
Read Disturbance in High Bandwidth Memory:
A Detailed Experimental Study on HBM2 DRAM Chips

Ataberk Olgun1 Majd Osseiran1 A. Giray Yağlıkçı1 Yahya Can Tuğrul1

Haocong Luo1 Steve Rhyner1 Behzad Salami2 Juan Gomez Luna1 Onur Mutlu1

1ETH Zürich 2BSC

We experimentally demonstrate the effects of read distur-
bance (RowHammer and RowPress) and uncover the inner
workings of undocumented read disturbance defense mech-
anisms in High Bandwidth Memory (HBM). Detailed char-
acterization of six real HBM2 DRAM chips in two different
FPGA boards shows that (1) the read disturbance vulnera-
bility significantly varies between different HBM2 chips and
between different components (e.g., 3D-stacked channels) in-
side a chip, (2) DRAM rows at the end and in the middle
of a bank are more resilient to read disturbance, (3) fewer
additional activations are sufficient to induce more read dis-
turbance bitflips in a DRAM row if the row exhibits the first
bitflip at a relatively high activation count, (4) a modern
HBM2 chip implements undocumented read disturbance de-
fenses that track potential aggressor rows based on how many
times they are activated. We describe how our findings could
be leveraged to develop more powerful read disturbance at-
tacks and more efficient defense mechanisms. We open source
all our code and data to facilitate future research at https:
//github.com/CMU-SAFARI/HBM-Read-Disturbance.

1. Introduction

Modern DRAM chips suffer from read disturbance is-
sues [1–4] that can be exploited to break memory isolation,
threatening the robustness (including safety, security, and re-
liability) of modern DRAM-based computing systems. Row-
Hammer [1] and RowPress [4] are two prominent examples of
read disturbance. Repeatedly opening/activating and closing a
DRAM row (i.e., aggressor row) many times (e.g., thousands
of times) induces RowHammer bitflips in physically nearby
rows (i.e., victim rows). Keeping the aggressor row open for a
long period of time (i.e., a large aggressor row on time, tAggON)
amplifies the effects of read disturbance and induces RowPress
bitflips, at much lower aggressor row activation counts [4].
Numerous studies demonstrate that a malicious attacker can
reliably cause read disturbance bitflips in a targeted manner
to compromise system integrity, confidentiality, and availabil-
ity [1, 5–67]. Read disturbance worsens in new DRAM chips
with smaller technology nodes, where RowHammer bitflips
1) happen with fewer row activations, e.g., 10× reduction in
less than a decade [68] and 2) appear in more DRAM cells,
compared to old DRAM chips [3, 27, 35, 38, 68–71].

To meet the high-bandwidth requirements of modern data-
intensive applications (e.g., GPU workloads [72, 73], machine
learning training and inference models [74–76]), DRAM de-
signers develop High Bandwidth Memory (HBM) [77] DRAM
chips, which contain multiple layers of 3D-stacked DRAM dies,

using cutting-edge technology nodes.1 It is important to under-
stand read disturbance in HBM DRAM chips because 1) they
have new architectural characteristics (e.g., multiple layers of
DRAM dies, area- and energy-intensive through-silicon vias),
which might affect the chip’s read disturbance vulnerability in
currently-unknown ways, and 2) they are extensively used in
critical system infrastructures of today (e.g., machine learning
training and inference [74, 78–82]). Such understanding can
help identify potential read-disturbance-induced security and
reliability issues in HBM-based systems and allow for effective
and efficient defense mechanisms.

Our goal is to experimentally analyze how vulnerable HBM
DRAM chips are to read disturbance. To this end, we provide
the first detailed experimental characterization of the RowHam-
mer and the RowPress vulnerabilities in six modern HBM2
DRAM chips in two different FPGA boards. We provide four
main analyses in our study. First, we analyze the spatial varia-
tion in RowHammer vulnerability (§ 4) based on the physical
location of victim rows in terms of two metrics: the fraction of
DRAM cells that experience a bitflip in a DRAM row (BER)
and the minimum hammer count necessary to cause a Row-
Hammer bitflip (HCf irst). We use these two metrics to quantify
the RowHammer susceptibility of a DRAM row. For example,
a row with a small BER value is susceptible to only a small
number of RowHammer-induced bitflips. As such, this row is
more RowHammer-resilient than other DRAM rows with higher
BER values. Second, we analyze the number of aggressor row
activations (i.e., hammer count) necessary to induce the first
10 bitflips in a DRAM row (§ 5). We demonstrate how many
additional hammers over HCf irst are needed to induce each of
the first 10 bitflips. Third, we test RowPress and RowHammer’s
sensitivities to the amount of time a row remains active, i.e.,
the aggressor row on time (tAggON) (§ 6). To do so, we sweep
tAggON from the minimum standard value of 29.0 ns to an ex-
treme 16.0 ms. Fourth, we investigate undocumented in-DRAM
read disturbance defense mechanisms that are triggered by peri-
odic refresh operations (e.g., Target Row Refresh [38, 44, 83],
or TRR for short) in an HBM2 chip (§ 7).2 We summarize the
key observations from our four main analyses.

1) Spatial variation in RowHammer (§ 4). First, DRAM
rows near the end and in the middle of a DRAM bank (last
and middle 832 rows) exhibit substantially smaller BER than
other DRAM rows. Second, RowHammer BER and HCf irst

1We use “chip” to refer to an HBM2 stack. An HBM2 stack contains one or

multiple DRAM layers. We refer to each such layer using “DRAM die”.
2The HBM2 standard specifies a Target Row Refresh (TRR) Mode. To

enable TRR Mode, the memory controller issues a well-defined series of com-

mands. We investigate undocumented TRR mechanisms that function even

when the DRAM chip is not in TRR mode.

75

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00022

vary between DRAM chips. For example, the chip-level mean
BER and minimum HCf irst differ by up to 0.49 percentage
points (pp) and 3556, respectively. Third, different 3D-stacked
channels of an HBM2 chip exhibit significantly different levels
of RowHammer vulnerability in BER (e.g., the channel with
the highest mean BER has 1.99× the mean BER of the channel
with the lowest mean BER) and HCf irst . Fourth, the mean BER
variation across channels in multiple HBM2 chips is larger than
the mean BER variation across all HBM2 chips, for all tested
data patterns (Table 1). For example, the channel with the
highest mean BER across all its rows in Chip 4 has 0.88 pp
higher BER than the channel with that of smallest and the chip
with the highest BER across all its rows has 0.38 pp higher BER
than the chip with that of smallest.

2) RowHammer’s Sensitivity to Hammer Count (§ 5). We
show that the hammer count to induce more than one or more
additional RowHammer bitflips (up to 10) in a row can be very
close to (1.15× larger than) or very far from (5.22× larger
than) the hammer count to induce the first RowHammer bitflip
depending on the DRAM row. We find that, in general, it takes
fewer additional hammer counts (over HCf irst) to induce up to
10 RowHammer bitflips in a DRAM row that has a large HCf irst
compared to a DRAM row that has a small HCf irst .

3) RowHammer’s and RowPress’s Sensitivities to
tAggON (§ 6). We observe that as the time an aggressor row
remains open (tAggON) increases, DRAM cells become more
vulnerable to read disturbance. For example, the HCf irst of a
row at a tAggON of 35.1 μs (the maximum allowed time to keep
a row open [77]) is 222.57× smaller than the HCf irst of the row
at a tAggON of 29.0 ns, averaged across all tested DRAM rows.
We observe that only one DRAM row activation is sufficient to
induce RowPress bitflips at an extreme tAggON of 16 ms.

4) In-DRAM RowHammer defenses (§ 7). We uncover that
an HBM2 DRAM chip implements an in-DRAM RowHammer
defense mechanism that is not disclosed in the HBM2 spec-
ification [77]. The undocumented target row refresh (TRR)
mechanism identifies as aggressor rows i) the first row that gets
activated after a TRR operation (a victim row refresh) and ii)
the row whose activation count exceeds half the number of total
row activations within a refresh interval. We experimentally
demonstrate that an attacker could practically and reliably de-
feat this undocumented TRR mechanism in real HBM2 DRAM
chips by leveraging our observations.

We highlight three of the six key implications of our obser-
vations for future read disturbance attacks and defenses (§ 8):
1) the maximum BER (247 bitflips in a row of 8192 bits) is
likely sufficient for conducting practical attacks (e.g., privilege
escalation) in modern HBM-based systems, 2) a read distur-
bance attack could find exploitable bitflips faster by targeting the
most-read-disturbance-vulnerable HBM2 channels, and 3) read
disturbance defense mechanisms could more efficiently prevent
read-disturb bitflips by adapting to the heterogeneous distri-
bution of the RowHammer and RowPress vulnerability across
channels and subarrays.

We make the following contributions:

• We present the first detailed experimental characterization of
read disturbance (RowHammer and RowPress) in six state-

of-the-art HBM2 DRAM chips. We show that all of the
tested HBM2 DRAM chips are susceptible to read disturbance
bitflips.

• We show that the RowHammer and RowPress vulnerability
in HBM2 varies significantly across chips and HBM2 com-
ponents within each chip (e.g., 3D-stacked channels, pseudo
channels, banks, and rows).

• We present the first analysis on hammer count to induce up
to 10 bitflips in a DRAM row. We show that a DRAM row
with a large hammer count to induce the first bitflip is likely
to require fewer additional hammer counts to exhibit the next
9 bitflips.

• We characterize the RowPress vulnerability in six HBM2
chips. Keeping the aggressor row open for the maximum
allowed time reduces the activation count to induce a bitflip by
three orders of magnitude on average across all tested chips.
We show that all chips exhibit bitflips when the aggressor
row is activated only once and kept open for a very long time
(16 ms).

• We uncover the inner workings of an undocumented in-HBM-
chip read disturbance defense mechanism. We analyze this
defense mechanism and craft a specialized RowHammer ac-
cess pattern that bypasses the defense.

• We open-source all our infrastructure [84], test programs,
and raw data to enable 1) reproduction and replication of our
results, and 2) further research on read disturbance in HBM
chips.

2. Background & Motivation
We describe the necessary background on HBM2 organi-

zation and operation, and motivate read disturbance and its
implications for real HBM2 systems.

2.1. HBM2 Organization
Fig. 1 shows the organization of an HBM2 DRAM chip [85]

used in an FPGA-based system. The memory controller commu-
nicates with multiple stacks of HBM using the HBM2 interface
(�). An HBM2 stack contains multiple DRAM dies stacked
on top of the buffer die and connected using through-silicon
vias (TSVs) (�). Each HBM2 die comprises one or multiple
HBM2 channels that can operate independently (�). An HBM2
channel contains multiple pseudo channels and each pseudo
channel has multiple banks (�). A DRAM bank comprises
multiple DRAM cells that are laid in a two-dimensional array
of rows and columns (�). DRAM cells are typically partitioned
into multiple DRAM subarrays [86–88] (not shown in the fig-
ure) that each contain a row buffer. When enabled, a wordline
connects a DRAM cell to its bitline, copying the data stored in
the DRAM cell to the row buffer.

�������	
�

��������	
�
����
�����	���

����
����

��������

��
�
��
��
��
��

����������
�����
���

�����
�

�
��
�
�����
	���

����
����

����
����

����
����

����
����

����
����

����
����

����
����

�����
��	����

���������	����

��������

��������

�	

������

������ ������

����

�������
��	
������

����
�������������
�����������	
�

�

� �
�

�

Figure 1: HBM2 DRAM system organization

76

2.2. HBM2 Operation
To access a DRAM chip, the memory controller needs to

issue the following sequence of commands. First, the controller
issues an activate (ACT) command targeting a DRAM row to
access a DRAM cell. The row decoder enables the row’s word-
line, copying the data in the row to the row buffer. Second,
to read from or write to a particular column in that row, a RD
or WR command needs to be issued. Finally, when accesses
to the open row are complete, the memory controller issues a
precharge (PRE) command, which disables the enabled word-
line so that the memory controller can later access a different
cell in another DRAM row.

