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Abstract—Active Directory (AD), a directory service for Win-
dows domain networks, is a common target for attackers due to
its widespread use and the confidential data it contains. Accord-
ing to Microsoft, 95 million AD accounts are attacked every day
and new attacks involving AD are a common occurrence. Despite
frequent attacks against Active Directory and its critical role in
network security, there are no publicly available datasets and
tools for generating realistic AD graphs. This absence hinders
the development and testing of novel methods for protecting AD
systems. Realistic AD datasets are also essential for training and
up-skilling human AD defenders.

In this work, we develop ADSynth, a scalable and realistic
AD attack graph generator. ADSynth uses metagraphs to model
design principles of realistic AD systems, relying on three
novel ideas: (1) metagraph abstractions of best practices in AD
organizational design, (2) metagraph abstractions of security
design principles in AD systems, and (3) a random metagraph
model of common security misconfigurations. Our experiments
demonstrate ADSynth’s scalability in creating realistic AD graphs
under various security settings. We apply ADSynth to some
recent research on AD security and demonstrate that data from
ADSynth significantly benefit these studies. ADSynth has been
released to the community1 2.

Index Terms—Active Directory, ADSynth, metagraph, realistic

I. INTRODUCTION

Active Directory (AD) [1] is a proprietary centralized direc-

tory service that manages network information and settings in

numerous organizations worldwide. It has become a common

target of many recent attacks [2]. Microsoft recorded more

than 25 million brute force attacks against Azure Active

Directory systems in 2021 alone [3]. This has driven research

and commercial activities to identify potential risks and attack

paths in Active Directory (AD) to enhance the security of all

AD systems [4], [5], [6].

Challenges. Due to the confidential and sensitive informa-

tion stored in Active Directory, there is a lack of realistic

datasets available to researchers. Although tools exist to gener-

ate AD attack graphs, such as DBCreator [7], BadBlood [8],

ADSimulator [9], they are limited in how well they model

large AD graphs of millions of nodes observed in large

organizations. In addition, graphs generated by these tools

1https://adsynthesizer.github.io/
2https://github.com/adsynthesizer/ADSynth.git

generally do not match the structures of graphs that are

observed in real AD systems.

Fig. 1. ADSynth architecture: (a) Node generation stage; (b) Edge generation
stage; (c) Violation/Misconfiguration generation stage

Solution. We develop ADSynth, a scalable and synthetic

Active Directory attack graph generator. ADSynth starts with

a simple observation that real AD systems follow design prin-

ciples and best practices such as those issued by Microsoft and

professional organizations [10], [11], [12]. These guidelines

often operate on sets of users and/or computers, with policies

defined on set-to-set mappings. To model these, ADSynth uses

a set-to-set mapping abstraction called metagraph [13] and

generates the organizational structure and nodes of the attack

graphs. In the next phase, the tool creates edges between nodes

to represent relationships between sets and access permissions

specified in best practices and security policies of real AD

systems [10], [11]. In addition, ADSynth simulates a wide

range of misconfigurations to replicate the effects of human

errors in system administration. The software architecture of

ADSynth is illustrated in Fig. 1. The performance of ADSynth

is evaluated against DBCreator and ADSimulator on graphs of

similar sizes and on a real AD graph of a University.
Benefits. ADSynth data can benefit AD security in multiple

ways. First, ADSynth data enables the development of novel

algorithms for managing AD attack graphs. In the application,

by utilizing ADSynth realistic data, we can prove the working

of a novel algorithm [14] when applied in practice and display
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limitations of another algorithm [4] in realistic AD systems,

thereby prompting further refinement to enhance its efficacy.

Second, ADSynth data allows testing and validation of various

commercial solutions for AD security. In particular, we apply

ADSynth data on an attack path management tool [15] to

validate the claim made by the author regarding the improve-

ment of AD defenders’ strategy in eliminating attack paths.

In addition, ADSynth graphs could also be used for graph

theory research in metagraphs, learning and training purposes,

allowing students and professionals to learn and practice AD

security concepts.

Our primary contributions in this paper are as follows:

• A scalable tool to generate synthetic Active Directory

(AD) attack graphs that resemble realistic AD systems

and follow the design guidelines and best practices.

