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Abstract—This paper introduces a distributed deep learning
framework called TrustDDL crafted to address privacy and
Byzantine robustness concerns across the training and inference
phases of deep learning models. The framework incorporates
additive secret-sharing-based protocols, a commitment phase, and
redundant computation to identify Byzantine parties and shield
the system from their detrimental effects during both deep
learning model training and inference. It ensures uninterrupted
protocol execution, guaranteeing reliable output delivery in both
phases. Our security analysis affirms the efficacy of the proposed
framework against both honest-but-curious and malicious adver-
saries for learning and inference tasks. Furthermore, we evaluate
the proposed framework against existing open-source distributed
machine learning frameworks, underscoring its practicality for
developing and deploying distributed deep learning systems.

Index Terms—Byzantine Robustness, Computational Redun-
dancy, Deep Learning, Privacy Preserving, Secret Sharing

I. INTRODUCTION

Deep learning, a leading methodology in machine learning,

excels in modeling and recognizing complex data types such

as images, speech, and text [1], [2]. Despite hardware and

network advancements, large-scale deep learning tasks remain

computationally intensive, posing challenges for resource-

constrained systems [3], [4]. Distributed deep learning frame-

works have emerged to address these challenges, alongside

commercial ”Deep Learning as a Service” solutions offered

by cloud providers [5]–[7]. However, this approach brings its

own set of challenges that warrant careful consideration.

One major concern is the high risk of privacy breaches,

mainly arising from both the input data and the deep learning

model itself [8], [9]. Input data frequently contains sensitive

information, requiring protection during transit and processing.

Likewise, deep learning models, as valuable assets, must be

shielded from theft, tampering, or unauthorized access.

In addition, distributed deep learning is particularly vul-

nerable to the presence of ”misbehaving” parties within the

system [10], [11], known as Byzantine parties. Such deviations

can result from software and hardware bugs, the inclusion of

poisoned or compromised data [12], [13], or the actions of

malicious parties attempting to manipulate the system [14].

Several cryptographic-based approaches, including Interac-

tive Proof Systems [15], [16], Homomorphic Encryption [17],

[18], and Zero-Knowledge Proofs [19], [20], have been pro-

posed for preserving the privacy of sensitive data and verifying

computation results during both model training and inference

phases. However, these approaches often incur significant

computational and communication overhead. Alternatively,

leveraging Trusted Execution Environments (TEEs) offers an-

other solution to protect data and model privacy and integrity.

Yet, TEE-based solutions may face challenges such as malware

attacks [21] and side-channel attacks [22].

Recently, secret sharing schemes have been explored for

designing efficient privacy-preserving machine learning frame-

works [1], [2], [23], [24]. However, these schemes, which

assume an honest-but-curious adversary model, lack resistance

against a malicious adversary, representing a form of Byzantine
party.

Several Byzantine machine learning frameworks have

been proposed, primarily focusing on server-based coordina-

tion mechanisms, coordinating parallel model training tasks

through parameter servers [25], [26]. This includes federated

learning, where models are trained across different devices

without exchanging data samples. In contrast, peer-to-peer

coordination mechanisms [27], [28] involve coordinating deep

learning tasks through direct interaction between computing

parties. However, existing Byzantine machine learning ap-

proaches differ from the assumption in this paper, where a

client lacks the capacity for performing deep learning tasks

and outsources storage and computational requirements to

untrusted cloud service providers. The client must ensure data

privacy and system robustness against Byzantine failures.

To tackle the limitations of existing approaches, this paper

proposes TrustDDL, a distributed deep learning framework

that addresses privacy and Byzantine robustness concerns.

TrustDDL secures all computations during model training

and inference phases using additive secret sharing and data

masking techniques. Additionally, it employs computational

redundancy and robust confirmation methods to filter out

incorrect intermediate results returned by Byzantine parties

and to impart robustness against arbitrary actions of Byzantine
parties. To achieve this, TrustDDL decomposes operations in-

volved in deep learning into simple arithmetic operations such

as addition and multiplication, which can be computed effi-

ciently over additive secret-shared data in a privacy-preserving

manner. TrustDDL includes a commitment phase coupled with

additive secret-sharing protocols to detect Byzantine parties,

allowing it to discard incorrect intermediate results during
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the training and inference of a deep learning model. The

redundant computation employed in TrustDDL also provides

robustness against arbitrary actions of Byzantine parties. We

define Byzantine robustness as the ability to recover from

Byzantine failures and continue learning or inference tasks

without having to abort within the proposed protocols — a

property also known as guaranteed output delivery. The main

contributions of this paper are as follows:

• We propose TrustDDL to address privacy and Byzan-

tine robustness in deep learning training and infer-

ence. Through redundant computations and a commitment
phase, TrustDDL effectively detects and recover from

Byzantine failures.