To maintain reliable DRAM operation, the memory controller
must obey manufacturer-recommended, standard timing param-
eters. These timing parameters ensure that the DRAM circuitry
has enough time to execute the operations dictated by DRAM
commands. Two relevant timing parameters for our study are
charge restoration latency (tRAS) and refresh interval (tREFI).
First, tRAS, the minimum time that a row should remain active
before a PRE command is sent to the row’s bank. tRAS guaran-
tees that DRAM sense amplifiers have enough time to restore
charge in cells of the open row before the row is closed. Second,
tREFI , the periodic interval at which a refresh cycle is required.
Since a DRAM cell stores data as charge in its capacitor and the
capacitor naturally loses charge over time, the capacitor must
be periodically refreshed to prevent data corruption. Conse-
quently, the memory controller should issue a REF command
on average every 3.9 μs [77] (tREFI), such that every DRAM cell
is refreshed once at a fixed refresh window (e.g., 32 ms). The
memory controller may delay a REF command up to 35.1 μs
(9∗ tREFI). However, any such large delay must be compensated
by multiple smaller delays between successive REF commands
following the large delay.

2.3. Motivation
Read-disturb phenomena (e.g., RowHammer [1] and Row-

Press [4]) break the fundamental building block of modern
system security principles, i.e., memory isolation. This prop-
erty allows read-disturb phenomena to be used in system-level
attacks that compromise system integrity, confidentiality, and
availability in various real computing systems, as many prior
works have shown [1, 5–67]. Therefore, it is critical to under-
stand the properties of the RowHammer and RowPress vul-
nerabilities to design defense mechanisms and protect modern
DRAM chips against read-disturbance-based attacks. Unfor-
tunately, no prior work extensively studies the RowHammer
and RowPress vulnerabilities of modern HBM chips. To this
end, our goal is to experimentally evaluate and understand the
RowHammer and RowPress vulnerabilities in real HBM chips.
To achieve this goal, we perform a rigorous experimental char-
acterization study of read disturbance on six HBM2 chips in
two different types of integrated circuit packages.

3. Experimental Infrastructure
We use a modified version of the DRAM Bender testing

infrastructure [89, 90]. This infrastructure allows us to pre-
cisely control the HBM2 command timings at the granularity of
1.67 ns (i.e., the HBM2 interface clock speed is 600 MHz). All

tested HBM2 chips have i) 8 channels, ii) 2 pseudo channels,
iii) 16 banks, iv) 16384 rows, and v) 1 KiB rows.

Testing setup. Fig. 2 shows one of our six testing setups. We
conduct experiments using one Bittware XUPVVH [91] (1) and
five AMD Xilinx Alveo U50 FPGA boards [92] (not shown
in Fig. 2). We use the heating pad (2) and the cooling fan (3) to
increase and reduce the temperature of the HBM2 chip, respec-
tively. The Arduino [93] temperature controller (4) communi-
cates with i) the host machine to retrieve a target temperature
and ii) the FPGA board to retrieve the HBM2 chip’s tempera-
ture. A host machine executes the test programs described in
§ 3.1 on the FPGA board using the PCIe connection (5).

(3) Cooling Fan

(1) FPGA Board
with HBM2

(2) Heating Pad

(4) Temperature
 Controller

 (5) PCIe
Host Interface

Figure 2: FPGA-based HBM2 DRAM tester.

3.1. Testing Methodology
Disabling Sources of Interference. We identify four sources
that can interfere with our characterization results: 1) periodic
refresh [77], 2) on-die read disturbance defense mechanisms
(e.g., TRR [38,44,83]), 3) data retention failures [94,95], and 4)
ECC [77]. First, we do not issue periodic refresh commands in
our experiments. Second, disabling periodic refresh disables all
known on-die read disturbance defense mechanisms [44,68–70].
Third, we ensure that our experiments finish within the 32 ms
refresh interval where manufacturers guarantee no retention
errors will occur [77]. Fourth, we disable ECC by setting the
corresponding HBM2 mode register bit to zero [77].

RowHammer and RowPress Access Pattern. We use the
double-sided read disturbance access pattern [1, 14, 68, 70],
which alternately activates each aggressor row. We record the
bitflips observed in the sandwiched victim row (i.e., the row
between two aggressor rows).

Logical-to-Physical Row Mapping. DRAM manufacturers
use mapping schemes to translate logical (memory-controller-
visible) addresses to physical row addresses [1, 9, 28, 39, 70, 94,
96–105]. To identify aggressor rows that are physically adjacent
to a victim row, we reverse-engineer the row mapping scheme
following the methodology described in prior work [70].

RowHammer and RowPress Test Parameters. We configure
our tests by tuning three parameters: 1) Hammer count: We
define the hammer count of a double-sided read disturbance
access pattern as the number of activations each aggressor row
receives. Therefore, during a double-sided RowHammer or a
RowPress test with a hammer count of 10, we activate each

77

Figure 3: Tested HBM2 chips’ temperature over time (24 hours). We draw temperature measurements taken every 5 seconds over a 24
hour time window.
of the two aggressor rows 10 times, resulting in a total of 20
row activations. 2) tAggON : The time each aggressor row stays
on with each activation during a RowHammer or a RowPress
test. 3) Data pattern: We use the four data patterns (Table 1)
that are widely used in memory reliability testing [106] and by
prior work on DRAM characterization (e.g., [1, 4, 68, 70, 107]).
For each DRAM row, we define WCDP as the data pattern
that causes the smallest HCf irst . When multiple data patterns
cause the same HCf irst , we select WCDP as the data pattern
that causes the largest BER at hammer count = 256K.

Table 1: Data patterns used in our experiments
Row Addresses Rowstripe0 Rowstripe1 Checkered0 Checkered1

Victim (V) 0x00 0xFF 0x55 0xAA

Aggressors (V ± 1) 0xFF 0x00 0xAA 0x55

V ± [2:8] 0x00 0xFF 0x55 0xAA

Read Disturbance Vulnerability Metrics. We measure the
read disturbance vulnerability based on two metrics: 1) HCf irst
and 2) BER as defined in § 1.

Tested DRAM Components. To maintain a reasonable ex-
periment time, the number of DRAM components (channels,
pseudo channels, banks, and rows) we test varies depending
on the experiment type. Table 2 summarizes the number of
components tested for each experiment type.

Table 2: Tested DRAM components for each experiment type
Experiment Type Rows (Per Bank) Banks Pseudo Channels Channels
RowHammer BER 16384 1 1 8

RowHammer HCf irst 3072 3 2 8

RowPress BER 384 1 1 3

RowPress HCf irst 384 1 1 3

Experiment Repetitions. We repeat every experiment five
times. We report 1) the average value across five repetitions
for BER experiments and 2) the minimum value across five
repetitions for HCf irst experiments.

HBM2 Chip Labeling. We label the XUPVVH board’s HBM2
chip as Chip 0 and the five U50 boards’ HBM2 chips as Chip 1,
2, 3, 4, and 5.

Estimated ages of the tested HBM2 chips. We do not know
the precise model information details (including the manufac-
turing date) of the HBM2 chips we test, as the manufacturer
does not disclose the specifications for the HBM2 chips in their
products [108] and as our custom memory controller does not
yet support accessing this information from the mode status
registers of the HBM2 chip. We estimate the ages of the tested
HBM2 chips based on the dates that we acquired them: Chip0
was 2 years and 9 months, Chip1 was 8 months, and Chip2-5
were 3 months old when we started our experiments.

Temperature Control. We use the temperature controller setup
shown in Fig. 2 for Chip 0 and set the target temperature for
this chip to 82 ◦C. Fig. 3 shows how the temperature of each

chip varies during 24 hours based on measurements taken every
5 seconds. Even though we do not have the same tempera-
ture controller setups for the six chips, we observe that their
temperature is stable.3

4. Spatial Variation in RowHammer
We provide the first detailed spatial variation analysis of

RowHammer across channels, pseudo channels, banks, and
rows in six HBM2 chips.

4.1. RowHammer Across Chips
Fig. 4 shows the distribution of BER (y-axis) across all tested

DRAM rows for each tested data pattern (x-axis) in all tested
chips (color-coded). A higher BER indicates worse RowHam-
mer vulnerability as more DRAM cells in a row exhibit Row-
Hammer bitflips.

Figure 4: BER across different HBM2 chips. Error bars show the
range of BER across all tested rows in each chip.

Obsv. 1. There are RowHammer bitflips in all tested DRAM
rows in all chips. RowHammer BER varies across chips.

For example, the BER for a DRAM row in Chip 0 can reach
up to 3.02% (i.e., 3.02% of all cells in a DRAM row exhibit
RowHammer bitflips) and the mean BER across all DRAM
rows in Chip 0 is 1.04%. In Chip 5, the highest BER for a
DRAM row is 1.82% and the mean BER across all DRAM
rows is 0.66%. We observe the most significant difference in
mean BER across all rows in a chip between Chip 0 (1.28%)
and Chip 5 (0.80%) as 0.49 percentage points (pp) for the worst
case data pattern (WCDP, see § 3.1).

Obsv. 2. Data pattern affects RowHammer BER.
As an example, the Checkered0 and Checkered1 data pat-

terns result in substantially higher mean BER across rows for
every DRAM chip compared to the Rowstripe0 and Rowstripe1
data patterns. The mean BER across all tested DRAM rows
(across all chips) is 0.76% and 0.67% for Checkered0/1 and
Rowstripe0/1 data patterns, respectively.

Fig. 5 shows the distribution of HCf irst (y-axis) across all
tested DRAM rows for each tested data pattern (x-axis). A
lower HCf irst indicates worse RowHammer vulnerability as

3We retrieve the temperature for these five chips from an in-HBM2-chip

temperature sensor using the IEEE 1500 test port [77].

78

DRAM cells exhibit RowHammer bitflips with fewer aggressor
row activations (i.e., it takes a shorter time to induce the first
RowHammer bitflip in a row).

Figure 5: HCf irst across different chips. Error bars show the range
of HCf irst across all tested rows in each chip.

Obsv. 3. It takes only 14531 aggressor row activations to
induce a RowHammer bitflip.

The most RowHammer vulnerable DRAM row across all
tested rows has an HCf irst of 14531. Causing this bitflip in a
row in Chip 5 takes us 1.3 milliseconds.

Obsv. 4. HCf irst varies across chips and there are rows in
every chip that exhibit relatively small HCf irst values.

There is variation in HCf irst distributions between different
chips for the same data pattern. For example, the mean HCf irst
value for Chip 5 is 10.59% higher than the mean HCf irst value
for Chip 2 using the Rowstripe0 data pattern. The other tested
chips (Chips 0-4) display similar minimum HCf irst values. It
takes 18087, 16611, 15500, 17164, and 15500 aggressor row
activations to induce the first RowHammer bitflip in Chips 0-4,
respectively.

Takeaway 1. HBM2 chips exhibit different levels of Row-
Hammer vulnerability in terms of mean BER (up to 0.49
percentage points difference) and minimum HCf irst (up to
3556 difference).

4.2. RowHammer Across Channels
Fig. 6 shows the distribution of BER (y-axis) across different

DRAM rows for a given data pattern (x-axis) in a channel
(color-coded).

