang, and J. Yang, “LAcc: Exploiting Lookup Table-Based
Fast and Accurate Vector Multiplication in DRAM-Based CNN Accelerator,” in
DAC, 2019.

[133] C.-Y. Chan and Y. E. Ioannidis, “Bitmap Index Design and Evaluation,” in SIGMOD,
1998.

[134] E. O’Neil, P. O’Neil, and K. Wu, “Bitmap Index Design Choices and Their Perfor-
mance Implications,” in IDEAS, 2007.

[135] Y. Li and J. M. Patel, “WideTable: An Accelerator for Analytical Data Processing,”
VLDB, 2014.

[136] Y. Li and J. M. Patel, “BitWeaving: Fast Scans for Main Memory Data Processing,”
in SIGMOD, 2013.

[137] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety, and Y. He,
“BitFunnel: Revisiting Signatures for Search,” in SIGIR, 2017.

[138] K. Wu, “FastBit: An Efficient Indexing Technology For Accelerating Data-Intensive
Science,” in Journal of Physics, 2005.

[139] M.-C. Wu and A. P. Buchmann, “Encoded Bitmap Indexing For Data Warehouses,”
in ICDE, 1998.

[140] Redis, “Redis bitmaps,” https://redis.io/docs/data-types/bitmaps/.
[141] B. Perach, R. Ronen, B. Kimelfeld, and S. Kvatinsky, “Understanding Bulk-Bitwise

Processing In-Memory Through Database Analytics,” ETC, 2023.
[142] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, and S. Xu, “Bluedbm: An

Appliance For Big Data Analytics,” SIGARCH, 2015.
[143] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H. Bobarshad, V. Alves, and

N. Bagherzadeh, “Catalina: In-Storage Processing Acceleration For Scalable Big
Data Analytics,” in PDP, 2019.

[144] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and Y. S. Ki,
“SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD,” CAL, 2020.

[145] S. Beamer, K. Asanovic, and D. Patterson, “Direction-Optimizing Breadth-First
Search,” in SC, 2012.

[146] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan, “Gatekeeper: A
New Hardware Architecture For Accelerating Pre-Alignment In DNA Short Read
Mapping,” in Bioinformatics, 2017.

[147] J. Loving, Y. Hernandez, and G. Benson, “BitPAl: A Bit-Parallel, General Integer-
Scoring Sequence Alignment Algorithm,” Bioinformatics, 2014.

[148] H. Xin, J. Greth, J. Emmons, G. Pekhimenko, C. Kingsford, C. Alkan, and O. Mutlu,
“Shifted Hamming Distance: A Fast and Accurate SIMD-Friendly Filter to Acceler-
ate Alignment Verification in Read Mapping,” Bioinformatics, 2015.

[149] G. Myers, “A Fast Bit-Vector Algorithm for Approximate String Matching Based
on Dynamic Programming,” JACM, 1999.

[150] J. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim, “Optical Image Encryption Based on
XOR Operations,” Optical Engineering, 1999.

[151] P. Tuyls, H. D. Hollmann, J. V. Lint, and L. Tolhuizen, “XOR-based Visual Cryptog-
raphy Schemes,” Des. Codes, Cryptogr., 2005.

[152] P. Kanerva, “Sparse Distributed Memory and Related Models,” Tech. Rep., 1992.
[153] P. Kanerva, “Hyperdimensional Computing: An Introduction to Computing in

Distributed Representation with High-Dimensional Random Vectors,” Cognitive
Computation, 2009.

[154] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebastian,
“In-memory Hyperdimensional Computing,” Nature Electronics, 2020.

[155] A. Olgun, H. Hassan, A. G. Yağlıkçı, Y. C. Tuğrul, L. Orosa, H. Luo, M. Patel,
O. Ergin, and O. Mutlu, “DRAM Bender: An Extensible and Versatile FPGA-based
Infrastructure to Easily Test State-of-the-art DRAM Chips,” TCAD, 2023.

[156] JEDEC, JESD79-4C: DDR4 SDRAM Standard, 2020.
[157] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,

“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” in
HPCA, 2015.

[158] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[159] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[160] A. G. Yağlikci, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and
O. Mutlu, “HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-
Shelf DRAM Chips,” in MICRO, 2022.