• We demonstrate, through our security analysis detailed in

the appendix, that TrustDDL effectively guards against

both honest-but-curious and malicious adversary models.

TrustDDL stands out as a secret-sharing-based solution

capable of sustaining continuous learning and inference

tasks without protocol interruptions.

• We benchmark TrustDDL against existing open-source

distributed secret-sharing-based machine learning frame-

works for deep learning model training and inference.

II. PRELIMINARIES

The Additive Secret Sharing scheme (ASS) is the funda-

mental building block used in TrustDDL. In ASS, the secret,
e.g., s, is split into N different additive secret shares [s]i for

∀i = 1, . . . , N , satisfying
∑N

i=1[s]i = s, where s ∈ R. It is

an (N,N )-threshold secret sharing scheme as the absence of

any additive secret share renders the information independent

from the secret. Additive secret shares can be created by

choosing N − 1 random shares [s]1, . . . , [s]N−1 and setting

[s]N = s − ∑N−1
i=1 [s]i. Algorithm 1 shows this process in

pseudo-code form for a secret s ∈ R
m×n. For simplicity, we

define all protocols presented in this paper over the Ring of

real matrices R
m×n, with the case n = m = 1 representing

the set of real numbers.

Algorithm 1: CreateShares(s,N)

Input: A secret value s ∈ R
m×n;

Output: Additive secret shares [s]1, ..., [s]N of s;
1 for i = 1, . . . , (N− 1) do
2 Generate a random number ri ∈ R

m×n;
3 [s]i ← ri;

4 [s]N ← s−∑N−1
i=1 [s]i;

5 return [s]1, ..., [s]N ;

ASS supports homomorphic addition and subtraction by

definition. Consider the case of N parties, where each party

i holds additive secret shares [x]i, [y]i ∈ R
m×n for two

secrets x, y ∈ R
m×n. From now on, the term share will be

used interchangeably with additive secret share, as this is the

technique of secret sharing used in TrustDDL. To obtain a

share [z]i ∈ R
m×n representing the result of the addition

z = x± y, each party i can locally compute [z]i = [x]i± [y]i.
Furthermore, multiplication and division by constants are

supported by ASS. From this point on, we denote a regular

multiplication by the symbol ”·”, matrix multiplication by ”×”,

and a division by ”÷”. For the operators ∗ ∈ {·,÷}, each party

i can locally compute [z]i = [x]i ∗ k, where [x]i is a share of

secret x and k is a constant, to obtain a share of z = x ∗ k.

To support regular multiplication and matrix multiplication

between two secrets, ASS generates the Beaver triple [29]

{a, b, c|c = ab}, where a and b are randomly chosen from

R such that c = ab. This triple must be prepared for

each multiplication. The triple is then split into triples of

shares ([a]i, [b]i, [c]i) by a trusted party using Algorithm 1

and distributed among the N untrusted parties. Using this

triple, party i can mask the shares [x]i and [y]i by setting

[e]i = [x]i − [a]i and [f ]i = [y]i − [b]i. Masking the original

shares by adding or subtracting random values preserves the

privacy of the secrets x and y; even if all shares [e]i and

[f ]i for ∀i = 1, . . . , N are known, the secrets cannot be

reconstructed [30]. Thus, all parties can exchange their values

[e]i and [f ]i so that each party obtains all shares [e]i and [f ]i
for ∀i = 1, . . . , N , without leaking any information about x
and y. The parties can then reconstruct e =

∑N
i=1[e]i and

f =
∑N

i=1[f ]i. After reconstructing e and f , each party i sets

[z]i = [c]i + e ∗ [b]i + [a]i ∗ f , where ∗ ∈ {·,×}. Finally, one

random party r, 1 ≤ r ≤ N , sets [z]r = [z]r + e ∗ f [31].