Obsv. 5. Each tested DRAM row across all tested HBM2 chan-
nels exhibits RowHammer bitflips. The worst-case data pattern
(WCDP) BER across all tested rows in all chips can reach
3.02% (i.e., 247 bitflips out of 8192 bits in a row).
Obsv. 6. BER varies across channels in a chip.

For example, in Chip 0, channels CH0 and CH7 exhibit sig-
nificantly higher BER than other channels. CH7 (where we
observe the highest mean BER) has 1.99× the BER of CH3
(where we observe the lowest mean BER) for WCDP. We ob-
serve that channels can be classified into groups of two based on
the number of bitflips they exhibit. We highlight these groups
using different shades of the same color in Fig. 6. For exam-
ple, channels CH3 and CH4 exhibit a similar BER distribution
across rows in every tested HBM2 chip. We hypothesize that
groups of channels are spread across different HBM2 DRAM
dies. The difference in BER across the groups of channels could
be due to process variation as a 3D-stacked chip is typically
constructed by stacking DRAM dies that pass functionality and
performance testing [109] (the difference in BER across groups

Figure 6: BER across different DRAM channels. Error bars show
the range of BER across rows in each channel.

of two channels is similar to how different DDR3/4 chips exhibit
different RowHammer characteristics [1, 68–70, 107, 110, 111]).

Obsv. 7. The distribution of BER across channels changes
from chip to chip.

The most RowHammer vulnerable channel (i.e., a channel
with the highest RowHammer BER) is not necessarily the same
across every chip. For example, channels CH0 and CH7 have
the highest average BER in Chip 0, whereas channels CH3 and
CH4 have the highest average BER in Chip 1 for WCDP. We
hypothesize that this difference could be due to the effects of
process variation across HBM2 chips and dies inside chips.

Obsv. 8. The mean BER across all rows in each channel has
a wider distribution than the mean BER across all rows in each
chip.

For example, the difference between the maximum and the
minimum mean BER across all rows in each channel in Chip
4 is 0.88 pp, whereas the difference between the maximum
and the minimum mean BER across all rows in each chip is
0.38 pp (see Fig. 6), for the Checkered0 data pattern. This
observation holds for all tested data patterns and chips except
Chip 5. Chip 5 has a smaller difference between the maximum
and the minimum mean BER across all rows in each channel
than the difference across all rows in each chip. Manufacturing

79

process variation inherent to 3D die stacking process [109]
could explain this observation. 3D die stacking could alter
the RowHammer vulnerability characteristics (e.g., BER) of
DRAM dies that make up a chip stack. We hypothesize that this
alteration is made in a way that widens the BER distribution
across 3D-stacked dies in an HBM2 chip.

Fig. 7 shows the distribution of HCf irst (y-axis) across differ-
ent DRAM rows for a given data pattern (x-axis) in a channel
(color-coded).

Figure 7: HCf irst across different DRAM channels.

Obsv. 9. Different channels exhibit different HCf irst distribu-
tions. These distributions are affected by the data pattern.

For example, channels CH3 and CH4 in chip 1 contain more
rows with smaller HCf irst values than other channels. Because
these channels also exhibit more RowHammer bitflips than
other channels in chip 1 (see Fig. 6), we hypothesize that these
channels belong to the die with the worst RowHammer vulnera-
bility across all dies. The median HCf irst for Rowstripe0 and
Rowstripe1 in channel CH0 in chip 1 are 103905 and 75990,
respectively. Testing with different data patterns is necessary to
assess the RowHammer vulnerability of an HBM2 DRAM chip,
as no data pattern individually achieves the smallest HCf irst or
the highest BER (Fig. 6).

Takeaway 2. RowHammer BER and HCf irst vary between
different 3D-stacked channels in a chip and with the data
patterns in aggressor and victim rows. The mean BER across
all rows in each channel has a wider distribution than the
mean BER across all rows in each chip.

Fig. 8 shows the BER over each DRAM row in a bank when
we use the worst-case data pattern (WCDP) to initialize the
rows. Each color-coded BER curve represents the BER for
rows in three different channels. The shaded regions indicate
variable-sized subarray boundaries.4 For example, the green
highlighted subarray (SA X) comprises 832, and the blue high-
lighted subarray (SA Y) comprises 768 DRAM rows.

Figure 8: BER for different rows across a bank in different chan-
nels. Dashed vertical lines indicate subarray boundaries.

Obsv. 10. BER periodically increases and decreases across
DRAM rows.

This observation is consistent in each tested chip. BER is
higher in the middle of a subarray and lower towards either
end. We hypothesize that the increasing and decreasing pattern
results from the structure of the local DRAM array. For example,
the RowHammer vulnerability of a row could increase with the
row’s distance from the row buffer.

Obsv. 11. The last and the middle subarrays in a bank exhibit
relatively low BER.

The last and the middle subarrays in a bank (highlighted with
red color in Fig. 8), which contain the last and the middle 832
DRAM rows, exhibit significantly lower BER than the other
subarrays. We hypothesize that these subarrays exhibit smaller
BER due to the micro-architectural characteristics of the DRAM
bank. First, assuming that proximity to the shared I/O circuitry
on the DRAM die affects the RowHammer vulnerability of a

4We reverse engineer subarray boundaries by performing single-sided Row-

Hammer [1, 68] that induces bitflips in only one of the victim rows if the

aggressor row is at the edge of a subarray. We find that a subarray contains

either 832 (SA X in Fig. 8) or 768 (SA Y in Fig. 8) DRAM rows.

80

subarray, the last and the middle subarrays might be placed near
this shared I/O circuitry [112]. Second, an edge subarray (a sub-
array at either edge of a bank) typically harbors different design
characteristics than other subarrays [113, 114]. Edge subarrays
(e.g., the last and the middle subarrays) in the tested chips could
exhibit a design characteristic that results in their DRAM word-
lines to be driven to a smaller wordline voltage (VPP) than other
subarrays’ wordlines’, which could explain the relatively low
BER values in the middle and last subarrays [69]. Third, the
tested data pattern may not be replicated in the same way in
edge subarrays due to inaccessible “dummy bitlines” [113] and
thus the data pattern in the last and middle subarrays could be
inducing a smaller read disturbance effect.

Takeaway 3. A subset of HBM2 rows (the middle and the
last 832 rows) are significantly more RowHammer resilient
than the other rows in an HBM2 channel.

4.3. RowHammer Across Banks and Pseudo Channels
To investigate the variation in the RowHammer vulnerability

across HBM2 banks and pseudo channels, we measure BER on
300 rows from 256 banks in chip 0.5 Fig. 9 compares different
banks’ BER distributions across channels (color) and pseudo
channels (marker style) in terms of the coefficient of variation
(CV)6 (x-axis) and mean BER (y-axis). We draw one marker
for each bank. At a high level, a marker close to the y-axis (e.g.,
the leftmost markers) indicates that the variation in BER across
rows in that bank is smaller. A marker close to the x-axis (e.g.,
the bottommost markers) suggests that the mean BER across
rows in that bank is smaller.

 Each point is a bank

Figure 9: BER variation across banks. Each bank is represented
by the average BER (y-axis) and the coefficient of variation in BER
(x-axis) across all rows within the bank.

Obsv. 12. RowHammer BER varies across banks and pseudo
channels. The BER variation across banks is dominated by
variation across channels.

For example, there is up to 0.23 pp difference in mean BER
across banks in channel 7. The markers follow a bimodal dis-
tribution (i.e., the markers are clustered around two points in
the plot). The two clusters indicate that 1) a bank with a higher
mean BER across its rows also has a smaller deviation (i.e.,
smaller coefficient of variation) from the average BER across
its rows and 2) a bank with a smaller mean BER across its rows
also has a larger deviation from the average BER across its rows.
Banks in different channels tend to have a larger BER difference
than banks in the same channel (Fig. 6), indicating that testing

5First, middle, and last 100 rows in each of the 256 banks spread across

eight channels and two pseudo channels.
6Coefficient of variation is the standard deviation of a distribution normal-

ized to the mean.

different channels is more important than testing different banks
or pseudo channels in providing a comprehensive understanding
of the RowHammer vulnerability in HBM2 DRAM chips.

Takeaway 4. RowHammer BER varies across pseudo chan-
nels and banks. This variation is less prominent than the
BER variation between channels.

4.4. The Effect of Aging
A DRAM row’s RowHammer vulnerability can change over

time. A rigorous characterization study on many HBM2 chips
over a large timespan is required to comprehensively demon-
strate the effects of aging. Due to time and space limitations,
we leave such a study for future work while presenting a pre-
liminary analysis using four HBM2 chips (Chips 2-5, which
have the same estimated age) as our best effort. We repeat our
BER experiments for 3072 rows in 3 channels after 7 months
of keeping the HBM2 chips powered on. Fig. 10 (left) shows
the distribution of a row’s BER after aging (New BER) over its
BER before aging (Old BER) for the Checkered1 data pattern.
Fig. 10 (right) shows the distribution of a row’s BER before
aging over its BER after aging. The left subplot shows only the
distribution for the rows whose BERs increase after aging and
the right subplot shows the distribution for the rest of the rows.
The x-axis is marked with percentiles ranging from P1 to P99.

Figure 10: Distribution of the deviation of BER after aging from
BER before aging across tested DRAM rows.

Obsv. 13. The BER of a DRAM row changes after aging. A
larger fraction of the tested DRAM rows have higher BER after
aging.

18713 and 17973 of the tested DRAM rows have a higher
New BER and a lower New BER, respectively (we omit 178
outlier rows from the figure). We observe similar distributions
for all tested HBM2 chips.

5. RowHammer’s Sensitivity to Hammer Count
We analyze the number of aggressor row activations (hammer

count) needed to induce up to 10 bitflips in a DRAM row. Our
HCf irst analysis (§ 4) already examined the hammer count to
induce one (the first) bitflip in a row. We use the same naming
convention used with HCf irst to refer to these 9 new hammer
counts that we determine in this analysis. For example, we call
the hammer count to induce the second bitflip HCsecond and
the tenth bitflip HCtenth. We report each of the 9 new hammer
counts as a value normalized to HCf irst . For example, if a row’s
HCf irst is 10 and its HCsecond normalized to HCf irst is 2, the
absolute HCsecond of the row is 20. We record the hammer
counts to induce up to 10 bitflips in 32 rows from each of the
beginning, middle, and end of one bank in two channels (that
exhibit the smallest HCf irst across all channels) in every HBM2
chip. Fig. 11 plots the distribution of all 10 hammer counts

81

(x-axis) normalized to HCf irst (y-axis) for all tested DRAM
rows (1152 such rows across all chips).

Figure 11: Distribution of hammer counts (y-axis) to induce up
to 10 bitflips in a DRAM row (x-axis), normalized to the row’s
HCf irst .

Obsv. 14. Hammer count needed to induce up to 10 bitflips in
a row significantly varies between rows.

The hammer count to induce up to 10 bitflips in a row can
be as small as 1.15× and as large as 5.22× the HCf irst of the
DRAM row. Fewer than 2× HCf irst hammers are enough to
induce 10 bitflips in a DRAM row on average across all tested
DRAM rows. For example, an average DRAM row’s HCsecond ,
HCf ourth, HCeighth, and HCtenth are 1.19×, 1.41×, 1.66×, and
1.76× that of the row’s HCf irst for the Rowstripe1 data pattern.

Obsv. 15. The hammer counts to induce up to 10 bitflips are
moderately affected by data patterns.