• We benchmark ADSynth against existing tools such as

DBCreator and ADSimulator. We also compare data

generated from ADSynth with a University AD system

to illustrate the realism of data produced by ADSynth.

• We apply ADSynth-generated data to existing reference

works on AD security and show the values of these

realistic datasets in improving these works.

II. BACKGROUND AND RELATED WORK

A. Active Directory components

An Active Directory (AD) is essentially a centralized

database that stores network information, where the data is

stored as objects. There are 6 basic types of AD objects:

(1) Domain: A Domain is a structural component, containing

all AD objects; (2) Users: A user represents an individual

user’s AD account, which is identified by a username and

authenticated through a password to ensure protection against

unauthorized access to network resources; (3) Computers: A

computer represents a physical machine in the AD network;

(4) Groups: A group functions as a container-like entity that

stores references to users, computers, and other groups, to

coordinate and manage the permissions granted to a set of

objects in an AD system. Members of a group inherit all

permissions granted to that group; (5) Organisational Units
(OUs): An OU is a container within AD systems to store

users, computers, groups, and other OUs. OUs are utilized to

reflect the structure of an organization, which can be based on

locations, departments, object types, and other design criteria;

(6) Group Policy Objects (GPOs): virtual collections of

policy settings [16] to regulate the behaviours of AD objects.

AD permissions are a set of rules to grant an object certain

control over other objects. For example, Domain Admins

group has full control over all AD objects, a local administrator

can view local users’ credentials or reset their passwords,

among the many authorized actions. These are best modeled

using a set-to-set mapping abstraction described below.

B. AD Attack graph models and generators

An attack graph model depicts the potential paths an at-

tacker could take to exploit security vulnerabilities in a system.

There are currently more than 90 attack graph models [17].

Fig. 2. A metagraph. The generating set of this metagraph is

{ x1, x2, x3, . . . , x11}. The edge e1 can be described by the pair
〈{x1, x2}, {x4}〉, which are the invertex and outvertex of the edge.

Among these, the Active Directory attack graph is one of

the most widely recognized and frequently employed. An

Active Directory (AD) system is inherently complex due to the

increasingly numerous interconnected components it contains.

The aggregate intrinsic complexity causes misconfigurations

in AD management and administration, which leads to a

serious type of cyber attacks called identity-based snowball
attacks [18]. In a snowball attack, after compromising a

machine, the attackers can steal the credentials of users

currently logged in to perform lateral movements and com-

promise other machines. If these users have administrative

rights, the attackers can launch a privilege escalation attack

to compromise critical assets of the system. AD attack graph

models for identity snowball attacks and defense are currently

commercialized by the popular Bloodhound [19] software,

recommended by the US Department of Homeland Security.

Most research and industry work related to the security of

Active Directory (AD) uses AD graphs generated by tools such

as DBCreator [7] and ADSimulator [9]. These tools, however,

do not follow how ADs are built in real organizations, in-

cluding how to construct AD structures and delegate security

permissions between objects. In particular, the access control

assignment within these graphs is random, which deviates

from the standard [20]. In addition, the current tools do not

feature a tier model which separates objects based on their

privileges. The tier model is a practice strongly endorsed

by Microsoft to enhance the overall security of an Active

Directory system [20]. Scale is also challenging. ADSimulator,

one of the well-known tools used in many recent works [5],

[14], [21], struggles to generate networks of 100000 nodes.

While this seems large, a medium-sized commercial AD graph

could have millions of nodes.

C. Metagraph Model of AD

A graph, G, is traditionally defined as 〈V,E〉, where V is

the set of vertices, and E is the set of edges that connect the

vertices vi ∈ V . Metagraphs extend this abstraction to model

mapping between sets to sets. Formally, a metagraph [13] is

defined as: A metagraph S = 〈X,E〉 is a graphical construct

specified by a generating set X and a set of edges E. A

generating set is a set of elements X = {x1, x2, . . . , xn},

which represent variables of interest. In the AD context, these

could be users and computers in an AD environment. An edge

e is a pair e = 〈Ve,We〉 ∈ E consisting of two sets, an

invertex Ve ⊂ X and an outvertex We ⊂ X . Fig. 2 provides
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an example of a metagraph. Each of the sets in the metagraph

such as {x1, x2} could be used to represent a group in AD and

the edge from {x1, x2} → {x4} could be used to represent a

permission setting from group {x1, x2} to computer {x4}.