This approach supports various types of privacy-preserving

multiplication: regular multiplication with a, b ∈ R, element-

wise multiplication with a, b ∈ R
m×n, and matrix multiplica-

tion with a ∈ R
m×n and b ∈ R

n×p. Algorithm 2 (SecMul)
demonstrates element-wise multiplication, while SecMatMul
can be obtained by substituting element-wise with matrix

multiplications. For brevity, we omit the explicit presentation

of this protocol. Instead of collecting all shares [e]i and [f ]i
for ∀i = 1, . . . , N at each party, it is possible to collect these

shares at one random designated party r, reconstruct e and f
there, and distribute the results to the rest of the parties. This

optimization, utilized in Algorithm 2, significantly reduces

communication costs.

Algorithm 2: SecMul([x]i, [y]i, Bi, i, r)

Input: Shares [x]i, [y]i ∈ R
m×n of the matrices to multiply element-wise, a

Beaver triple Bi = ([a]i, [b]i, [c]i) ∈ R
m×n × R

m×n × R
m×n,

the number of the party calling this protocol i ∈ {1, ..., N}, and the
randomly selected party r;

Output: A share [z]i ∈ R
m×n of the result of the multiplication z = x · y;

1 [e]i ← [x]i − [a]i;
2 [f ]i ← [y]i − [b]i;
3 if i == r then
4 Receive [e]j and [f ]j from all parties j ∈ {1, ..., N}\{i};

5 Recover e =
∑N

j=1[e]j and f =
∑N

j=1[f ]j ;

6 Send e and f to all parties j ∈ {1, ..., N}\{i};
7 [z]i ← [c]i + e · [b]i + [a]i · f + e · f ;

8 else
9 Send [e]i and [f ]i to party r;

10 Receive e and f from party r;
11 [z]i ← [c]i + e · [b]i + [a]i · f ;

12 return [z]i;

To compare two secrets x, y ∈ R
m×n element-wise, it suf-

fices to determine the sign of x−y, denoted as sign(x−y) [30].

Since the reconstruction of x−y leaks information about x and

y, we need to reconstruct t · (x− y) instead, where t ∈ R
m×n
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with random positive elements. Choosing t to be positive for

all elements ensures sign(t · (x−y)) = sign(x−y) [31]. With

shares [x]i, [y]i, and [t]i for x, y, and t, each party i calculates

[α]i = [x]i − [y]i and obtains a share of t · (x − y) = t · α
as [β]i = SecMul([t]i, [α]i, Bi, i, r). Similar to the SecMul
protocol, one selected party r collects all shares [β]i for

∀i = 1, ..., N , reconstructs β, and sends it to all other parties.

Each party then obtains the result as sign(x − y), which is

equivalent to sign(β). This approach is used in Algorithm 3

for privacy-preserving comparison between two secrets.

Algorithm 3: SecComp([x]i, [y]i, [t]i, Bi, i, r)

Input: Shares [x]i, [y]i ∈ R
m×n of the matrices to compare element-wise,

an auxiliary share [t]i ∈ R
m×n, a Beaver triple

Bi = ([a]i, [b]i, [c]i) ∈ R
m×n × R

m×n × R
m×n, the number

of the party calling this protocol i ∈ {1, ..., N}, and the randomly
selected party r;

Output: The sign of x− y, sign(x− y);
1 [α]i ← [x]i − [y]i;
2 [β]i ← SecMul([t]i, [α]i, Bi, i, r);
3 if i == r then
4 Receive [β]j from all parties j ∈ {1, ..., N}\{i};

5 Recover β =
∑N

j=1[β]j ;

6 Send β to all parties j ∈ {1, ..., N}\{i};

7 else
8 Send [β]i to party r;
9 Receive β from party r;

10 sign(x− y)← sign(β);
11 return sign(x− y);

III. PROPOSED FRAMEWORK

A. System Architecture
TrustDDL’s system architecture, depicted in Fig. 1, consists

of a proxy layer with three computing parties collaborating on

most operations involved in mode training and inference. This

layer acts as an intermediary between the data owner and the

model owner. In TrustDDL, the roles of both data owner and

model owner are consolidated into a single trusted party that

leverages TrustDDL’s computational and storage capabilities

for deep learning. In TrustDDL, the following actors come

into play:

• Data Owner: A party who holds the training and testing

data and creates the three sets of shares for all inputs

and labels. This party also may receive the results of an

inference task, i.e., the predicted label.

• Model Owner: A party who possesses the (deep) neural

network to be trained or used for inference. This party is

responsible for creating and distributing shares for neural

network’s parameters as well as auxiliary values (e.g.,

Beaver triples and auxiliary positive numbers) and their

relative shares. This party may also receive the result of

a training task, i.e., the updated model parameters.