For example, the difference between the largest (Rowstripe0)
and the smallest (Rowstripe1) mean normalized HCtenth is
12.59%. The variation in normalized hammer count across data
patterns resembles the variation in HCf irst across data patterns
(see Fig. 5).

Fig. 12 plots the additional hammer count (over HCf irst)

to induce the 10th bitflip (y-axis) for all tested DRAM rows
whose HCf irst values are depicted on the x-axis. We compute
the additional hammer count for a row as the row’s HCtenth −
HCf irst . Fig. 12 shows one subplot for each of the 6 tested
HBM2 chips.

Figure 12: Additional (over HCf irst , x-axis) hammer count needed
to induce the tenth bitflip (y-axis) for each tested DRAM row in
each tested chip (labeled Chip 0 to Chip 5 in the figure). We
plot a polynomial curve fit (orange curve) for each distribution
to highlight the decreasing additional hammer count trend with
increasing HCf irst .

Obsv. 16. It takes fewer additional hammer counts (over

HCf irst) to induce the 10th RowHammer bitflip for a DRAM
row with a large HCf irst compared to a DRAM row with a small
HCf irst .

We observe that increasing HCf irst is correlated with decreas-

ing additional hammer count to induce the 10th bitflip. We com-
pute the Pearson correlation coefficient for each distribution to
quantify the correlation. We conclude that increasing HCf irst is
moderately correlated with decreasing additional hammer count
to induce the 10th bitflip, based on the weakest (−0.34) and
the strongest (−0.45) Pearson correlation we observe across
distributions for each chip (displayed on each subplot).

Takeaway 5. It can take fewer aggressor row activations to
induce multiple (e.g., 10) bitflips in a DRAM row if it takes
many activations to induce the first bitflip in the row.

Fig. 13 shows the distribution of the maximum change of
HCf irst from the minimum observed HCf irst for a DRAM row
over 50 experiment iterations using the Rowstripe0 data pattern.
The x-axis shows all tested rows (768 rows from channel 0
in every tested HBM2 chip), sorted by increasing maximum
change of HCf irst and marked with percentiles ranging from P1
to P99.7

Figure 13: Distribution of the maximum observed HCf irst over the
minimum observed HCf irst for a DRAM row across experiments,
across all tested 4608 DRAM rows for the Rowstripe0 data pattern.

We make two key observations. First, the HCf irst of a
DRAM row can significantly change from the minimum ob-
served HCf irst across experiment iterations (i.e., over time).
The greatest change that we observe for a row is 2.23× (the
row’s maximum observed HCf irst is 2.23× of its minimum
observed HCf irst). Second, the majority of rows experience
a small HCf irst change. For example, 90% of all tested rows
experience an HCf irst change smaller than 1.09×.

6. RowHammer and RowPress’s Sensitivities to
Aggressor Row On Time
With aggressive technology node scaling, DRAM suffers

from worsening read disturbance effects. One prominent ex-
ample of read disturbance in DRAM is RowHammer, which
we have already extensively characterized in our HBM2 chips.
We also investigate the characteristics of another widespread
read disturbance effect called RowPress, recently experimen-
tally demonstrated in real DDR4 chips [4]. RowPress is the
phenomenon that keeping an aggressor row open for a long

7To maintain a reasonable testing time, we investigate the maximum change

of HCf irst using one data pattern and 4608 DRAM rows. We leave the detailed

analysis of the maximum change of HCf irst that covers more data patterns,

HBM2 components (e.g., channels, pseudo channels, banks, rows), and access

patterns for future work.

82

period of time (i.e., a large aggressor row on time, tAggON) in-
duces bitflips in physically nearby DRAM rows with orders of
magnitude smaller hammer counts compared to a traditional
RowHammer access pattern which keeps the aggressor row
open for a short period of time. We provide the first extensive
analysis of RowPress in six real HBM2 chips.

Fig. 14 depicts how BER (y-axis) varies with increasing
tAggON (x-axis) across the first, middle, and last 128 rows in one
DRAM bank for 8 channels when we use a hammer count of
150K (i.e., activate each aggressor row 150K times) and the
Checkered0 data pattern. We plot the results for four relatively
small (left subplots) and two relatively large (right subplots)
tAggON values. The minimum tAggON is the tRAS timing param-
eter [77, 85]. We choose two relatively large tAggON values of
interest as tREFI , the average interval between two successive
periodic refresh commands, and as 9∗ tREFI , the maximum in-
terval between two subsequent periodic refresh commands (i.e.,
the maximum time a row can remain open according to the
HBM2 standard) [77].8

tAggON in commodity systems. In general, the time a DRAM
row is kept open depends on two factors: 1) tREFI in the DRAM
specification, and 2) the memory request scheduling algorithm
implemented in the memory controller. For HBM2, the default
tREFI is 3.9μs. The memory controller in a commodity CPU
or a GPU may delay up to 8 periodic refresh commands and
thereby keep a row open for as long as 9*tREFI (35.1μs). The
memory request scheduling algorithm is typically not disclosed
by system manufacturers. However, it is reasonable to assume
that a high-performance scheduling algorithm implemented in
a commodity CPU or GPU’s memory controller would keep
a DRAM row open at least for as long as required to serve a
regular memory access pattern that “streams” through a row
(i.e., accesses every cache line in the row one by one) [115–
118], to exploit row buffer locality and thus maximize memory
throughput. We estimate the time it takes to stream through
a row as 128.0ns (32*tCCD_L) based on the HBM2 timing
parameter values depicted in [85].

Obsv. 17. RowPress BER in each chip consistently increases
with tAggON in all tested channels.

The average BER across every channel in every chip is 0.08%,
0.24%, 0.40%, 0.73%, 31.00%, and 50.35% at tAggON of 29.0 ns,
58.0 ns, 87.0 ns, 116.0 ns, 3.9 μs, and 35.1 μs, respectively.

Obsv. 18. Channels with high BER at low tAggON values tend
to have high BER also at high tAggON values.

For example, CH 1 in Chip 3 has the highest mean BER
across all tested tAggON values. We observe that all BER values
converge to around 50% for the tAggON of 35.1 μs across all
tested channels. We hypothesize that this is due to the combined
effect of 1) the data pattern that we use which initializes a
victim DRAM row with alternating logic-1 and logic-0 (i.e.,

8tAggON values above 116.0 ns combined with the 150K hammer count

results in experiment times that are longer than the 32 ms refresh window

(e.g., 150K hammers at tAggON = 35.1μs takes 10.53 seconds), where DRAM

cells can exhibit retention failures. Because we want to analyze only the read

disturbance bitflips, we remove bitflips that are caused by retention failures

(0.109% of all bitflips we observe) from the set of bitflips we observe at every

such tAggON . We omit the details of our retention failure characterization

methodology due to page limits.

Figure 14: BER with increasing tAggON .

10101010...) and 2) RowPress causing bitflips from logic-1
to logic-0 more frequently than from logic-0 to logic-1 (as
demonstrated in [4] for a wide variety of DDR4 chips).

Fig. 15 depicts how the HCf irst values (y-axis) across 384
tested DRAM rows in a channel change with increasing tAggON
(x-axis) for 3 channels when we use the Checkered0 data pat-
tern. From left to right, 1) the default tRAS value (29.0 ns), 2)
tREFI , the average time interval between two successive periodic
refresh commands, 3) 9∗ tREFI , the maximum time a row can
remain open according to the HBM2 specification, and 4) half
the refresh window (tREFW) [77] (such that each aggressor row
can be activated once in a tREFW). Fig. 15 shows one subplot for
every tested HBM2 chip. The grey boxes indicate the number
of rows we show in each subplot. We only show rows for which
we observe the first read-disturb bitflip in a refresh window (un-
der 32 ms) at every tested tAggON value. We display the results
for four tAggON values on the x-axis.

Obsv. 19. As the aggressor row remains open longer (i.e., as
tAggON increases), DRAM rows experience bitflips at smaller
hammer counts.

This observation is consistent across the three tested HBM2
channels. The average (minimum) HCf irst values across all
chips are 83689 (29183), 1519 (335), 376 (123), and 1 (1), for
the four tested tAggON values, respectively.

Takeaway 6. The read disturbance vulnerability of tested
HBM2 chips worsens (i.e., BER increases and HCf irst re-
duces) with increasing tAggON .

Our observations are in line with prior works that investigate
the effects of tAggON in real DDR4 chips [4, 70].

83

Figure 15: HCf irst with increasing tAggON .

7. In-DRAM RowHammer Defenses
To prevent RowHammer bitflips, DRAM manufacturers

equip their chips with a mitigation mechanism broadly referred
to as Target Row Refresh (TRR) [38, 44, 83]. Unfortunately,
manufacturers do not disclose the operational principles or im-
plementations of proprietary TRR versions (e.g., in DDR4).
At a high level, TRR 1) identifies potential aggressor rows as
the memory controller issues activate commands to the DRAM
chip and 2) preventively refreshes their victim rows when the
memory controller issues a periodic REF command [38, 44].

We demonstrate that a tested HBM2 chip (Chip 0) imple-
ments a form of proprietary TRR (similar to the ones used
in DDR4).2 We analyze the TRR mechanism and craft a spe-
cialized access pattern that bypasses the TRR mechanism and
induces RowHammer bitflips.9

Methodology. We use U-TRR’s [44] methodology to uncover
the proprietary TRR mechanism. The key idea of this methodol-
ogy is to use retention failures as a side channel to infer whether
or not TRR refreshes a DRAM row. Our analysis consists of
two steps. First, we identify multiple DRAM rows with similar
retention times (e.g., two rows that can correctly retain data

9We note that the profiling required to perform system-level RowHammer

attacks [1, 5–67] is not as extensive as what we do in this work and can be done

using user-level programs, as shown in various works (e.g., [38, 43, 45]).

when they are not refreshed for the same amount of time) by
profiling DRAM rows for their retention times. We test all
of the DRAM rows in bank 0 for retention failures starting
with a retention time of 64 ms with increments of 64 ms. We
deem a row to have a retention time of T if any of the DRAM
cells in the row exhibit a bitflip at a retention time of T. We
find the smallest T that causes at least one retention bitflip for
each tested row. Second, to understand if the TRR mechanism
samples an aggressor row, we execute a four-step process: 1)
We initialize DRAM rows that have a retention time of T (we
call these rows side-channel rows) and wait for T/2 without
refreshing these rows. 2) We activate each of the DRAM rows
adjacent to the side-channel rows once. We hypothesize that
the TRR mechanism samples an activation to an adjacent row
as an aggressor row activation. 3) We issue a REF command to
trigger the TRR mechanism. If the TRR mechanism samples
any of the activated adjacent rows in step 2, we expect the TRR
mechanism to refresh the side-channel rows. 4) We wait for
T/2, read the data in the side-channel rows and check for any re-
tention bitflips. The side-channel rows exhibit retention bitflips
only if they are not refreshed by the TRR mechanism. We use
this information to understand how the TRR mechanism works.

We repeat our experiment with various carefully crafted Row-
Hammer access patterns to understand how the TRR mechanism
tracks the aggressor rows.

Obsv. 20. Every 17th REF command can perform a TRR vic-
tim row refresh (i.e., every 17th REF command is TRR-capable).
Obsv. 21. The TRR mechanism refreshes both of the adjacent

rows of an aggressor row.
If TRR identifies row R as an aggressor row, it refreshes rows

R+1 and R-1. Obs. 20 & 21 resemble the TRR mechanism
employed in real DDR4 chips from Vendor C in U-TRR [44].

Obsv. 22. The first row that gets activated after a TRR-
capable REF is always identified as an aggressor row by the
TRR mechanism.
Obsv. 23. The TRR mechanism records the activation count

of activated rows and uses this record to identify if a row is an
aggressor row.

