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Abstract—Bit flips in main memory can be caused by a
multitude of environmental effects, such as heat or radiation,
as well as by malicious actors exploiting Rowhammer-style
hardware vulnerabilities. The industry-standard countermeasure
is SEC-DED ECC memory, which can reliably correct single- and
detect double-bit flips in a data word. However, larger multi-bit
upsets (MBUs) regularly occur in real-world systems, and – as
shown by an analysis in this paper – have a high probability
of being miscorrected. Software-implemented hardware fault
tolerance (SIHFT) mechanisms can flexibly handle MBUs, but
incur significant runtime costs.

In this paper, we propose to combine hardware ECC as a low-
cost detector and SIHFT as a handler for miscorrected MBUs that
recategorizes them as uncorrectable. A preliminary evaluation
on the basis of differential checksums shows a 98.5 % reduction
in miscorrected silent data corruptions with a very moderate
execution-time overhead.

I. INTRODUCTION

Soft errors pose a threat to all modern computer systems.

As the number of transistors at the system level continues to

increase, the soft-error rates are expected to increase in the

future [1]. A widely used method of dealing with soft errors in

DRAM are error-correcting codes (ECC). This enables efficient

fault-tolerant systems, mainly used for professional applications.

However, nowadays ECC memory with single-error correction

and double-error detection (SEC-DED) is commonly used.

Accordingly, no guarantees are given for larger multi-bit upsets

(MBUs). Such MBUs regularly occur in large systems [2]–[4].

One possible hardware measure against MBUs in DRAM

is IBM’s chipkill correct [5] and similar trademarks. Chipkill

scatters an ECC word over multiple memory chips and enables

fault tolerance even for MBUs that affect more than two bits

locally. However, chipkill reduces performance and requires up

to 30 % more energy, since a large number of memory chips

must be activated per memory access [6]. In addition, there are

studies that show that, despite the use of chipkill, soft errors

occur that could not be corrected [3]. A different, well-studied

solution is software-implemented hardware fault tolerance

(SIHFT) with a strong flexibility regarding MBU detection

and correction capabilities, but at the cost of high runtime

overheads even for highly optimized implementations [7].

In this paper, we aim for an efficient detection of MBUs in

DRAM using a combination of hardware SEC-DED ECC and

SIHFT. We propose to use a cascade of 1) ECC hardware as a

detector with low performance cost and 2) a SIHFT mechanism

to handle miscorrected MBUs properly by recategorizing them

as uncorrectable. We also provide a brief analysis of the

characteristics of SEC-DED ECC memory for MBUs larger

than two bits. This analysis shows the feasibility of using ECC

as a low-cost detector also for larger MBUs, and why the

combination with SIHFT methods is promising.

As a proof of concept, we demonstrate our approach in a

prototype implementation, applied to a selection of TACLe [8]

benchmarks.

In summary, our contributions are the following:

• An analysis of the characteristics and usefulness of SEC-

DED codes for MBUs larger than two bits up to a size

of eight bits.

• A hybrid hardware/software approach to efficiently detect

MBUs affecting more than two bits while preserving the

ability of SEC-DED ECC to correct single-bit upsets.

II. SEC-DED CODES

ECC memory with SEC-DED makes no guarantees for the

correction or detection of MBUs with three or more corrupted

bits. To better understand how exactly SEC-DED ECC behaves

for MBUs, we briefly analyze this scenario in the following

and compare the results with the literature.

We examine Hsiao codes [9] with 64 data bits and 8 check

bits as ECC, since these are widely used in commercially

available ECC memory [10]. In order to determine how MBUs

of different sizes affect the behavior of the Hsiao codes, we

simulate all possible
(
72
n

)
combinations of an n-bit MBU within

an ECC word of 72 bits and measure the effect. We show the

results in Tab. I. We observe that for three-bit MBUs no error

can be corrected. In fact, 56.45 % of the injected errors are

miscorrected. This means that the ECC hardware corrupts one

more bit in addition to the present three-bit MBU. However,

43.55 % are detected as uncorrectable. For four-bit MBUs,

99.18 % are classified as uncorrectable, but 0.82 % are not

detected at all. These values are in line with Hsiao [9].