III. ADSYNTH - MODEL AND IMPLEMENTATION

A. From Metagraph to AD Attack Graphs

Metagraph nodes - Organisation units (OUs) and
Groups. In Active Directory, OUs contain AD objects and

Groups store references to them. Each OU and group functions

as a set, encompassing multiple objects. The uniqueness of

objects within a set is determined by a globally unique

identifier (GUID) [22]. OUs define the hierarchical structure

of an AD system. Beginning with a domain representing

the entire organization, the AD structure extends into nested

OUs. An example organizational structure adhering to best

practices with 3 tiers is illustrated in Fig. 3, with two distinct

departments (IT and HR), each with offices in City A and B.

Groups in Active Directory are divided into 2 types, dis-
tribution groups and security groups [23]. Distribution groups

are used to distribute emails to group members [23], [12],

[24]. Security groups are employed to grant access to root

folders [23], [12], [24]. They are also used for delegating

permissions to multiple principals [24]. Objects such as users,

computers, etc. are included in groups as member entities and

inherit all permissions the groups have. Groups are situated

within specific OUs.

Metagraph Edges - Security permissions As AD typically

contains millions of objects, instead of specifying the control

of a principal over every single object, they apply permissions

on the OU containing a set of objects, and these permissions

are passed down to child objects [25] using inheritance.

To grant OU permissions to multiple users, AD admins

configure permissions on groups, enabling group members to

Fig. 3. ADSynth network integrated with the Tier Model

gain permissions over OUs [25] and objects contained within

OUs, specified by the inheritance type. The resulting structure

therefore represents the set-to-set mappings of a metagraph,

as demonstrated in Fig. 2.

Metagraph Modelling Formally, we can model an AD

and permissions setting within an AD using a metagraph

as follows. We define X as a set of nodes representing

all entities in an AD system and E as edges representing

permissions between them. O = {o1, o2, . . . , ok} denotes a set

of organisational units with oi ⊂ X . In the above scenario,

V ⊂ X is a group containing users, W ⊂ X is a set of

objects, and Q ⊂ O is an OU containing those objects such

that Q ≡ W . An edge e = 〈V,Q〉 ∈ E with an invertex V and

an outvertex Q represents a permission between the set V and

the organizational unit Q. The permission type is included as

an edge label in the attribute list Pe of the edge.

AD permissions - Access Control Lists (ACLs). An example

of permission setting in AD is the application of Access

Control Lists. Each AD object has a security descriptor

containing a list of entries, detailing what entity has per-

missions on the object and the type of permissions. The

type may include the rights for other entities to modify the

object’s properties such as its owner (WriteOwner), pass-

word (ForceChangePassword) among other properties, and full

control over the object (GenericAll). These permissions are

generally granted to groups of users [26] on OUs containing

objects. In metagraphs, let V be a group of users, Q be an

OU containing objects and p be the ACL permission type. A

metagraph edge e = 〈V,Q〉 ∈ E with p ∈ Pe denotes the

ACL permission between a set of users and a set of objects.

There are permissions not specified in ACL and are desig-

nated as non-ACL permissions, mostly permissions on com-

puters. They include the rights for a user to remotely log on

to a computer (CanRDP), execute commands on the machine

(ExecuteDCOM), and other operations. In metagraphs, a set

V represents the user group, Q denotes an OU containing

computers and p represents the non-ACL permission type.

Fig. 4 demonstrates these AD permissions in a metagraph

model of the company in Fig. 3. To simplify the visualization,

we reduce the number of tiers to 1 tier and only consider user

and group objects as admin entities in the Admin OU. The

example AD system has 2 administrative users, 6 regular or

non-administrative users, and some computers.

B. Metagraph generation process in ADSynth

1) Node generation: There are three steps required to

generate metagraph nodes for an AD system: (1) generating

OU architecture and groups, (2) assigning objects to OUs, and

(3) adding members to groups. OUs and groups are sets of AD

objects, representing nodes in a metagraph.