Between two REF commands, if a row is activated more
than half the total activation count, TRR identifies that row
as an aggressor row. For example, if we issue 10 activations
between two REF commands, the row that receives the first
ACT command and the row that receives 5 ACT commands are
identified by the TRR mechanism. We compare our findings on
the HBM2 chip’s TRR mechanism to U-TRR’s findings [44] in
DDR4 chips. U-TRR does not make similar observations to Ob-
servations 22 and 23. Thus, the HBM2 chip likely implements
a previously-unknown type of TRR.

Takeaway 7. An HBM2 chip implements a proprietary
TRR mechanism that tracks aggressor rows and proactively
refreshes their victim rows.

Bypassing the proprietary TRR mechanism. Based on our
observations, we craft a specialized access pattern that bypasses
the TRR mechanism and causes RowHammer bitflips. We cal-
culate the total activation count budget (i.e., the maximum num-
ber of ACT commands that the memory controller can issue)

84

between two REF commands as �(tREFI − tRFC)/tRC� =
78 [77, 85] for the tested HBM2 chip and fully utilize the ac-
tivation count budget in our access pattern. The key idea of
this access pattern is to trick TRR into not identifying a real
aggressor row by repeatedly accessing multiple dummy rows
many times. The access pattern 1) activates dummy rows (we
vary the number of dummy rows and the activation count of the
dummy rows) and 2) performs double-sided RowHammer using
two real aggressor rows. We create this access pattern such that
the number of real aggressor activations does not exceed half of
the total activation count budget. We repeat the access pattern
8205∗2 times (i.e., approximately for two tREFW, 64 ms) for
each DRAM row in a bank so that we activate aggressor rows
as many times as possible before each DRAM cell is refreshed.

We test all rows in a bank of the HBM2 chip using this access
pattern while obeying manufacturer-recommended timing pa-
rameters (e.g., we issue a REF command every tREFI, 3.9μs).
Fig. 16 shows the distribution of BER for different numbers of
dummy rows (x-axis) and aggressor activation counts (different
boxes). Since we have a total activation count budget of 78 and
we utilize the whole budget for aggressor row and dummy row
activations, the number of dummy row activations varies be-
tween boxes displayed on the plot. For example, for 4 dummy
rows and an aggressor activation count of 18 (leftmost box
in Fig. 16), each dummy row is activated �(78−18∗2)/4�= 10
times.

Figure 16: RowHammer BER distribution across all tested rows
for the specialized access pattern with different number of dummy
rows (x-axis) and different aggressor row activation counts (differ-
ent colored boxes).

We make four key observations from Fig. 16. First, our
specialized access patterns can induce RowHammer errors with
a reasonably high BER. Second, the access pattern needs to
activate at least 4 dummy rows to bypass the TRR mechanism
(i.e., BER is 0 for x = 1, 2, and 3). Third, the number of dummy
rows does not significantly affect the distribution of the bit error
rate. For example, the mean bit error rate varies by 0.003 pp
between the largest (4 dummy rows) and the smallest (7 dummy
rows) value at an aggressor activation count of 34. Fourth, the
number of bitflips per row increases as the aggressor activation
count increases. For example, the mean bit error rate increases
by 2.79×, 6.72×, and 10.28× as the aggressor activation count
increases from 18 to 24, 30, and 34, respectively, when the
number of dummy rows is 8.

Takeaway 8. A specialized access pattern that bypasses the
undocumented TRR mechanism in HBM2 chips can induce
many RowHammer bitflips.

8. Implications on Future Read Disturbance At-
tacks and Defenses

We describe and analyze the important implications of our
observations on future read disturbance attacks and defenses.

8.1. Read Disturbance Attacks
Observation 5 and Takeaways 2, 6, and 7 have the following

four implications for future read disturbance attacks on HBM2
chips. First, the maximum BER (247 bitflips in a row of 8192
bits) we observe across tested chips exceeds the correction
capabilities of widely used error correcting codes (ECC), such
as SECDED [119–122] which can detect two bitflips and correct
one bitflip in a codeword (Observation 5).10 247 bitflips in a
row are already sufficient to induce uncorrectable bitflips in
multiple 64-bit words in the same DRAM row (by pigeonhole
principle) and are likely to induce undetectable bitflips in at
least one 64-bit word.
Analysis of the effectiveness of ECC. We investigate the dis-
tribution of word-level RowHammer bitflips (i.e., bitflips that
occur in all non-overlapping consecutive 64 bits) in Chip 4.
Fig. 17 plots the number of words that exhibit at least one bit-
flip (out of all 18M tested words) on the y-axis over 1, 2, ...,
and more than 7 bitflips in a word depicted on the x-axis for
different data patterns (different bars). The word counts across
clusters of bars are non-overlapping; for example, the middle
cluster depicts the number of words with exactly two bitflips.

Figure 17: Number of words (y-axis) that exhibit 1, 2, ..., and more
than 7 bitflips (x-axis) in Chip 4.

We make two observations. First, the number of unique
words with more than two bitflips is large. We observe 974’935
words with more than two bitflips when we use the Checkered0
data pattern. These bitflips would not be detected by SECDED
ECC. Second, most words with at least one bitflip actually have
more than one bitflip. In other words, if RowHammer bitflips
can be induced in a word, it is very likely that more than one bit
location in the word will experience errors. Simple SECDED
ECC cannot correct such bitflips.

We find that an HBM word can have 16 bitflips (not shown
in the figure) in Chip 4. A (7,4) Hamming code [126] could

10Single symbol correcting codes (e.g., Chipkill) [123–125] are widely used

in DDRx server systems. A prior work [121] proposes implementing a Chipkill-

like scheme for HBM3 where 1) the HBM3 chip is carefully architected to

ensure a hard fault in a DRAM component manifests as errors only within an

isolation boundary (e.g., 16 consecutive bits), 2) a single symbol correcting

code is used where each symbol corresponds to an isolation boundary. Such

a scheme alone is likely not a good read disturbance countermeasure as read

disturbance errors typically appear in multiple isolation boundaries.

85

correct such bitflips at very large DRAM storage overheads
(75%, 3 parity bits for every 4 data bits). Thus, relying on ECC
alone to prevent RowHammer bitflips in HBM2 is a very ex-
pensive solution. The bitflip distributions indicate that attackers
could exploit RowHammer bitflips to escalate privilege and leak
security-critical and secret data in HBM2 chips, similarly to
real RowHammer attacks on DDR4-based computing systems.
Even if an HBM2 chip is highly RowHammer resilient (i.e.,
has small mean BER across its rows), malicious parties could
exploit RowHammer bitflips to practically increase the rate of
correctable or detectable bitflips. This could reduce the lifetime
of modern HBM-based systems (e.g., GPUs) by accelerating
the rate of memory page retirements [127] beyond design-time
estimates and exacerbate system maintenance costs.

Second, a RowHammer attack could target the most-
RowHammer-vulnerable HBM2 channel to reduce the time
it spends on i) preparing for an attack, by finding exploitable
RowHammer bitflips faster (i.e., by accelerating memory tem-
plating), and ii) performing the attack, by benefitting from a
small HCf irst value (Takeaway 2). Third, an attacker could keep
the aggressor row on for longer by executing specialized access
patterns (as demonstrated by RowPress in a real DDR4-based
system [4]) to benefit from the increased BER and reduced
HCf irst when an aggressor row is kept open for longer (Take-
away 6). Fourth, the RowHammer attack must uncover and take
into account the functionality of the undocumented TRR mech-
anism in addition to the functionality of the documented TRR
mode [77] to come up with an effective access pattern that by-
passes all RowHammer defense mechanisms in an HBM2-based
system (Takeaway 7). However, the attackers can also benefit
from the undocumented TRR mechanism. Victim row refresh
operations could be used as a near aggressor row activation,
carrying over the read disturbance effects of the far aggressor
row to the victim row in a HalfDouble access pattern [47].

8.2. Read Disturbance Defenses
Takeaways 2, 3, and 8 have the following two implications

for future read disturbance defenses on HBM2 chips. First, a
defense mechanism can adapt to the heterogeneous distribution
of the RowHammer and RowPress vulnerabilities across chan-
nels and subarrays, which may allow the defense mechanism to
more efficiently prevent read disturbance bitflips (Takeaways 2
and 3). Second, HBM2 memory controller designers likely
need to implement other read disturbance defense mechanisms
(e.g., [1,3,24,31,38,44,105,128–190]) in their designs because
designers cannot rely on the undocumented TRR mechanism to
mitigate read disturbance bitflips, as it is easily bypassed with a
specialized RowHammer access pattern (Takeaway 8).

9. Related Work
We present the first detailed experimental characterization of

the read disturbance vulnerability (RowHammer and RowPress)
in modern HBM2 DRAM chips.

HBM2 RowHammer Characterization [113, 191]. A prior
work [191] experimentally characterizes the RowHammer vul-
nerability in an HBM2 DRAM chip. Another work [113] studies
the internal DRAM structure by analyzing RowHammer error
characteristics of two HBM2 chips. Our work presents a de-

tailed experimental characterization of both RowHammer and
RowPress using six HBM2 chips. In addition to analyzing the
spatial variation of read disturbance vulnerability, we analyze
the hammer counts needed to induce the first 10 bitflips in a
row. We uncover entirely the inner workings of the read distur-
bance defense mechanism in an HBM2 chip and demonstrate
RowHammer access patterns that bypass this defense mecha-
nism. Our new analyses and results lead to completely new
observations (Observations 2, 4, 7, 8, 11, 13-23) and takeaways
(Takeaway 1, 2, 5-8) that [191] and [113] do not contain.
(LP)DDR3/4 Read Disturbance Characterization [1, 4, 68–
70,107,110,111,192–196]. These works experimentally demon-
strate and analyze new aspects of the read disturbance vulnera-
bility by testing real (LP)DDR3/4 DRAM chips. They do not
experimentally analyze real HBM2 chips.

Besides demonstrating the interaction between the read dis-
turbance vulnerability of an HBM2 chip with unique HBM
characteristics for the first time, we make new observations
(Observations 10, 11, 13, 14, 15, 16) that could also shed light
on the read disturbance vulnerability behavior in (LP)DDRx
chips. For example, our observation of the RowHammer bit er-
ror rate peaking towards the middle of a subarray (Observation
10) could be widespread across many different types of DRAM
chips. § 8 highlights the importance of our new observations
in the form of several key implications for future RowHammer
attacks and defenses.
Other HBM2 Characterization [197–199]. These works char-
acterize real HBM2 chips to understand their 1) soft error
resilience characteristics by high-energy neutron beam test-
ing [199], 2) performance and reliability characteristics under
reduced supply voltage [197], and 3) data retention characteris-
tics [198].

10. Conclusion
We present the results of our detailed characterization study

on the read disturbance (RowHammer and RowPress) vulner-
ability in six modern HBM2 chips. Our study leads to 23
observations and 8 takeaways, which we believe have important
implications for future read disturbance attacks and defenses.
We uncover the inner workings of the proprietary read distur-
bance mitigation mechanism implemented in an HBM2 chip
and develop a practical access pattern that bypasses it and in-
duces read disturbance bitflips. We hope and expect that our
findings will lead to a deeper understanding of and new so-
lutions to the read disturbance vulnerabilities in HBM-based
systems.