For this paper, we also evaluate MBUs with sizes of 5–8

bits. We find that the pattern that emerged for three-bit MBUs

also applies to other MBUs of odd-numbered size. Similarly,

we find that the pattern measured for four-bit MBUs is also

consistent for other even-number sized MBUs. This means

that for an odd MBU, all errors can be detected, but about

56 % are miscorrected. For even MBUs, almost all errors can

be detected, with less than 1 % not being detected at all. At

first glance, one could assume that ECC alone is a good MBU
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TABLE I
HSIAO CHARACTERISTICS FOR THREE-BIT UP TO EIGHT-BIT MBUS,

TESTED FOR ALL POSSIBLE MBUS IN A 72-BIT ECC WORD WITH 64-BIT

DATA AND 8-BIT CHECK BITS. FOR AN ODD NUMBERED MBU AROUND

56 % OF ALL POSSIBLE MBUS ARE MISCORRECTED. FOR AN EVEN

NUMBERED MBU NEARLY ALL ARE DETECTED AS UNCORRECTABLE, BUT

LESS THAN 1 % ARE NOT DETECTED AT ALL.

MBU Miscorrected Uncorrectable Not detected

3 56.45 % 43.55 % 0.00 %
4 0.00 % 99.18 % 0.82 %
5 56.23 % 43.77 % 0.00 %
6 0.00 % 99.22 % 0.78 %
7 56.25 % 43.75 % 0.00 %
8 0.00 % 99.22 % 0.78 %

detector, as it has an almost 100 % detection rate for any MBU.

However, when single-bit flips occur, ECC can correct them.

A detection can either mean we have a correctable single-bit

flip or an MBU that would be miscorrected. Since single-bit

flips are much more common, it is desirable to preserve the

correction ability for them. In this case, SEC-DED ECC cannot

be used on its own for high-probability MBU detection.

III. ECC AS LOW COST HARDWARE-BASED DETECTOR

Consequently, the goal of our approach is to build upon the

strong error detection capability of ECC memory hardware and

to compensate its high MBU miscorrection rate. To this end,

we apply a software mechanism to detect such miscorrections.

We take advantage of the fact that ECC can detect an error

in almost all cases. This also applies to MBUs with a size of

three bits and more, whereby with an odd numbered MBU,

around 56 % were detected but miscorrected (Tab. I). With

an even numbered MBU, almost all errors are recognized as

uncorrectable, with less than 1 % not being detected at all.

We focus in particular on MBUs with an odd number, and

aim at minimizing the number of errors that are detected but
miscorrected by recategorizing them as uncorrectable.

To achieve this, we use the ability of the memory controller

to signal that an error has been detected and corrected in the

ECC memory. We propose the following procedure to detect

MBU miscorrections: 1) A single/multi-bit error occurs in the

ECC memory. 2) The memory controller detects the error and

attempts to correct it, which might result in a miscorrection.

3) The memory controller triggers an interrupt in either case.

4) The interrupt initiates a further check of the data, which is

performed by a software method.

However, software methods are typically associated with

a high overhead, both in terms of memory and execution

time. To achieve a significant efficiency improvement by using

it in combination with ECC interrupts, we assume that the

following requirements are met: 1) The software method shall

be optimized for the error-free case. That is, the execution-time

overhead shall be minimal when there is no error. 2) The actual

detection of MBUs needs not to be particularly fast, because

it is only triggered by an ECC interrupt, which shall be a rare

event. 3) The memory overhead of the software method shall

be minimal to avoid polluting the cache with redundant data.

A. MBU Detection by Differential In-Memory Checksums

In this paper, we evaluate the multi-bit error detection

capability of software-implemented in-memory checksums on

top of ECC RAM. A checksum in general is calculated as

a function of the data it is associated with. For example, a

checksum for an array of values can be computed by the

arithmetic sum of all elements in that array. Software can

store such a checksum next to the data in memory. The data

can be checked for errors by recomputing the checksum and

testing whether the stored and recomputed checksums match.

On match, there is a high probability that there are no errors

in the data.

In-memory checksums require that when a piece of data is

modified (e.g., a program variable), the checksum needs to

be updated. A fast approach is to use differential checksum
computations [7], that is, to patch the checksum without full

recomputation. For instance, we can patch the aforementioned

arithmetic checksum efficiently by subtracting an old data value

from the checksum and by adding in a new data value.

In previous work [7], we developed a compiler-based

approach that automatically inserts differential checksums

into C/C++ data structures to avoid a manual and otherwise

tedious implementation by the software developer, because

each write access to a program variable needs to be considered.