Step 1: Using OUs, ADSynth generates a tier structure

implementing the guidelines in [20]. The number of tiers is a

parameter in ADSynth. A tier structure containing 3 tiers is

illustrated in Fig. 3. As recommended by best practices [10],

[23], [27], administrative and regular objects are separated into

different OUs. In the tier administrative model [20], Tier 0
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Fig. 4. The metagraph representation of a company’s AD system, representing the set-to-set mapping - an intrinsic nature of Active Directory

contains the highest-privileged objects that have administrative

control of the entire AD system. Tier 1 is dedicated to

enterprise servers, containing sensitive business data. Regular

objects, including non-administrative users, groups, and com-

puters (workstations and servers), are placed in tier 2 onwards.

ADSynth uses lists of departments in an enterprise, branch

locations, and the number of root folders containing data

of the organization to generate distribution groups for each

department at every location following [10], [23], [12], [24].

In addition, within a department, a number of security groups

equivalent to the number of root folders are created with access

rights, or NTFS permissions [28], [29]. The groups are placed

in the corresponding OUs, as illustrated in Fig. 3. AD objects

are later added to groups as group members.

Step 2: Assigning users and computers to OUs. In ADSynth,

there are 3 types of users: admin, enabled, and disabled

user accounts. Users of each type are equally distributed to

the equivalent OUs at every tier. Similarly, computers are

separated into different types based on their nature, such as

privileged access workstations (PAW), regular workstations,

and servers. Computers of each type are then uniformly

allocated to the according OUs within each tier.

Step 3: Adding members to groups. For each user, ADSynth

randomly samples several groups at the same tier and assigns

the user to these groups as group members. This incorporates

the principle of Least Privilege, part of the Tier Model of

Microsoft [30], which prevents users from gaining privileges

of admin groups at higher tiers.
2) Edge generation: After generating metagraph nodes,

ADSynth creates metagraph edges to connect the nodes.

Control and Management. In a tier model, administrators

have control over resources at their tier and in the tiers below,

based on their roles [31]. In contrast, restrictions are in place

to prevent less privileged users from taking control of crucial

assets in higher tiers [31].

Algorithm 1 simulates these interactions by generating

edges e = 〈V,Q〉 ∈ E with administrative groups as the

invertex V and potential resources, including sets of users,

computers and groups, as the outvertex Q. The algorithm

iterates through each tier. At every tier, the maximum number

of resources allocated to permissions per admin group would

be capped at a proportion pr of the total number of all possible

resources which is calculated by total resources(i, k, is acl)
(line 3). For each permission, the target set Q is randomly

chosen from possible resources within the permitted range of

tiers using function random resources(i, k, is acl) (line 6).

The type of permission, which is either an ACL or non-ACL

permission, is determined with user-specified probabilities by

the function random permission(is acl).

Logon restrictions. In a tier model, the following restric-

tions are enforced on cross-tier connections [32], [33]:

• Credentials from a higher-privileged tier (e.g. Tier 0
Admin) must not be exposed to lower-tier systems (e.g.
Tier 1 or Tier 2 systems)

• Lower-tier credentials can use services provided by
higher-tiers, but not the other way around.

Users are restricted to logging on to computers at their

assigned tier and the higher tiers if necessary for work

purposes [31]. In our metagraphs, a user or a computer is

represented as a set of size 1. Algorithm 2 simulates user ses-

sions including allowed cross-tier connections by generating

edges e = 〈V,Q〉 ∈ E with computers as the invertex V
and users as the outvertex Q. A metagraph edge e = 〈V,Q〉
denotes that a user has an interactive session on a computer.

Algorithm 2 traverses through all tiers in the AD structure to

generate sessions for users at each tier. It limits the number of

user sessions by a proportion ps of allowed computers (line
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Algorithm 1: Generate edges for AD permissions

Input: k - number of tiers
O - sets of organisational units
AG - sets of admin groups, AG(t) is a set of admin
groups at tier t
pr - the percentage of possible target resources

1 Function generate control(k, AG, O, pr , is acl)
2 for t← 0 to k − 1 do
3 nr ← total resources(i, k, is acl)× pr
4 for g ∈ AG(t) do
5 for iterator ← 1 to nr do
6 target← random resources(i, k, is acl)
7 permission type← random permission(is acl)

/* Edge generation */
8 Generate e = 〈g, target〉, permission type ∈ Pe

9 end
10 end
11 end
12 generate control(k, AG, O, pr , True) /* ACL */
13 generate control(k, AG, O, pr , False) /* non-ACL */

3). The algorithm randomly samples the according quantity of

computers (line 4) and generates edges between the user and

these computers (line 5).