Acknowledgements
We thank the anonymous reviewers of HPCA 2024 and DSN

2024 for feedback and the SAFARI Research Group members
for constructive feedback and the stimulating intellectual envi-
ronment. We acknowledge the generous gift funding provided
by our industrial partners (especially Google, Huawei, Intel, Mi-
crosoft), which has been instrumental in enabling the research
we have been conducting on read disturbance in DRAM in par-
ticular and memory systems in general. This work was in part
supported by the Google Security and Privacy Research Award
and the Microsoft Swiss Joint Research Center.

86

References
[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and

O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[2] O. Mutlu and J. Kim, “RowHammer: A Retrospective,” IEEE TCAD Special Issue
on Top Picks in Hardware and Embedded Security, 2019.

[3] O. Mutlu, A. Olgun, and A. G. Yaglikci, “Fundamentally Understanding and Solving
RowHammer,” in ASP-DAC, 2023.

[4] H. Luo, A. Olgun, A. G. Yağlıkcı, Y. C. Tuğrul, S. Rhyner, M. B. Cavlak, J. Lindeg-
ger, M. Sadrosadati, and O. Mutlu, “RowPress: Amplifying Read Disturbance in
Modern DRAM Chips,” in ISCA, 2023.

[5] A. P. Fournaris, L. Pocero Fraile, and O. Koufopavlou, “Exploiting Hardware Vulner-
abilities to Attack Embedded System Devices: A Survey of Potent Microarchitectural
Attacks,” Electronics, 2017.

[6] D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler, “Attacking
Deterministic Signature Schemes using Fault Attacks,” in EuroS&P, 2018.

[7] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and K. Razavi,
“Throwhammer: Rowhammer Attacks Over the Network and Defenses,” in USENIX
ATC, 2018.

[8] S. Carre, M. Desjardins, A. Facon, and S. Guilley, “OpenSSL Bellcore’s Protection
Helps Fault Attack,” in DSD, 2018.

[9] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-only Reverse Engi-
neering of Physical DRAM Mappings for Rowhammer Attacks,” in IVSW, 2018.

[10] Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai, “Triggering
Rowhammer Hardware Faults on ARM: A Revisit,” in ASHES, 2018.

[11] S. Bhattacharya and D. Mukhopadhyay, “Advanced Fault Attacks in Software:
Exploiting the Rowhammer Bug,” in Fault Tolerant Architectures for Cryptography
and Hardware Security, 2018.

[12] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel
Privileges,” http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-ro
whammer-bug-to-gain.html, 2015.

[13] SAFARI Research Group, “RowHammer — GitHub Repository,” https://github.c
om/CMU-SAFARI/rowhammer, 2014.

[14] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel
Privileges,” Black Hat, 2015.

[15] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,
H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms,” in CCS, 2016.

[16] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-
Induced Fault Attack in Javascript,” in DIMVA, 2016.

[17] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip Feng
Shui: Hammering a Needle in the Software Stack,” in USENIX Security, 2016.

[18] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks,” in USENIX Security, 2016.

[19] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation,” in USENIX Security,
2016.

[20] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina: Memory
Deduplication as An Advanced Exploitation Vector,” in S&P, 2016.

[21] S. Bhattacharya and D. Mukhopadhyay, “Curious Case of RowHammer: Flipping
Secret Exponent Bits using Timing Analysis,” in CHES, 2016.

[22] W. Burleson, O. Mutlu, and M. Tiwari, “Invited: Who is the Major Threat to
Tomorrow’s Security? You, the Hardware Designer,” in DAC, 2016.

[23] R. Qiao et al., “A New Approach for RowHammer Attacks,” in HOST, 2016.
[24] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t Touch This:

Software-Only Mitigation Against Rowhammer Attacks Targeting Kernel Memory,”
in USENIX Security, 2017.

[25] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the Processor via
Rowhammer Attack,” in SysTEX, 2017.

[26] M. T. Aga, Z. B. Aweke, and T. Austin, “When Good Protections Go Bad: Exploiting
Anti-DoS Measures to Accelerate Rowhammer Attacks,” in HOST, 2017.

[27] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory
Becomes Denser,” in DATE, 2017.

[28] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software Mitigations
Against Rowhammer: A Surgical Precision Hammer,” in RAID, 2018.

[29] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl,
and Y. Yarom, “Another Flip in the Wall of Rowhammer Defenses,” in S&P, 2018.

[30] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and L. Lam-
ster, “Nethammer: Inducing Rowhammer Faults Through Network Requests,”
arXiv:1805.04956, 2018.

[31] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel,
H. Bos, and K. Razavi, “GuardION: Practical Mitigation of DMA-Based Rowham-
mer Attacks on ARM,” in DIMVA, 2018.

[32] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU,” in S&P, 2018.

[33] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting Codes: On
the Effectiveness of ECC Memory Against Rowhammer Attacks,” in S&P, 2019.

[34] S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint Rowhammer: Suppressing Unwanted Bit
Flips on Rowhammer Attacks,” in ASIACCS, 2019.

[35] O. Mutlu, “RowHammer and Beyond,” in COSADE, 2019.
[36] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal Brain Damage:

Exposing the Graceless Degradation in Deep Neural Networks Under Hardware
Fault Attacks,” in USENIX Security, 2019.

[37] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading Bits in
Memory Without Accessing Them,” in S&P, 2020.

[38] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida, H. Bos,
and K. Razavi, “TRRespass: Exploiting the Many Sides of Target Row Refresh,” in
S&P, 2020.

[39] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu, “Are We
Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers,” in
S&P, 2020.

[40] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and B. Sunar,
“JackHammer: Efficient Rowhammer on Heterogeneous FPGA–CPU Platforms,”
arXiv:1912.11523, 2020.

[41] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “PTHammer:
Cross-User-Kernel-Boundary Rowhammer Through Implicit Accesses,” in MICRO,
2020.

[42] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the Intelligence of Deep
Neural Networks Through Targeted Chain of Bit Flips,” in USENIX Security, 2020.

[43] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi, “SMASH:
Synchronized Many-Sided Rowhammer Attacks from JavaScript,” in USENIX Secu-
rity, 2021.

[44] H. Hassan, Y. C. Tugrul, J. S. Kim, V. van der Veen, K. Razavi, and O. Mutlu,
“Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology,
Custom RowHammer Patterns, and Implications,” in MICRO, 2021.

[45] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Blacksmith: Scalable
Rowhammering in the Frequency Domain,” in S&P, 2022.

[46] M. C. Tol, S. Islam, B. Sunar, and Z. Zhang, “Toward Realistic Backdoor Injection
Attacks on DNNs using RowHammer,” arXiv:2110.07683, 2022.

[47] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu, M. Nissler,
and D. Gruss, “Half-Double: Hammering From the Next Row Over,” in USENIX
Security, 2022.

[48] L. Orosa, U. Rührmair, A. G. Yaglikci, H. Luo, A. Olgun, P. Jattke, M. Patel, J. Kim,
K. Razavi, and O. Mutlu, “SpyHammer: Using RowHammer to Remotely Spy on
Temperature,” arXiv:2210.04084, 2022.

[49] Z. Zhang, W. He, Y. Cheng, W. Wang, Y. Gao, D. Liu, K. Li, S. Nepal, A. Fu, and
Y. Zou, “Implicit Hammer: Cross-Privilege-Boundary Rowhammer through Implicit
Accesses,” IEEE TDSC, 2022.

[50] L. Liu, Y. Guo, Y. Cheng, Y. Zhang, and J. Yang, “Generating Robust DNN with
Resistance to Bit-Flip based Adversarial Weight Attack,” IEEE TC, 2022.

[51] Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis, Y. Oren, and
Y. Yarom, “HammerScope: Observing DRAM Power Consumption Using Rowham-
mer,” in CCS, 2022.

[52] M. Zheng, Q. Lou, and L. Jiang, “TrojViT: Trojan Insertion in Vision Transformers,”
arXiv:2208.13049, 2022.

[53] M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. Dachman-Soled,
D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich et al., “When Frodo Flips:
End-to-End Key Recovery on FrodoKEM via Rowhammer,” CCS, 2022.

[54] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHammer: Combining
Spectre and Rowhammer for New Speculative Attacks,” in S&P, 2022.

[55] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal: Advanced
Model Extractions Leveraging Efficient Weight Stealing in Memories,” in S&P,
2022.

[56] H. Aydin and A. Sertbaş, “Cyber Security in Industrial Control Systems (ICS): A
Survey of RowHammer Vulnerability,” Applied Computer Science, 2022.

[57] K. Mus, Y. Doröz, M. C. Tol, K. Rahman, and B. Sunar, “Jolt: Recovering TLS
Signing Keys via Rowhammer Faults,” Cryptology ePrint Archive, 2022.

[58] J. Wang, H. Xu, C. Xiao, L. Zhang, and Y. Zheng, “Research and Implementation of
Rowhammer Attack Method based on Domestic NeoKylin Operating System,” in
ICFTIC, 2022.

[59] S. Lefforge, “Reverse Engineering Post-Quantum Cryptography Schemes to Find
Rowhammer Exploits,” Bachelor’s Thesis, University of Arkansas, 2023.

[60] M. J. Fahr, “The Effects of Side-Channel Attacks on Post-Quantum Cryptography:
Influencing FrodoKEM Key Generation Using the Rowhammer Exploit,” Master’s
thesis, University of Arkansas, 2022.

[61] A. Kaur, P. Srivastav, and B. Ghoshal, “Work-in-Progress: DRAM-MaUT: DRAM
Address Mapping Unveiling Tool for ARM Devices,” in CASES, 2022.

[62] K. Cai, Z. Zhang, and F. Yao, “On the Feasibility of Training-time Trojan Attacks
through Hardware-based Faults in Memory,” in HOST, 2022.

[63] D. Li, D. Liu, Y. Ren, Z. Wang, Y. Sun, Z. Guan, Q. Wu, and J. Liu, “Cyber-
Radar: A PUF-based Detecting and Mapping Framework for Physical Devices,”
arXiv:2201.07597, 2022.

[64] A. Roohi and S. Angizi, “Efficient Targeted Bit-Flip Attack Against the Local Binary
Pattern Network,” in HOST, 2022.

[65] F. Staudigl, H. Al Indari, D. Schön, D. Sisejkovic, F. Merchant, J. M. Joseph, V. Rana,
S. Menzel, and R. Leupers, “NeuroHammer: Inducing Bit-Flips in Memristive
Crossbar Memories,” in DATE, 2022.

[66] L.-H. Yang, S.-S. Huang, T.-L. Cheng, Y.-C. Kuo, and J.-J. Kuo, “Socially-Aware
Collaborative Defense System against Bit-Flip Attack in Social Internet of Things
and Its Online Assignment Optimization,” in ICCCN, 2022.

[67] S. Islam, K. Mus, R. Singh, P. Schaumont, and B. Sunar, “Signature Correction
Attack on Dilithium Signature Scheme,” in Euro S&P, 2022.

[68] J. S. Kim, M. Patel, A. G. Yağlıkcı, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu, “Re-
visiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation
Techniques,” in ISCA, 2020.

[69] A. G. Yağlıkcı, H. Luo, G. F. De Oliviera, A. Olgun, M. Patel, J. Park, H. Hassan,
J. S. Kim, L. Orosa, and O. Mutlu, “Understanding RowHammer Under Reduced
Wordline Voltage: An Experimental Study Using Real DRAM Devices,” in DSN,
2022.

[70] L. Orosa, A. G. Yağlıkcı, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel, J. S. Kim,

87

and O. Mutlu, “A Deeper Look into RowHammer’s Sensitivities: Experimental
Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses,”
in MICRO, 2021.

[71] O. Mutlu, “RowHammer,” https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer
-TopPicksinHardwareEmbeddedSecurity-November-8-2018.pdf, 2018, Top Picks
in Hardware and Embedded Security.