However, without knowledge about the temporal occurrence

of memory errors, the compiler conservatively inserts at least

one checksum check into each C/C++ function before reading

the respective data. Even though we instruct the compiler to

minimize repeated checks, the previous approach results in

high execution-time overhead of more than 100 %.

B. Implementation of a Hybrid Hardware/Software Approach

A large share of the execution-time overhead of software-

implemented in-memory checksums originates from recomput-

ing the checksum to detect errors proactively. Our approach is

to combine in-memory checksums with hardware ECC memory

and to only use the hardware for error detection. Thus, we

never recompute the checksum unless ECC has detected an

error. In other words, we apply the compiler-implemented

in-memory checksums to automatically maintain an always

up-to-date checksum for each data structure by differential

checksum patches on each memory write access. In addition,

we occasionally test whether the ECC memory hardware signals

the occurrence of an error. Only if an error has been signaled,

we check the data for multi-bit errors by recomputing the

checksums. As a heuristic, we use our compiler to insert a test

for a global ECC interrupt flag at every C/C++ function return.

The presented heuristic makes little demands on the hardware

architecture, because neither the ECC interrupt is required to

trigger immediately on data access nor the exact addresses of

memory errors need to be exposed by the hardware. On the

software side, however, this means that we do not know exactly

where and when a memory error has occurred, so we need to

check all checksum-protected data structures when the global

ECC interrupt flag is set. Thus, we extend the aforementioned

compiler-based approach to automatically set up a linked list of
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all checksum-protected data structures at runtime. Once each

data structure in that list has been checked successfully, we

reset the ECC interrupt flag to avoid further software checks.

Since the global ECC interrupt flag is only checked at every

C/C++ function return, there is usually a latency between the

occurrence of an error and its detection by the checksum.

However, an error is always detected, even if the error has

already been overwritten before the checksum is checked. This

property is achieved by the differential checksums, as these

are updated relative to the previous checksum. Note that we

intentionally do not check the data structures directly in the

ECC interrupt routine, as the data structures and the associated

checksums might not be in a consistent state on interrupt.

In summary, the hybrid hardware/software approach to MBU

detection aims at reducing the execution-time overhead of the

software-only approach by avoiding checksum recomputation

when there is no memory error to be expected.

IV. EVALUATION

We evaluate our approach from Sec. III using FAIL* [11],

a simulation-based fault injector, which we extended by an

ECC-memory simulation. To perform the fault injections we

used a two-way AMD EPYC 7451 system with 384 GiB of

main memory.

We apply fault injection to simulate MBUs in DRAM with

a uniform random distribution in space and time. Specifically,

an MBU is injected at once after a random instruction and

locally into an ECC word, whereby any combination is possible

within this word. We use the extrapolated absolute failure count

(EAFC) [12] as a metric to determine the fault tolerance of

a program. This means that we scale the number of failures

based on the fault-space size, since a longer running program

and more memory used results in a higher probability that a

memory fault occurs.

A. TacleBench

We use seven benchmarks from the TACLe suite [8] as

examples for the evaluation. We consider three different variants

per benchmark, all of which use simulated hardware ECC. We

consider a baseline variant without SIHFT, the checksum variant

that uses the original differential checksums as described in

Sec. III-A, and the IRQ-checksum variant that uses our new

approach from Sec. III-B with ECC interrupts.

We injected 1,000,000 three-bit MBUs for each variant.

Since we inject three-bit MBUs, the SEC-DED ECC causes

a miscorrection in about 56 % of all cases while about 44 %

are recognized as uncorrectable. At the end of the program

execution, we record how the MBU has affected the program.

This means whether it has become a silent data corruption

(SDC) or caused another failure (resulting in a timeout or a

CPU exception). We primarily want to minimize the number of

miscorrected MBUs that lead to an SDC (miscorrected SDC),

since neither ECC nor the program can detect this error. All

other failure types (timeout, CPU exception, SDC recognized

as uncorrectable by the ECC) can be detected.

Fig. 1. Comparison of different benchmark variants in regard to their number
of miscorrected SDCs. On average, the IRQ-checksum approach reduces
significantly the number of miscorrected SDCs compared to the other variants.
Error bars show the 99 percent confidence interval. (Lower values are better).

TABLE II
NUMBER OF DYNAMIC INSTRUCTIONS FOR DIFFERENT BENCHMARKS

VARIANTS. OVER ALL BENCHMARKS, THE IRQ-CHECKSUM APPROACH

INDUCES 29 % MORE INSTRUCTIONS OVER THE BASELINE, BUT 27 % LESS

THAN THE ORIGINAL DIFFERENTIAL CHECKSUM VARIANT.