[161] Linear Technology Corp., “LTspice IV,” https://t.ly/mAlfJ.
[162] A. Vladimirescu, The SPICE Book. Wiley New York, 1994.
[163] SAFARI Research Group, “DRAM Bender — GitHub Repository,” https://github.

com/CMU-SAFARI/DRAM-Bender, 2022.
[164] Xilinx Inc., “Xilinx Alveo U200 FPGA Board,” https://www.xilinx.com/products/

boards-and-kits/alveo/u200.html.
[165] Maxwell, “FT20X User Manual,” https://t.ly/zn6wP.
[166] TTi, “PL & PL-P Series DC Power Supplies Data Sheet - Issue 5,” https://t.ly/TgIH4.
[167] JEDEC, JESD79-5: DDR5 SDRAM Standard, 2020.
[168] JEDEC, JESD232A: Graphics Double Data Rate (GDDR5X) Standard, 2016.
[169] JEDEC, JESD250C: Graphics Double Data Rate 6 (GDDR6) Standard, 2021.
[170] A. G. Yağlıkcı, H. Luo, G. F. De Oliviera, A. Olgun, M. Patel, J. Park, H. Hassan,

J. S. Kim, L. Orosa, and O. Mutlu, “Understanding RowHammer Under Reduced
Wordline Voltage: An Experimental Study Using Real DRAM Devices,” in DSN,

2022.
[171] I. E. Yuksel, Y. C. Tugrul, F. N. Bostanci, G. F. de Oliveira, A. G. Yaglikci, A. Olgun,

M. Soysal, H. Luo, J. G. Luna, M. Sadrosadati, and O. Mutlu, “Simultaneous Many-
Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and
Analysis,” in arXiv, 2024.

[172] K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM De-
vices: Experimental Characterization, Analysis, and Mechanisms,” in SIGMETRICS,
2017.

[173] B. Keeth et al., DRAM Circuit Design. Fundamental and High-Speed Topics. Wiley-
IEEE Press, 2007.

[174] Rambus Inc., “Rambus Power Model,” https://www.rambus.com/energy/.
[175] International Technology Roadmap for Semiconductors, “ITRS Reports,” http://

www.itrs2.net/itrs-reports.html, 2015.
[176] T. Vogelsang, “Understanding the Energy Consumption of Dynamic Random Access

Memories,” in MICRO, 2010.
[177] Nanoscale Integration and Modeling (NIMO) Group, ASU, “Predictive Technology

Model (PTM),” http://ptm.asu.edu/, 2012.
[178] F. James, “Monte Carlo Theory and Practice,” Rep Prog Phys., 1980.
[179] T. Sakata, K. Itoh, M. Horiguchi, and M. Aoki, “Subthreshold-Current Reduction

Circuits for Multi-Gigabit DRAM’s,” JSSC, 1994.
[180] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold Leakage Modeling and

Reduction Techniques,” in ICCAD, 2002.
[181] N. H. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective.

Pearson Education India, 2015.
[182] F. Bai, S. Wang, X. Jia, Y. Guo, B. Yu, H. Wang, C. Lai, Q. Ren, and H. Sun, “A

Low-Cost Reduced-Latency DRAM Architecture with Dynamic Reconfiguration of
Row Decoder,” TVLSI, 2022.

[183] M. A. Turi and J. G. Delgado-Frias, “High-Performance Low-Power Selective
Precharge Schemes for Address Decoders,” TCAS-II, 2008.

[184] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and
O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

[185] H. Luo, T. Shahroodi, H. Hassan, M. Patel, A. G. Yaglikci, L. Orosa, J. Park, and
O. Mutlu, “CLR-DRAM: A Low-Cost DRAM Architecture Enabling Dynamic
Capacity-Latency Trade-Off,” in ISCA, 2020.

[186] 4Gb DDR4 SDRAM Component: H5AN4G8NMFR-TFC, SK Hynix, Mar. 2013,
https://www.datasheets.com/part-details/h5an4g8nmfr-tfc-sk-hynix-inc-63813153.

[187] L. Orosa, A. G. Yağlıkçı, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel, J. S. Kim,
and O. Mutlu, “A Deeper Look into RowHammer’s Sensitivities: Experimental
Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses,”
in MICRO, 2021.

[188] E. Alkaldy, K. Navi, and F. Sharifi, “A Novel Design Approach for Multi-Input
XOR Gate Using Multi-Input Majority Function,” AJSE, 2014.