[72] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[73] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A Benchmark Suite for Heterogeneous Computing,” in IISWC, 2009.

[74] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil, S. Subramanian,
A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou, and D. A. Patterson, “TPU v4:
An Optically Reconfigurable Supercomputer for Machine Learning with Hardware
Support for Embeddings,” in ISCA, 2023.

[75] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-Shot
Learners,” in NIPS, 2020.

[76] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” in NAACL, 2019.

[77] JEDEC, JESD235D: High Bandwidth Memory DRAM (HBM1, HBM2), 2021.
[78] NVIDIA, “NVIDIA A100 Tensor Core GPU Architecture,” Whitepaper, 2020.
[79] NVIDIA, “NVIDIA H100 Tensor Core GPU Architecture,” Whitepaper, 2022.
[80] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young, and D. Pat-

terson, “A Domain-Specific Supercomputer for Training Deep Neural Networks,”
Communications of the ACM, 2020.

[81] AMD, “Introducing AMD CDNA Architecture,” Whitepaper, 2020.
[82] AMD, “Introducing AMD CDNA™ 2 Architecture,” Whitepaper, 2021.
[83] Micron, 16Gb: x4, x8, x16 DDR4 SDRAM Features - MT40A4G4, MT40A2G8,

MT40A1G16, 2018.
[84] SAFARI Research Group, “HBM Read Disturbance — GitHub Repository,” https:

//github.com/CMU-SAFARI/HBM-Read-Disturbance, 2024.
[85] J. M. O’Connor, “Energy Efficient High Bandwidth DRAM for Throughput Proces-

sors,” Ph.D. dissertation, UT Austin, 2021.
[86] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Subarray-Level

Parallelism (SALP) in DRAM,” in ISCA, 2012.
[87] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,

O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. Mowry, “RowClone: Fast and
Energy-Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[88] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Ac-
cesses,” in HPCA, 2014.

[89] A. Olgun, H. Hassan, A. G. Yağlıkcı, Y. C. Tuğrul, L. Orosa, H. Luo, M. Patel,
E. Oğuz, and O. Mutlu, “DRAM Bender: An Extensible and Versatile FPGA-based
Infrastructure to Easily Test State-of-the-art DRAM Chips,” TCAD, 2023.

[90] SAFARI Research Group, “DRAM Bender — GitHub Repository,” https://github.c
om/CMU-SAFARI/DRAM-Bender, 2022.

[91] “Bittware XUPVVH FPGA Board,” https://www.bittware.com/fpga/xup-vvh/.
[92] Xilinx Inc., “Xilinx Alveo U50 FPGA Board,” https://www.xilinx.com/products/bo

ards-and-kits/alveo/u50.html.
[93] “Arduino MEGA Documentation,” https://docs.arduino.cc/hardware/mega-2560/.
[94] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, J. Liu, B. Jaiyen, Y. Kim,

C. Wilkerson, and O. Mutlu, “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices,” in ISCA, 2013.

[95] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” in
ISCA, 2017.

[96] R. T. Smith, J. D. Chlipala, J. F. Bindels, R. G. Nelson, F. H. Fischer, and T. F. Mantz,
“Laser Programmable Redundancy and Yield Improvement in a 64K DRAM,” JSSC,
1981.

[97] M. Horiguchi, “Redundancy Techniques for High-Density DRAMs,” in ISIS, 1997.
[98] B. Keeth and R. Baker, DRAM Circuit Design: A Tutorial. Wiley, 2001.
[99] K. Itoh, VLSI Memory Chip Design. Springer, 2001.

[100] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve
the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[101] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique to
Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

[102] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “Detect-
ing and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory
Content,” in MICRO, 2017.

[103] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” POMACS,
2017.

[104] M. Patel, J. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-Exact ECC Recovery
(BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data
Retention Characteristics,” in MICRO, 2020.

[105] A. G. Yağlıkcı, M. Patel, J. S. Kim, R. Azizibarzoki, A. Olgun, L. Orosa, H. Hassan,
J. Park, K. Kanellopoullos, T. Shahroodi, S. Ghose, and O. Mutlu, “BlockHammer:
Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM
Rows,” in HPCA, 2021.

[106] A. van de Goor and I. Schanstra, “Address and Data Scrambling: Causes and Impact

on Memory Tests,” in DELTA, 2002.
[107] A. G. Yağlıkçı, G. F. Oliveira, Y. C. Tuğrul, I. E. Yuksel, A. Olgun, H. Luo, and

O. Mutlu, “Spatial Variation-Aware Read Disturbance Defenses: Experimental
Analysis of Real DRAM Chips and Implications on Future Solutions,” in HPCA,
2024.

[108] AMD Xilinx, “AMD Xilinx Support Website,” https://support.xilinx.com/s/questio
n/0D54U00007iVe9ESAS/where-can-we-find-the-dram-timing-parameters-for-t
he-hbm2-stacks-in-alveo-u50?language=en_US, 2024.

[109] A. Farmahini-Farahani, S. Gurumurthi, G. Loh, and M. Ignatowski, “Challenges of
High-Capacity DRAM Stacks and Potential Directions,” in Workshop on Memory
Centric High Performance Computing, 2018.

[110] K. Park, D. Yun, and S. Baeg, “Statistical Distributions of Row-hammering Induced
Failures in DDR3 Components,” Microelectronics Reliability, 2016.

[111] K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and Root Cause Analysis for
Active-precharge Hammering Fault in DDR3 SDRAM under 3× nm Technology,”
Microelectronics Reliability, 2016.

[112] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “HBM (High
Bandwidth Memory) DRAM Technology and Architecture,” in (IMW), 2017.

[113] H. Nam, S. Baek, M. Wi, M. J. Kim, J. Park, C. Song, N. S. Kim, and J. H. Ahn,
“X-ray: Discovering DRAM Internal Structure and Error Characteristics by Issuing
Memory Commands,” IEEE CAL, 2023.

[114] S. M. Kim, B. Song, and S.-O. Jung, “Imbalance-Tolerant Bit-Line Sense Amplifier
for Dummy-Less Open Bit-Line Scheme in DRAM,” IEEE Transactions on Circuits
and Systems I: Regular Papers, 2021.

[115] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W. Keckler,
M. T. Kandemir, and C. R. Das, “Anatomy of GPU Memory System for Multi-
Application Execution,” in MEMSYS, 2015.

[116] B. S. Nordquist and S. D. Lew, “Apparatus, System, and Method for Coalescing
Parallel Memory Requests,” 2009, U.S. Patent 7,492,368.

[117] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Exploiting Core Criticality for Enhanced GPU Performance,” in SIGMETRICS,
2016.

[118] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu,
“Staged Memory Scheduling: Achieving High Performance and Scalability in Het-
erogeneous Systems,” in ISCA, 2012.

[119] S. Mukherjee, Architecture Design for Soft Errors. Morgan Kaufmann Publishers
Inc., 2008.

[120] NVIDIA, “NVIDIA Tesla P100,” https://www.nvidia.com/en-us/data-center/resourc
es/pascal-architecture-whitepaper, 2016.

[121] S. Gurumurthi, K. Lee, M. Jang, V. Sridharan, A. Nygren, Y. Ryu, K. Sohn, T. Kim,
and H. Chung, “HBM3 RAS: Enhancing Resilience at Scale,” IEEE CAL, 2021.

[122] R. Krashinsky, O. Giroux, S. Jones, N. Stam, and S. Ramaswamy, “NVIDIA Ampere
Architecture In-Depth,” https://developer.nvidia.com/blog/nvidia-ampere-architectu
re-in-depth/, 2020.

[123] AMD, “BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models
00h-0Fh Processors,” Developer’s Guide, 2013.

[124] R. Yeleswarapu and A. K. Somani, “Addressing Multiple Bit/Symbol Errors in
DRAM Subsystem,” arXiv:1908.01806, 2020.

[125] C. Chen, “Symbol Error Correcting Codes for Memory Applications,” in FTCS,
1996.

[126] R. W. Hamming, “Error Detecting and Error Correcting Codes,” The Bell system
technical journal, 1950.

[127] NVIDIA, “Dynamic Page Retirement,” https://docs.nvidia.com/deploy/pdf/Dynam
ic_Page_Retirement.pdf, 2019.

[128] Apple Inc., “About the Security Content of Mac EFI Security Update 2015-001,”
https://support.apple.com/en-us/HT204934, 2015.

[129] Hewlett-Packard Enterprise, “HP Moonshot Component Pack Version 2015.05.0,”
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/compon
ent-pack/index.aspx, 2015.

[130] Lenovo, “Row Hammer Privilege Escalation,” https://support.lenovo.com/us/en/pro
duct_security/row_hammer, 2015.

[131] Z. Greenfield and T. Levy, “Throttling Support for Row-Hammer Counters,” 2016,
U.S. Patent 9,251,885.

[132] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural Support for Mitigating
Row Hammering in DRAM Memories,” IEEE CAL, 2014.

[133] K. S. Bains and J. B. Halbert, “Distributed Row Hammer Tracking,” US Patent:
9,299,400, 2016.

[134] K. Bains et al., “Method, Apparatus and System for Providing a Memory Refresh,”
US Patent: 9,030,903, 2015.

[135] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin,
“ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks,”
in ASPLOS, 2016.

[136] K. Bains et al., “Row Hammer Refresh Command,” US Patents: 9,117,544 9,236,110
10,210,925, 2015.

[137] M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger Against Row
Hammering,” in DAC, 2017.

[138] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating Wordline Crosstalk
Using Adaptive Trees of Counters,” in ISCA, 2018.

[139] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Stopping Microarchitectural
Attacks Before Execution,” IACR Cryptology, 2016.

[140] J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory
Locality,” in DAC, 2019.

[141] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe: Preventing Row-
Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

[142] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene: Strong

88

yet Lightweight Row Hammer Protection,” in MICRO, 2020.
[143] A. G. Yağlıkcı, J. S. Kim, F. Devaux, and O. Mutlu, “Security Analysis of the Silver

Bullet Technique for RowHammer Prevention,” arXiv:2106.07084, 2021.
[144] I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-Based Adaptive Tree, Time

Window Optimized for DRAM Row-Hammer Prevention,” IEEE Access, 2020.
[145] M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling Low-

Overhead Mitigation of Row-Hammer at Ultra-Low Thresholds via Hybrid Tracking,”
in ISCA, 2022.

[146] G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized Row-Swap:
Mitigating Row Hammer by Breaking Spatial Correlation Between Aggressor and
Victim Rows,” in ASPLOS, 2022.

[147] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida, and
K. Razavi, “ZebRAM: Comprehensive and Compatible Software Protection Against
Rowhammer Attacks,” in OSDI, 2018.

[148] S. Vig, S. Bhattacharya, D. Mukhopadhyay, and S.-K. Lam, “Rapid Detection of
Rowhammer Attacks Using Dynamic Skewed Hash Tree,” in HASP, 2018.

[149] M. J. Kim, J. Park, Y. Park, W. Doh, N. Kim, T. J. Ham, J. W. Lee, and J. H. Ahn,
“Mithril: Cooperative Row Hammer Protection on Commodity DRAM Leveraging
Managed Refresh,” in HPCA, 2022.

[150] G.-H. Lee, S. Na, I. Byun, D. Min, and J. Kim, “CryoGuard: A Near Refresh-Free
Robust DRAM Design for Cryogenic Computing,” in ISCA, 2021.

[151] M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “REGA: Scalable Rowhammer Mitiga-
tion with Refresh-Generating Activations,” in S&P, 2022.