Algorithm 2: Generate sessions

Input: k - number of tiers
C(t, k) - a set of computers at tier t and higher tiers
U(t) - a set of users at tier t
ps - the maximum proportion of computers a user
can log on at each tier

1 for t← 0 to k − 1 do
2 for u ∈ U(t) do
3 num sessions← random(0, ps × |C(t, k)|)
4 for c ∈ random sample(C(t, k), num sessions) do

/* Edge generation */
5 Generate e = 〈c, u〉, e labelled HasSession
6 end
7 end
8 end

3) Misconfiguration generation: The third critical com-

ponent of ADSynth is simulating misconfigurations through

exceptions and violations of best practices [20], which are

common in realistic AD systems due to the aggregate intrinsic

complexity of Active Directory [18].

The first type of misconfiguration occurs when a highly

privileged user is allowed to log on to lower-tier computers

with their credentials (a higher-privileged user should access

computers at lower tiers using a different account created only

for this purpose). When this misconfiguration occurs and a

high-privilege user authenticates to a lower-tier computer, a

malicious actor at lower tiers could easily harvest credentials

by injecting malicious code into the authentication process of

these computers and obtain the administrative credentials [32],

[33] to make lateral movements to critical parts of the system.

Algorithm 3 simulates these misconfigurations by creating

edges e = 〈V,Q〉 ∈ E with the invertex V representing

computers and the outvertex Q denoting users. A metagraph

edge e = 〈V,Q〉 signifies a violated session of a user on

a computer. The algorithm first determines the number of

breached sessions in the entire Active Directory based on

user input (line 1). For each violation, it randomly samples

a user (regular or administrative role) at any tier (lines 3-5)

and a computer at lower tiers (lines 6-7). An edge, labeled as

HasSession, is then generated from the computer to the user.

Algorithm 3: Misconfiguration in user sessions

Input: k - number of tiers
u - total number of users
perc misconfig sessions - the percentages of users
with misconfigured sessions

1 num misconfig ← perc misconfig sessions× u
2 for i← 1 to num misconfig do

/* Determine user’s role and tier */
3 is admin← random(True, False)
4 user tier ← random(0, k − 1) /* excluding the

last tier */
5 user ← random user(is admin, user tier)

/* Determine computer’s tier */
6 comp tier ← random(user tier + 1, k)
7 comp← random comp(comp tier)

/* Edge generation */
8 Generate e = 〈comp, user〉, e labelled HasSession
9 end

The second class of misconfiguration arises when permis-

sions are granted incorrectly. For example, a regular user at a

lower tier is allowed to execute code on privileged computers

at a higher privilege level via DCOM (ExecuteDCOM) and

perform other operations (aka non-ACL permissions). These

permission misconfigurations allow attackers to escalate from

lower tiers to higher tiers. We model these misconfigurations

in metagraphs by using edges e = 〈V,Q〉 with users as the

invertex V and computers as the outvertex Q. The edges show

that users have misconfigured permissions on computers.

Algorithm 4 generates a user-specified number of misconfig-

ured permissions (line 1). For each permission, a regular user

and a computer at higher tiers are randomly sampled (lines

3-6). A misconfigurd edge is generated from the user to the

computer (line 8) with random non-ACL permission (line 7).

ADSynth security parameters The security level of the

generated Active Directory graph is specified by 2 parameters.

The parameter perc misconfig sessions in Algorithm 3 and

the parameter perc misconfig permissions in Algorithm 4

determine the numbers of misconfigured user sessions and per-

missions in the AD system respectively. High values for these

parameters lead to an increased number of misconfigurations,

raising the risk of attackers escalating privileges and reach-

ing Domain Admins, thus making the network vulnerable.

Conversely, low parameter values reduce misconfigurations,

resulting in a secure system.