Benchmark Baseline Checksum IRQ-Checksum

binarysearch 549 1,105 982
bsort 73,325 82,682 77,996
lift 537,276 947,832 670,504

cubic 612,810 660,024 662,975
countnegative 9,861 68,989 14,362

insertsort 732 1,144 1,066
matrix1 8,233 9,700 9,198

Geom. mean 18,659 33,124 24,152

We can see in Fig. 1 that the number of miscorrected SDCs

is massively reduced with the IRQ checksum compared to the

baseline and also to the original differential checksums. If we

aggregate the benchmarks with the geometric mean, then our

IRQ-checksum approach reduces the number of miscorrected

SDCs by 98.5 % compared to the baseline and by 91.1 %

compared to the original variant of differential checksums. In

the case of binarysearch and countnegative, we can see that the

checksum variant is worse than the baseline. This could be due

to the fact that the regular checking of the checksums increases

the program execution time and therefore makes the occurrence

of faults more likely. The IRQ-checksum variant reduces this

problem, as the checksums are only checked during an ECC

interrupt, which results in much less miscorrected SDCs.

We also examine how the program execution time changes

as a result of our approach. To do this, we record the number of

simulated dynamic instructions for the benchmark variants. The

results are shown in Tab. II. If we aggregate all benchmarks

over the geometric mean, then the IRQ-checksum approach

requires 29 % more instructions than the baseline, but 27 %

less than the original differential checksum variant.

In summary, we find that our hybrid approach to MBU

detection reduces the rate of miscorrected SDCs by 98.5 % at

an execution-time overhead of 29 % on average.

B. Threats to Validity

The current implementation of the IRQ-checksum approach

checks the global ECC interrupt flag at every function return.

In the current implementation, this might increase the detection
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latency and programs that frequently call small functions can

suffer a significant overhead.

Furthermore, the behavior of the hardware ECC is only

simulated in this paper. An evaluation using real hardware

ECC is subject to future work.

V. RELATED WORK

Other work has already provided approaches for hybrid

hardware/software fault tolerance. Kuvaiskii et al. present an

approach to hardware-assisted fault tolerance (HAFT) [13],

which can detect and recover faults as a compiler-based

hardening mechanism through instruction level redundancy

and hardware transactional memory. HAFT is on average 2x

slower compared to a native version.

Other work deals with the detection of MBUs in general.

Neuberger et al. [14] have developed a method that can correct

single and double-bit faults and a large number of multiple

faults. To do this, they combined Hamming and Reed-Solomon

codes. They implemented their approach on an FPGA and

found a performance penalty of about 50 %. Lee et al. [15]

use a hardware-implemented multi-bit correctable BCH code.

The aim is to minimize the memory footprint by applying the

BCH code only to 32-bit data words and storing the check bits

of the BCH code in the remaining 32 bits. In the case of a

64-bit data word, a SEC-DED ECC is used. This can reduce

system failures by 47.9 %, with a performance overhead of

0.9 %. However, since SEC-DED ECC is used for 64 bit data

words, this approach should not have a detection rate for MBUs

comparable to our approach. Narasimham and Luk [16] have

dealt with the limitation of SEC-DED ECC memory to detect

larger MBUs. They implement an exclusively hardware-based

approach that uses Berger codes to calculate a ckecksum for

the data. This method, however, can only detect unidirectional

upsets. Additionally, specialized hardware is required for this

method. Our approach can also be implemented after deploying

and run on commercially available hardware.

To the best of our knowledge, we are not aware of any work

that can exploit commercially available hardware ECC in such

a way that high error detection probability for MBUs can be

realized with low overhead.

VI. CONCLUSIONS

In this paper, we have presented an approach that combines

the efficiency of hardware ECC to detect and correct memory

errors with the safety of software to avoid miscorrections

of MBUs. Our approach significantly reduces the number

of miscorrected MBUs that lead to an SDC by 98.5 % on

average compared to hardware-only ECC. At the same time,

the software execution-time overhead is moderate with about

29 % more dynamic instructions compared to the baseline.

In future work, we aim at further reducing the software

execution-time overhead by checking the data directly in the

ECC interrupt routine to avoid the frequent testing of the

global ECC interrupt flag. Moreover, we also want to consider

additional error correction in software to further increase the

system availability in case of MBUs.
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