[152] Z. Zhang, Y. Cheng, M. Wang, W. He, W. Wang, S. Nepal, Y. Gao, K. Li, Z. Wang,
and C. Wu, “SoftTRR: Protect Page Tables against Rowhammer Attacks using
Software-only Target Row Refresh,” in USENIX ATC, 2022.

[153] B. K. Joardar, T. K. Bletsch, and K. Chakrabarty, “Learning to Mitigate RowHammer
Attacks,” in DATE, 2022.

[154] J. Juffinger, L. Lamster, A. Kogler, M. Eichlseder, M. Lipp, and D. Gruss, “CSI:
Rowhammer–Cryptographic Security and Integrity against Rowhammer (to appear),”
in S&P, 2023.

[155] A. G. Yağlikci, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and
O. Mutlu, “HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-
Shelf DRAM Chips,” in MICRO, 2022.

[156] A. Saxena, G. Saileshwar, P. J. Nair, and M. Qureshi, “AQUA: Scalable Rowhammer
Mitigation by Quarantining Aggressor Rows at Runtime,” in MICRO, 2022.

[157] S. Enomoto, H. Kuzuno, and H. Yamada, “Efficient Protection Mechanism for CPU
Cache Flush Instruction Based Attacks,” IEICE Transactions on Information and
Systems, 2022.

[158] E. Manzhosov, A. Hastings, M. Pancholi, R. Piersma, M. T. I. Ziad, and S. Sethu-
madhavan, “Revisiting Residue Codes for Modern Memories,” in MICRO, 2022.

[159] S. M. Ajorpaz, D. Moghimi, J. N. Collins, G. Pokam, N. Abu-Ghazaleh, and
D. Tullsen, “EVAX: Towards a Practical, Pro-active & Adaptive Architecture for
High Performance & Security,” in MICRO, 2022.

[160] A. Naseredini, M. Berger, M. Sammartino, and S. Xiong, “ALARM: Active LeArn-
ing of Rowhammer Mitigations,” https://users.sussex.ac.uk/~mfb21/rh-draft.pdf,
2022.

[161] B. K. Joardar, T. K. Bletsch, and K. Chakrabarty, “Machine Learning-based Row-
hammer Mitigation,” TCAD, 2022.

[162] H. Hassan, A. Olgun, A. G. Yaglikci, H. Luo, and O. Mutlu, “A Case for Self-
Managing DRAM Chips: Improving Performance, Efficiency, Reliability, and
Security via Autonomous in-DRAM Maintenance Operations,” arXiv:2207.13358,
2022.

[163] Z. Zhang, Z. Zhan, D. Balasubramanian, B. Li, P. Volgyesi, and X. Koutsoukos,
“Leveraging EM Side-Channel Information to Detect Rowhammer Attacks,” in S&P ,
2020.

[164] K. Loughlin, S. Saroiu, A. Wolman, and B. Kasikci, “Stop! Hammer Time: Rethink-
ing Our Approach to Rowhammer Mitigations,” in HotOS, 2021.

[165] F. Devaux and R. Ayrignac, “Method and Circuit for Protecting a DRAM Memory
Device from the Row Hammer Effect,” US Patent: 10,885,966, 2021.

[166] J.-W. Han, J. Kim, D. Beery, K. D. Bozdag, P. Cuevas, A. Levi, I. Tain, K. Tran, A. J.
Walker, S. V. Palayam, A. Arreghini, A. Furnémont, and M. Meyyappan, “Surround
Gate Transistor With Epitaxially Grown Si Pillar and Simulation Study on Soft Error
and Rowhammer Tolerance for DRAM,” IEEE TED, 2021.

[167] A. Fakhrzadehgan, Y. N. Patt, P. J. Nair, and M. K. Qureshi, “SafeGuard: Reducing
the Security Risk from Row-Hammer via Low-Cost Integrity Protection,” in HPCA ,
2022.

[168] S. Saroiu, A. Wolman, and L. Cojocar, “The Price of Secrecy: How Hiding Internal
DRAM Topologies Hurts Rowhammer Defenses,” in IRPS, 2022.

[169] S. Saroiu and A. Wolman, “How to Configure Row-Sampling-Based Rowhammer
Defenses,” DRAMSec, 2022.

[170] K. Loughlin, S. Saroiu, A. Wolman, Y. A. Manerkar, and B. Kasikci, “MOESI-Prime:
Preventing Coherence-Induced Hammering in Commodity Workloads,” in ISCA ,
2022.

[171] R. Zhou, S. Tabrizchi, A. Roohi, and S. Angizi, “LT-PIM: An LUT-Based Processing-
in-DRAM Architecture With RowHammer Self-Tracking,” IEEE CAL, 2022.

[172] S. Hong, D. Kim, J. Lee, R. Oh, C. Yoo, S. Hwang, and J. Lee, “DSAC: Low-Cost

Rowhammer Mitigation Using In-DRAM Stochastic and Approximate Counting
Algorithm,” arXiv:2302.03591, 2023.

[173] M. Marazzi, F. Solt, P. Jattke, K. Takashi, and K. Razavi, “ProTRR: Principled yet
Optimal In-DRAM Target Row Refresh,” in S&P, 2023.

[174] A. Di Dio, K. Koning, H. Bos, and C. Giuffrida, “Copy-on-Flip: Hardening ECC
Memory Against Rowhammer Attacks,” in NDSS, 2023.

[175] S. Sharma, D. Sanyal, A. Mukhopadhyay, and R. H. Shaik, “A Review on Study of
Defects of DRAM-RowHammer and Its Mitigation,” Journal For Basic Sciences,
2022.

[176] J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and Secure Row-Swap: Efficient
and Safe Row Hammer Mitigation in Memory Systems,” in HPCA, 2023.

[177] J. H. Park, S. Y. Kim, D. Y. Kim, G. Kim, J. W. Park, S. Yoo, Y.-W. Lee, and M. J.
Lee, “RowHammer Reduction Using a Buried Insulator in a Buried Channel Array
Transistor,” IEEE Transactions on Electron Devices, 2022.

[178] M. Wi, J. Park, S. Ko, M. J. Kim, N. S. Kim, E. Lee, and J. H. Ahn, “SHADOW:
Preventing Row Hammer in DRAM with Intra-Subarray Row Shuffling,” in HPCA.
IEEE, 2023.

[179] W. Kim, C. Jung, S. Yoo, D. Hong, J. Hwang, J. Yoon, O. Jung, J. Choi, S. Hyun,
M. Kang et al., “A 1.1 V 16Gb DDR5 DRAM with Probabilistic-Aggressor Track-
ing, Refresh-Management Functionality, Per-Row Hammer Tracking, a Multi-Step
Precharge, and Core-Bias Modulation for Security and Reliability Enhancement,” in
ISSCC. IEEE, 2023.

[180] C. Gude Ramarao, K. T. Kumar, G. Ujjinappa, and B. V. D. Naidu, “Defending SoCs
with FPGAs from Rowhammer Attacks,” Material Science, 2023.

[181] K. Guha and A. Chakrabarti, “Criticality based Reliability from Rowhammer Attacks
in Multi-User-Multi-FPGA Platform,” in VLSID. IEEE, 2022.

[182] L. France, F. Bruguier, M. Mushtaq, D. Novo, and P. Benoit, “Modeling Rowhammer
in the gem5 Simulator,” in CHES 2022-Conference on Cryptographic Hardware
and Embedded Systems, 2022.

[183] L. France, F. Bruguier, D. Novo, M. Mushtaq, and P. Benoit, “Reducing the Silicon
Area Overhead of Counter-Based Rowhammer Mitigations,” in 18th CryptArchi
Workshop, 2022.

[184] T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A Complete
In-DRAM Rowhammer Mitigation,” in DRAMSec, 2021.

[185] K. Arıkan, A. Palumbo, L. Cassano, P. Reviriego, S. Pontarelli, G. Bianchi, O. Ergin,
and M. Ottavi, “Processor security: Detecting microarchitectural attacks via count-
min sketches,” VLSI, 2022.

[186] C. Tomita, M. Takita, K. Fukushima, Y. Nakano, Y. Shiraishi, and M. Morii, “Ex-
tracting the secrets of openssl with rambleed,” Sensors, 2022.

[187] A. Saxena, G. Saileshwar, J. Juffinger, A. Kogler, D. Gruss, and M. Qureshi, “PT-
Guard: Integrity-Protected Page Tables to Defend Against Breakthrough Rowham-
mer Attacks,” in DSN, 2023.

[188] R. Zhou, S. Ahmed, A. S. Rakin, and S. Angizi, “DNN-Defender: An in-
DRAM Deep Neural Network Defense Mechanism for Adversarial Weight Attack,”
arXiv:2305.08034, 2023.

[189] S. C. Woo, W. Elsasser, M. Hamburg, E. Linstadt, M. R. Miller, T. Song, and
J. Tringali, “RAMPART: RowHammer Mitigation and Repair for Server Memory
Systems,” in MEMSYS, 2023.

[190] M. J. Kim, M. Wi, J. Park, S. Ko, J. Choi, H. Nam, N. S. Kim, J. H. Ahn, and E. Lee,
“How to Kill the Second Bird with One ECC: The Pursuit of Row Hammer Resilient
DRAM,” in MICRO, 2023.

[191] A. Olgun, M. Osseiran, A. G. Yaglikci, Y. C. Tugrul, H. Luo, S. Rhyner, B. Salami,
J. Gomez Luna, and O. Mutlu, “An Experimental Analysis of RowHammer in
HBM2 DRAM Chips,” in DSN Disrupt, 2023.

[192] C. Lim, K. Park, and S. Baeg, “Active Precharge Hammering to Monitor Displace-
ment Damage Using High-Energy Protons in 3x-nm SDRAM,” TNS, 2017.

[193] S.-W. Ryu, K. Min, J. Shin, H. Kwon, D. Nam, T. Oh, T.-S. Jang, M. Yoo, Y. Kim,
and S. Hong, “Overcoming the Reliability Limitation in the Ultimately Scaled
DRAM using Silicon Migration Technique by Hydrogen Annealing,” in IEDM,
2017.

[194] D. Yun, M. Park, C. Lim, and S. Baeg, “Study of TID Effects on One Row Hammer-
ing using Gamma in DDR4 SDRAMs,” in IRPS, 2018.

[195] C. Lim, K. Park, G. Bak, D. Yun, M. Park, S. Baeg, S.-J. Wen, and R. Wong,
“Study of Proton Radiation Effect to Row Hammer Fault in DDR4 SDRAMs,”
Microelectronics Reliability, 2018.

[196] Z. Lang, P. Jattke, M. Marazzi, and K. Razavi, “BLASTER: Characterizing the Blast
Radius of Rowhammer,” in DRAMSec, 2023.

[197] S. S. Nabavi Larimi, B. Salami, O. S. Unsal, A. C. Kestelman, H. Sarbazi-Azad, and
O. Mutlu, “Understanding Power Consumption and Reliability of High-Bandwidth
Memory with Voltage Underscaling,” in DATE, 2021.

[198] J. Kwon, S.-J. Wen, R. Fung, and S. Baeg, “Temperature Estimation of HBM2
Channels with Tail Distribution of Retention Errors in FPGA-HBM2 Platform,”
Electronics, 2023.

[199] M. B. Sullivan, N. Saxena, M. O’Connor, D. Lee, P. Racunas, S. Hukerikar, T. Tsai,
S. K. S. Hari, and S. W. Keckler, “Characterizing And Mitigating Soft Errors in
GPU DRAM,” in MICRO, 2021.

89