ADSynth Ouput The output of ADSynth is an Active

Directory (AD) attack graph in a JSON format of Neo4J [34],

which can be loaded and processed in BloodHound [19]. The

default generated graph is a set-to-set mapping AD attack

70



Algorithm 4: Misconfiguration in permissions

Input: k - number of tiers
u - total number of users
perc misconfig permissions - the percentage of users
with misconfigured permissions

1 num misconfig ← perc misconfig permissions× u
2 for i← 1 to num misconfig do

/* Determine regular user’s tier */
3 user tier ← random(1, k) /* excluding the

first tier */
4 user ← random user(False, user tier)

/* Determine computer’s tier */
5 comp tier ← random(0, user tier)
6 comp← random comp(comp tier)

/* Edge generation */
7 permission← random permission(False)
8 Generate e = 〈user, comp〉, permission ∈ Pe

9 end

graph. ADSynth has a parameter to convert the default graph

into an element-to-element AD attack graph.

IV. EXPERIMENTS AND RESULTS

We compare the performance of ADSynth with DBCreator

and ADSimulator. In addition, we validate the realism of

ADSynth graphs with an AD system of a University. The

University AD system has 100K nodes and 1.2 million edges.

Experiment Setup. We perform experiments across diverse

graph sizes, spanning from 1000 nodes to a million nodes.

Utilising ADSynth, we simulated different levels of security,

encompassing highly secure and vulnerable AD systems. For

graphs with 100K nodes, which are similar to the size of the

realistic AD system, we label them as AD100.

A. Execution time

The existing tools DBCreator and ADSimulator use a simple

graph model and rely on Neo4J database [35] to generate

Active Directory attack graphs. The metagraph model allows

us to generate nodes and edges using groups of entities,

significantly reducing the complexity of the graph. In addition

to the metagrah model, during the execution of DBCreator and

ADSimulator, we identify a large number of data transactions,

leading to a very significant latency. ADSynth eliminates the

latency by implementing a local graph database with functions

replicating Neo4J. ADSynth’s database facilitates insertion and

retrieval operations for nodes and edges at a constant time

while maintaining optimal storage efficiency.

Both the metagraph model and the engineering effort con-

tribute to a significant reduction in the running time of

ADSynth. Table I displays the average running times obtained

from 20 executions for each tool across varying graph sizes.

The standard deviations for multiple executions are included

following the +/- sign. In particular, ADSynth constructs a

100K-node AD graph, which is equivalent to the scale of

a University AD system, within approximately 21 seconds.

ADSimulator took 31 minutes while DBCreator could not

produce graphs of this size.

TABLE I
RUNNING TIMES OF DBCREATOR, ADSIMULATOR, AND ADSYNTH

|V | DBCreator[s] ADSimulator[s] ADSynth[s]
1000 27.296±1.89 12.479±1.775 0.027±0.031
5000 257.046±1.608 70.492±0.855 0.993±0.105
10000 819.433±1.678 190.439±1.579 1.886±0.153
50000 - 757.135±5.361 9.774±0.201
100000 - 1849.273±30.748 21.304±0.958
500000 - - 121.725±7.281
1000000 - - 257.387±12.28

Fig. 5. Graph density

B. Active Directory Graph Properties

We evaluate ADSynth using common metrics in Active Di-

rectory (AD), such as graph density, numbers of user sessions,

and other metrics [36], [37]. We compare these against the

University AD system.

Graph density is defined as
|E|

|V |·(|V |−1) , with |V | as the

number of nodes and |E| as the number of edges in a graph.

Fig. 5 illustrates ADSynth’s capability to generate networks

with varying densities under different network settings. In

particular, the secure system AD100 by ADSynth has a density

of 0.00012, closely resembling the University AD system at

0.00008. By contrast, vulnerable AD systems by ADSynth

possess greater density due to many violated connections.

Assuming that there are |X| violations, equivalent to |X| edges

in the attack graph, the graph density of a vulnerable system is
|E|+|X|

|V |·(|V |−1) , greater than the density of a secure system without

violations by
|X|

|V |·(|V |−1) . DBCreator and ADSimulator graphs

also exhibit notably high density, but this originates from the

generation of permissions (ACL and non-ACL) that diverges

from established rules and best practices [38], [39], [40].