• Computing Parties: Computing parties in the proxy layer

perform most of the operations involved in model training

and inference, validate computation results, and aggregate

them when necessary.

This framework, tailored for N = 2 and three computing

parties (a 3PC framework), accommodates at most one poten-

tial Byzantine party in the proxy layer. In TrustDDL, either

Fig. 1: System Architecture

the data owner or the model owner generates three distinct

sets of shares for each secret, ensuring that no computing

party in the proxy layer obtains a complete set. For any

secret s, the data owner or the model owner creates the

three sets of shares s1 = {[s]11, [s]12}, s2 = {[s]21, [s]22}, s3 =
{[s]31, [s]32}, where [s]ji represents the ith share of the jth set.

In TrustDDL, party P1 receives the shares {[s]11, [s]21, [s]32},
P2 receives {[s]21, [s]31, [s]12} and P3 receives {[s]31, [s]11, [s]22}.
The distribution scheme in TrustDDL is designed so that it

meets the requirements of privacy—ensuring that no single

computing party obtains a complete set of N shares—and

resiliency—where 2 out of 3 computing parties are sufficient

to perform computations involved in deep learning tasks, even

in the presence of one Byzantine party in the proxy layer.

B. Resiliency against a Byzantine Party

TrustDDL ensures resilience against a Byzantine party in

the proxy layer by redundantly executing each ASS-based

protocol across all computing parties. This includes protocols

like matrix multiplication and comparison, where each party

collects shares from the others for secure reconstructions. This

method allows for the high probability identification of a

Byzantine party.

Here, we go through one exemplary reconstruction phase,

derive a decision rule, and argue for its correctness. We focus

on the reconstructions in one specific party (P1); however, the

correctness can be argued for any other computing party in

the same way. Party P1 may need to use a timer to handle

potential delays or dropped shares from parties P2 and P3.

For simplicity, we focus on detecting a Byzantine party in the

proxy layer, presuming all shares are received by party P1.

When party P1 reconstructs some value s, it holds the

shares {[s]11, [̂s]21, [s]32} and collects the shares {[s]21, [̂s]31, [s]12}
of party P2 and {[s]31, [̂s]11, [s]22} of party P3. We introduce

the notation ·̂ to avoid duplicate names, and this notation is

used in all subsequent protocols. It then performs the following

reconstructions:

s1 = [s]11 + [s]12, s2 = [s]21 + [s]22, s3 = [s]31 + [s]32,

ŝ1 = [̂s]11 + [s]12, ŝ2 = [̂s]21 + [s]22, ŝ3 = [̂s]31 + [s]32
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In this case, compromised shares of one computing party

(P2 or P3) can only corrupt the set of reconstructions

{s2, ŝ3, s1, ŝ1} or {s3, ŝ1, s2, ŝ2}. Thus, if party P2 is a Byzan-
tine party, the reconstructions ŝ2 and s3 are always correct.

Similarly, if party P3 is a Byzantine party, the reconstructions

s1 and ŝ3 are always correct.

In addition, to prevent a Byzantine party from reliably

selecting incorrect shares that closely match corrupted recon-

structions, TrustDDL includes a commitment phase in ASS-

based protocols. Here, computing parties commit to their

shares before distributing them to others, exchanging them

only after receiving commitment values (i.e., hash values of

shares) from the others. Subsequently, each computing party

recalculates the hash values and verifies whether they match

the values received during the commitment phase.

In the case where a Byzantine party violates the com-
mitment phase by sending a hash value of one share but

later exchanging it with a different share, the two honest

computing parties can detect this and discard any reconstruc-

tion involving the Byzantine party’s shares. However, if it

only violates the commitment phase with one party, the two

honest computing parties are unable to reach a consensus on

which computing party has violated the commitment phase.

Nevertheless, this does not hinder correct reconstructions,

as TrustDDL’s computing parties independently detect and

recover from misbehavior.

There is another case where a Byzantine party adheres to

the commitment phase but uses an incorrect share in both

the calculation of the hash value and in the share exchange.