[189] M. J. Wirthlin, A. M. Keller, C. McCloskey, P. Ridd, D. Lee, and J. Draper, “SEU
Mitigation and Validation of the LEON3 Soft Processor Using Triple Modular
Redundancy for Space Processing,” in FPGA, 2016.

[190] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, and H. Lam, “Reconfig-
urable Fault Tolerance: A Comprehensive Framework for Reliable and Adaptive
FPGA-based Space Computing,” TRETS, 2012.

[191] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of Radiation Effects
in SRAM-based FPGAs for Space Applications,” CSUR, 2015.

[192] R. E. Lyons andW. Vanderkulk, “The Use of Triple-Modular Redundancy to Improve
Computer Reliability,” IBM Journal of Research and Development, 1962.

[193] J. Bauer, M. Gruhn, and F. C. Freiling, “Lest We Forget: Cold-Boot Attacks on
Scrambled DDR3 Memory,” Digital Investigation, 2016.

[194] M. Gruhn and T. Müller, “On the Practicability of Cold Boot Attacks,” in ARES,
2013.

[195] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest We Remember: Cold-Boot
Attacks on Encryption Keys,” CACM, 2009.

[196] C. Hilgers, H. Macht, T. Müller, and M. Spreitzenbarth, “Post-Mortem Memory
Analysis of Cold-Booted Android Devices,” in IMF, 2014.

[197] H. T. Lee, H. Kim, Y.-J. Baek, and J. H. Cheon, “Correcting Errors in Private Keys
Obtained from Cold Boot Attacks,” in ICISC, 2012.

[198] S. Lindenlauf, H. Höfken, and M. Schuba, “Cold Boot Attacks on DDR2 and DDR3
SDRAM,” in ARES, 2015.

[199] T. Müller, A. Dewald, and F. Freiling, “AESSE: A Cold-Boot Resistant Implementa-
tion of AES,” in EUROSEC, 2010.

[200] P. Simmons, “Security through Amnesia: A Software-Based Solution to the Cold
Boot Attack on Disk Encryption,” in ACSAC, 2011.

[201] R. Villanueva-Polanco, “Cold Boot Attacks on Bliss,” in LATINCRYPT, 2019.
[202] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin, “Cold Boot Attacks are Still Hot:

Security Analysis of Memory Scramblers in Modern Processors,” in HPCA, 2017.
[203] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The Effi-

cacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” in SIGMETRICS, 2014.

[204] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, J. Liu, B. Jaiyen, Y. Kim,
C. Wilkerson, and O. Mutlu, “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices,” in ISCA, 2013.

[205] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[206] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” in
ISCA, 2017.

[207] Trusted Computing Group, “TCG Platform Reset Attack Mitigation Specification,”
TCG, 2008.

[208] TrendForce, “DRAM Manufacturers Revenue Share Worldwide From 2011

113

to 2023, by the Third Quarter,” https://www.trendforce.com/presscenter/news/
20231204-11942.html, 2023.

[209] SAFARI Research Group, “PiDRAM Source Code,” https://github.com/
CMU-SAFARI/PiDRAM, 2022.

[210] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe: Using Com-
modity DRAM Devices to Generate True Random Numbers with Low Latency and
High Throughput,” in HPCA, 2019.

[211] B. B. Talukder, J. Kerns, B. Ray, T. Morris, and M. T. Rahman, “Exploiting DRAM
Latency Variations for Generating True Random Numbers,” in ICCE, 2019.

[212] C. Keller, F. Gurkaynak, H. Kaeslin, and N. Felber, “Dynamic Memory-based
Physically Unclonable Function for the Generation of Unique Identifiers and True
Random Numbers,” in ISCAS, 2014.

[213] S. Sutar, A. Raha, and V. Raghunathan, “D-PUF: An Intrinsically Reconfigurable
DRAM PUF for Device Authentication in Embedded Systems,” in CASES, 2016.

[214] C. Eckert, F. Tehranipoor, and J. A. Chandy, “DRNG: DRAM-Based Random
Number Generation Using Its Startup Value Behavior,” in MWSCAS, 2017.

[215] F. Tehranipoor, W. Yan, and J. A. Chandy, “Robust Hardware True Random Number
Generators Using DRAM Remanence Effects,” in HOST. IEEE, 2016.