Fig. 6. Comparison of volumes of user sessions for increasing size of the
networks produced by DBCreator, ADSimulator, and ADSynth.
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Fig. 7. Comparison of volumes of user sessions
on various AD systems

Fig. 8. Comparison of user session distribution
between ADSynth and the University AD system

Fig. 9. Proportions of users granted access to DA,
Y-axis set to a log scale

Fig. 10. (a) Relationship between the highest Route Penetration Rate (RP rate) and graph sizes ; (b) Peak RP rates generated by DBCreator, ADSimulator,
and ADSynth; (c) RP rates between the AD system of a University and ADSynth networks

User sessions. Fig. 6 presents the highest session counts

per user, denoted as user sessions, in various networks. The

figure showcases ADSynth’s ability to generate a range of user

logons, which none of the other tools can do.

Fig. 7 illustrates the peak user session counts in ADSynth

networks under various security settings and in networks

generated by the other tools. In detail, the session counts

in the vulnerable networks by ADSynth surpass those of

other networks, attributed to the prevalence of violated cross-

tier sessions. Additionally, the figure highlights a similarity

between our secure network AD100 and the University AD

system with approximately 20 sessions per user at peak.

ADSynth achieves this result through a parameter to tune the

maximum number of sessions per user.

Fig. 8 depicts the distributions of user sessions among the

top 30 users in the University AD system and ADSynth net-

works. In particular, ADSynth displays a constrained spread.

The explanation is as follows. In a realistic University Active

Directory (AD) system, there are many user roles and users

can access multiple computers depending on their roles. While

most normal users typically log on to 1-2 machines, teaching

staff may utilize 3-4 for various tasks such as experiments,

presentations, communication, and other tasks. A small per-

centage of staff may access 5, 10, or even 15 machines,

shaping the distribution of user sessions in Figure 8. The

distribution also indicates that among 30 users with the most

sessions out of 30K users of the University AD system, many

have fewer than 2 sessions, emphasizing that the majority

of remaining users also have minimal session activity as

expected above. However, in ADSynth graphs, users can

log onto any number of permitted computers, regardless of

their organizational roles. Figure 8 shows that in the secure

ADSynth graph, the highest upper bound of user sessions

is approximately 20. The numbers of sessions of the top 30

users already exceed 17, nearing the upper bound of 20. With

roughly 30K users in the AD system, the figure indicates that

a significant number of users have high session counts. The

same pattern is observed in the vulnerable ADSynth graph.

Addressing this mismatch in the distribution of user sessions

is a focus for future development of ADSynth.

C. Security metrics in Active Directory

We focus here on the proportions of regular users having

attack paths to Domain Admins, as depicted in Fig. 9. By

manipulating the two misconfiguration parameters in algo-

rithms 3 and 4, ADSynth can simulate networks across a

spectrum of security levels. This ranges from a vulnerable

system harboring an excessive proportion of concerned users

to a highly secure system with only a minimal presence of such

users. Notably, the secure network AD100 by ADSynth closely

mirrors the University AD system, with 0.02% of regular users

possessing access to Domain Admins.

Route Penetration Rate. We define the Route Penetration
Rate, or RP rate as the percentage of shortest paths from

regular users to Domain Admins passing through that node.

Nodes with large RP rates are recognized as choke points,

indicating a focal point of concentrated network traffic [41].

Fig. 10a illustrates that with constant security settings, an

increase in the number of nodes leads to a decrease in the

peak RP rate. The number of violated sessions is directly
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proportional to the graph sizes following the violation rate

perc misconfig in Algorithms 3 and 4. As the network

expands, more nodes and violated connections are created.

With more emerging escalated paths from regular users to

Domain Admins, the traffic flow is spread, resulting in a

reduction of RP rate at choke points.

The comparison of the peak RP rates between ADSynth,

DBCreator, and ADsimulator is depicted in Fig. 10b. Specif-

ically, ADSynth demonstrates the capacity to generate vul-

nerable systems with low RP rates and realistic secure net-

works with high RP rates at choke points, closely mirroring

the University AD system. Conversely, graphs produced by

DBCreator and ADSimulator consistently display a moderate

RP rate within the range of 20-40%, thereby proving incapable

of reproducing the behavior of realistic AD systems.