This misbehavior cannot be detected by recalculating the hash

values and verifying whether they match or not after the

commitment phase. To delve deeply into this case, assume

that there is a Byzantine party Pi; it sends a set of shares

{[s]i11 , [̂s]i21 , [s]i32 } (where i1, i2, and i3 denote the sets of

which Pi holds its shares, e.g., i1 = 2, i2 = 3, and

i3 = 1 for party P2). With these shares, it can corrupt the

reconstructions si1 , ŝi2 , si3 , and ŝi3 . For these reconstructions,

we have si3 ≈ ŝi3 (in this context, we write ’≈’ instead of

’=’ since the reconstruction of a secret from two different

sets of shares incurs a slight inaccuracy when implemented

with the finite precision of a computer). Thus, we ignore the

(approximate) equality between any two reconstructions sj

and ŝk if j = k. However, the Byzantine party Pi cannot

force an (approximate) equality between si1 and ŝi2 without

the knowledge of the other shares of the respective sets ([s]i12
and [s]i22 ). Due to the existence of commitment phase in ASS-

based protocols of TrustDDL, the Byzantine party Pi cannot

simply wait to receive these shares and then send incorrect

shares to force (approximate) equality since it has to commit

to its shares beforehand. Thus, if the Byzantine party Pi

sends incorrect shares, it only has a negligible probability

of randomly achieving an (approximate) equality between si1

and ŝi2 . Since the remaining two correct reconstructions are

always (approximately) equal, the honest computing parties

can identify two correct reconstructions by determining the

minimum distance between any pair of two reconstructions

sj , ŝk, where j �= k:

min
sj ,ŝk

{dist(sj , ŝk) | j �= k}j,k∈{1,2,3}

for the distance measure dist. This serves as a decision rule

in TrustDDL to identify the correct computations.

TrustDDL applies such a strategy in ASS-based protocols

to provide resilience against one Byzantine party, as illustrated

in Algorithm 4 and Algorithm 5.

In Algorithm 4 (SecMul-BT protocol), each party i con-

tributes all its shares of the matrices to be multiplied, rep-

resented as vectors: [x]i = ([x]i11 , [̂x]i21 , [x]i32 ), [y]i = ([y]i11 ,

[̂y]i21 , [y]i32 ), each consisting of three shares. Additionally, party

i provides its shares of the Beaver triple as [B]i = ([a]i,
[b]i, [c]i), where [a]i = ([a]i11 , [̂a]i21 , [a]i32 ), [b]i = ([b]i11 , [̂b]i21 ,

[b]i32 ) and [c]i = ([c]i11 , [̂c]i21 , [c]i32 ), with each also being a

vector of three shares. The indices i1, i2, and i3 indicate the

set from which the share originates (e.g., i1 = 1, i2 = 2,

i3 = 3 for party P1; see Fig. 1). For simplicity, we implicitly

use these values within Algorithm 4 without passing them as

arguments. Furthermore, this algorithm can be applied for any

share dimensions to perform an element-wise multiplication

over R
m×n. We omit the dimensions of all shares here for

the sake of readability. Following this, each computing party

calculates vectors of the intermediate shares [e]i and [f]i by

performing element-wise subtractions between two vectors

(Lines 1 and 2). Subsequently, all computing parties execute

the commitment phase by exchanging the hash values of

intermediate shares (Lines 3-7). To address potential issues

such as delayed or dropped messages from a Byzantine party

during the commitment phase, or a malicious party falsely

claiming not to have received any commitment values, it is

possible to introduce timeouts. Computing parties can forward

the commitment values of others in response. If a Byzantine
party deliberately delays or drops all of its messages, the

other two parties can reach a consensus on this misbehavior

and exclude the offending party from further computations. In

the case of a Byzantine party only delaying or dropping their

shares to one party, the other computing party can forward the

received commitment values (directly or after a timeout). For

simplicity, we do not detail this mechanism in Algorithm 4.

Only after confirming the receipt of all commitment values

(Line 8) do the computing parties proceed to exchange their

intermediate shares. During the exchange of all intermediate

shares (Lines 9-14), the computing parties send their inter-

mediate shares (Line 10) and store the intermediate shares

received by the other two parties (Line 11). Furthermore,

they recalculate the hash values for all received intermediate

shares and check if they match the hash values received in

the commitment phase (Line 12). For any reconstructions sj

and ŝj , this algorithm uses the flags flagj and fl̂agj to indicate

whether all intermediate shares used in the reconstruction were

validated in the commitment phase (value true) or not (value

false). When party Pi receives some intermediate shares [s]j =
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([s]j11 , [̂s]j21 , [s]j32 ) from party Pj (here, s would be e or f ), this