[216] W. Xiong, A. Schaller, N. A. Anagnostopoulos, M. U. Saleem, S. Gabmeyer,
S. Katzenbeisser, and J. Szefer, “Run-time Accessible DRAM PUFs in Commodity
Devices,” in CHES, 2016.

[217] M. S. Hashemian, B. Singh, F. Wolff, D. Weyer, S. Clay, and C. Papachristou, “A
Robust Authentication Methodology Using Physically Unclonable Functions in
DRAM Arrays,” in DATE, 2015.

[218] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-Based Intrinsic
Physically Unclonable Functions for System-Level Security and Authentication,”
VLSI, 2016.

[219] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan,
and Y. Xie, “SCOPE: A Stochastic Computing Engine for DRAM-Based In-Situ
Accelerator,” in MICRO, 2018.

[220] T. A. Manning, “Apparatuses and Methods for Comparing Data Patterns in Memory,”
2018, US Patent 9,934,856.

[221] F. Parveen, Z. He, S. Angizi, and D. Fan, “Hybrid Polymorphic Logic Gate with
5-Terminal Magnetic Domain Wall Motion Device,” in ISVLSI, 2017.

[222] F. Parveen, S. Angizi, Z. He, and D. Fan, “Low Power In-Memory Computing Based
on Dual-Mode SOT-MRAM,” in ISLPED, 2017.

[223] F. Parveen, Z. He, S. Angizi, and D. Fan, “HielM: Highly Flexible In-Memory
Computing using STT MRAM,” in ASP-DAC, 2018.

[224] F. Parveen, S. Angizi, Z. He, and D. Fan, “IMCS2: Novel Device-to-Architecture

Co-Design For Low-Power In-Memory Computing Platform using Coterminous
Spin Switch,” in IEEE Trans. Magn., 2018.

[225] A. S. Rakin, S. Angizi, Z. He, and D. Fan, “PIM-TGAN: A Processing-in-Memory
Accelerator for Ternary Generative Adversarial Networks,” in ICCD, 2018.

[226] A. K. Ramanathan, G. S. Kalsi, S. Srinivasa, T. M. Chandran, K. R. Pillai, O. J.
Omer, V. Narayanan, and S. Subramoney, “Look-Up Table Based Energy Efficient
Processing in Cache Support for Neural Network Acceleration,” in MICRO, 2020.

[227] S. H. S. Rezaei, M. Modarressi, R. Ausavarungnirun, M. Sadrosadati, O. Mutlu,
and M. Daneshtalab, “NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories,” in CAL, 2020.

[228] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve
the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[229] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network Accel-
erator with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[230] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating Graph
Processing Using ReRAM,” in HPCA, 2018.

[231] Y. Tian, T. Wang, Q. Zhang, and Q. Xu, “ApproxLUT: A Novel Approximate
Lookup Table-Based Accelerator,” in ICCAD, 2017.

[232] L. Wu, R. Sharifi, A. Venkat, and K. Skadron, “DRAM-CAM: General-Purpose
Bit-Serial Exact Pattern Matching,” in CAL, 2022.

[233] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “Fast Boolean
Logic Mapped on Memristor Crossbar,” in ICCD, 2015.

[234] X. Xin, Y. Zhang, and J. Yang, “ROC: DRAM-Based Processing with Reduced
Operation Cycles,” in DAC, 2019.

[235] L. Yang, S. Angizi, and D. Fan, “A Flexible Processing-in-Memory Accelerator for
Dynamic Channel-Adaptive Deep Neural Networks,” in ASP-DAC, 2020.

[236] J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, and S. Hamdioui, “Memristive Devices
for Computation-in-Memory,” in DATE, 2018.

[237] J. T. Zawodny and G. E. Hush, “Apparatuses and Methods to Reverse Data Stored
in Memory,” 2018, US Patent 9,959,923.

[238] Y. Zha and J. Li, “Hyper-AP: Enhancing Associative Processing through a Full-Stack
Optimization,” in ISCA, 2020.

[239] H. Zhao, A. Goda, K. K. Parat, A. G. Mauri, H. Liu, T. Tanzawa, S. Yamada,
and K. Sakui, “Apparatuses and Methods to Control Body Potential in Memory
Operations,” 2017, US Patent 9,536,618.

114