In Fig. 10c, we analyze the distributions of the top 30

nodes with the highest RP rates in ADSynth graphs and

the University AD system. It shows a similar distribution

pattern between the secure network by ADSynth and the

University AD system. Specifically, secure network AD100

by ADSynth holds some choke points with more than 80%

of paths towards Domain Admins passing through, while

the other nodes experience a low RP rate. This mimics the

behavior in the University AD system. Conversely, in the

vulnerable network, no significant choke points are identified.

V. APPLICATIONS

Several recent research studies [14], [21], [4] and industry

solutions [19], [15] about attack path management, have de-

veloped solutions to improve the security of Active Directory

(AD), but these methodologies have only been tested with

limited real datasets or datasets generated by DBCreator and

ADSimulator. With ADSynth datasets, the applicability and

generalization of these works can be evaluated on various AD

configurations, and improvements can be made to enhance

their performance when applied in real-world AD systems.

Furthermore, AD admins could also find the tool useful in

generating attack graphs for practice, training, and simulation.

Commercial attack path management tools - Blood-
Hound [19] and GoodHound [15]: BloodHound is an AD

mapping and attack path management tool [42]. The Blood-

Hound Attack Path Management solution is proprietary, we

do not have access to the code. AD admins with a license to

BloodHound Enterprise could use our datasets to evaluate the

effectiveness of BloodHound under various scenarios to help

guide their decisions. GoodHound is an open-source tool that

identifies the weakest edges in an AD system. This information

allows AD defenders to eliminate edges with substantial attack

traffic in a prioritized order, effectively reducing the number of

attack paths. We evaluated GoodHound on datasets generated

by ADSynth and ADSimulator, each containing 100K nodes.

We observed a significant disparity between the 2 datasets.

In this experiment, after identifying the weakest links in a

prioritized manner for each graph, we determined the number

of links that needed to be removed to eliminate all shortest

attack paths. Figure 11 shows that the typical number of

Fig. 11. Application of GoodHound on various datasets

Fig. 12. Testing the Double Oracle algorithm on various datasets

weakest links removed necessary to eradicate projected attack

paths is approximately 600. However, in the ADSynth graph

(secure), only 29 weakest links require removal, mirroring the

outcome observed in the realistic University AD graph.

Scalable Double Oracle Algorithm [14]: An optimal strategy

is suggested to eliminate attack paths in AD environments

through edge cutting at a fast speed. We applied the algorithm

on a realistic dataset generated by ADSynth and observed the

major difference compared to experiments on ADSimulator

datasets in the paper. The datasets comprised approximately

100K nodes each. As shown in Figure 12, while in the

ADSimulator graph, the median number of edge cuts required

to fully eliminate attack paths of the shortest length is roughly

8, the minimum level of edge removal in the ADSynth graph

(secure) does not exceed 2 - resembling the result on the

realistic University AD system.

Scalable Edge Blocking Algorithms [4]: The work was

developed on a scenario when defenders block a set of edges

and attackers take the shortest unblocked path. The paper

introduces algorithms for defenders to maximize the length of

the unblocked attack path. We ran the algorithm IP (Integer

program based on Kernelization) and Iterative LP on graphs

of ADSimulator, ADSynth, and a University AD system. Each

of the graphs contains approximately 100K nodes. For the

ADSimulator graph, the resulting success rates of attackers

after defenders conduct edge blocking are 0.149 (IP) and 0.093

(IterLP). When running on the ADSynth graph (secure) and

the University AD system, the algorithms report an error in the

graph setup. We conjecture that the algorithm fails on more

realistic graphs.

VI. CONCLUSION

Security solutions and attack response tools rely on accurate

data and models, but AD datasets are confidential, and no

current tool can produce realistic, large AD graphs that meet

the design criteria. We develop ADSynth to generate synthetic

Active Directory attack graphs that meet these realistic design

and scalability requirements. ADSynth uses metagraph abstrac-

tions to represent the intrinsic nature of Active Directory,

set-to-set mappings. Experiments show its scalability and the

realism of the generated attack graphs.
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