algorithm first initializes the flags of reconstructions affected

by a violation of the commitment phase by party Pj : flagj1
,

fl̂agj2 , flagj3
, and fl̂agj3

. This initialization is abstracted to

initializeFlags, which sets each passed argument to true if they

are undefined or identity otherwise (Line 13). Then, these flags

are updated by performing an element-wise AND operation

with the commit check (Line 14). Thus, each flag is only true if

the commit check succeeded for all intermediate shares of the

corresponding reconstruction set. Next, reconstructions flagged

as Byzantine (value false) are ignored. Next, each computing

party performs six reconstructions for e and f (Lines 15-

19). The algorithm identifies two correct reconstructions from

each of them by determining the minimum distance between

any pair of two reconstructions (Line 20) and dismisses any

reconstructions that have been flagged due to a violation of the

commitment phase. Finally, each computing party calculates

and returns its shares of z = x · y for the sets (and share

numbers within a set) they were assigned in the system

architecture (Lines 21-25). In Algorithm 4, r is set to 2,

signifying the addition of the term e · f to the second share of

each set (Line 23). Consequently, there is no designated party

Pr to perform different operations, as observed in Algorithm 2

(SecMul protocol) in Section II. Thus, a fixed value for r can

be chosen within the share calculation rules.

The adapted SecMatMul-BT protocol is derived from Al-

gorithm 4 by substituting element-wise multiplications with

matrix multiplications. Due to space constraints, we do not

explicitly show this protocol. However, we provide the adapted

SecComp protocol in Algorithm 5, following a similar strategy

without further explanation.

C. Deep Learning in TrustDDL

In the context of deep learning, we typically encounter the

following types of operations:

• Linear Operations: These operations involve basic arith-

metic operations such as addition and multiplication.

• Non-Linear Element-Wise Functions: During model train-

ing and inference, activation functions such as ReLU and

Softmax are used to introduce non-linearity to the output

of a linear operation.

• Local Transformations: These operations involve mod-

ifying the shape of an input data structure to make it

compatible with a specific layer or component of a deep

learning model.

ASS-based protocols provide an efficient and straightfor-

ward means of implementing linear operations. Furthermore,

each computing party can easily perform local transforma-

tions on its secret shares within TrustDDL. Additionally,

TrustDDL is able to efficiently compute the ReLU activation

function f(xi) = max(0, xi) using the SecComp-BT protocol.

However, the Softmax activation function f(xi) = exi∑
j exj

cannot be computed with ASS-based protocols in TrustDDL.

Consequently, TrustDDL delegates the computation of this

activation function to the model owner during both model

Algorithm 4: SecMul-BT ([x]i, [y]i, [B]i, i)

Input: Shares [x]i = ([x]
i1
1 ,

̂
[x]

i2
1 , [x]

i3
2 ) and [y]i = ([y]

i1
1 ,

̂
[y]

i2
1 , [y]

i3
2 )

of the matrices to multiply element-wise (i1, i2, and i3 denote the
sets of which party Pi holds shares), shares of a Beaver triple

[B]i = ([a]i, [b]i, [c]i) where [a]i = ([a]
i1
1 ,

̂
[a]

i2
1 , [a]

i3
2 ),

[b]i = ([b]
i1
1 ,

̂
[b]

i2
1 , [b]

i3
2 ) and [c]i = ([c]

i1
1 ,

̂
[c]

i2
1 , [c]

i3
2 ), and the

number i of the party calling this protocol;

Output: Shares [z]i = ([z]
i1
1 ,

̂
[z]

i2
1 , [z]

i3
2 ) of the result of the

multiplication z = x · y;
1 [e]i ← [x]i − [a]i;
2 [f]i ← [y]i − [b]i;
3 for i, j ∈ {1, 2, 3}, i �= j do
4 Send hash([e]i), hash([f]i) to Pj ;
5 Receive hash([e]j), hash([f]j) from Pj ;
6 hashe,j ← hash([e]j);
7 hashf,j ← hash([f]j);

8 Confirm receipt of all the commitment values from all other parties;
9 for i, j ∈ {1, 2, 3}, i �= j do

10 Send [e]i, [f]i to Pj ;

11 Receive and store [e]j = ([e]
j1
1 ,

̂
[e]

j2
1 , [e]

j3
2 ) and

[f]j = ([f ]
j1
1 ,

̂
[f ]

j2
1 , [f ]

j3
2 ) from Pj ;

12 commit checkj ← hashe,j == hash([e]j) ∧ hashf,j == hash([f]j);

13 initializeFlags(flagj1 , fl̂agj2 , flagj3 , fl̂agj3 );

14 flagj1 , fl̂agj2 , flagj3 , fl̂agj3
∧← commit checkj ;

15 for j ∈ {1, 2, 3} do
16 ej ← [e]j1 + [e]j2;

17 fj ← [f ]j1 + [f ]j2;

18 êj ← [̂e]j1 + [e]j2;

19 f̂j ← [̂f ]j1 + [f ]j2;

20 e, f ← minej,fj {dist(ej , êk) + dist(fj , f̂k) | flagj ∧ fl̂agj ∧ flagk ∧
fl̂agk ∧ j �= k}j,k∈{1,2,3};

21 [z]
i1
1 ← [c]

i1
1 + e · [b]i11 + [a]

i1
1 · f ;

22
̂
[z]

i2
1 ←̂

[c]
i2
1 + e ·̂[b]i21 +

̂
[a]

i2
1 · f ;

23 [z]
i3
2 ← [c]

i3
2 + e · [b]i32 + [a]

i3
2 · f + e · f ;

24 [z]i ← ([z]
i1
1 ,

̂
[z]

i2
1 , [z]

i3
2 );

25 return [z]i;

training and inference. As the Softmax activation function is

typically applied only in the last layer of a neural network,

over a relatively small number of neurons, even a resource-

constrained computing party can usually handle this compu-

tation. TrustDDL also requires the model owner to compute

the differentiation of the Softmax activation function.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We implemented TrustDDL in Python using the Ray frame-

work for inter-party communication and PyTorch for data rep-

resentation. Experiments ran on four machines, each featuring

an Intel Xeon Gold 5120 CPU and 256 GB of RAM.

Table I details the neural network structure used in

our experiments, including the utilized layers and their in-

puts/outputs. We evaluated test image accuracy over five train-

ing epochs with 60,000 images each. Fully connected layer

weights were randomly initialized with a normal distribution

N (0, 1/n), where n is the number of input neurons, and

convolutional layer weights were initialized with a normal

distribution N (0, 1/(k1 · k2)), where (k1, k2) denotes the

kernel size. MNIST dataset feature values were normalized to

[0, 1]. Furthermore, we assessed runtime and communication
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Algorithm 5: SecComp-BT ([x]i, [y]i, [t]i, [B]i, i)

Input: Shares [x]i = ([x]
i1
1 ,

̂
[x]

i2
1 , [x]

i3
2 ) and [y]i = ([y]

i1
1 ,

̂
[y]

i2
1 , [y]

i3
2 )

of the matrices to compare element-wise (i1, i2, and i3 denote the
sets of which party Pi holds shares), shares of an auxiliary matrix of

positive numbers [t]i = ([t]
i1
1 ,

̂
[t]

i2
1 , [t]

i3
2 ), shares of a Beaver triple

[B]i = ([a]i, [b]i, [c]i) where [a]i = ([a]
i1
1 ,

̂
[a]

i2
1 , [a]

i3
2 ),

[b]i = ([b]
i1
1 ,

̂
[b]

i2
1 , [b]

i3
2 ) and [c]i = ([c]

i1
1 ,

̂
[c]

i2
1 , [c]

i3
2 ), and the

number i of the party calling this protocol;
Output: The sign of x− y, sign(x− y);

1 [α]i ← [x]i − [y]i;
2 [β]i ← SecMul([t]i, [α]i, [B]i, i);
3 for i, j ∈ {1, 2, 3}, i �= j do
4 Send hash([β]i) to Pj ;
5 Receive hash([β]j) from Pj ;
6 hashβ,j ← hash([β]j);

7 Confirm receipt of all the commitment values from all other parties;
8 for i, j ∈ {1, 2, 3}, i �= j do
9 Send [β]i to Pj ;

10 Receive and store [β]j = ([β]
j1
1 ,

̂
[β]

j2
1 , [β]

j3
2 ) from Pj ;

11 commit checkj ← hashβ,j == hash([β]j);

12 initializeFlags(flagj1 , fl̂agj2 , flagj3 , fl̂agj3 );

13 flagj1 , fl̂agj2 , flagj3 , fl̂agj3
∧← commit checkj ;

14 for j ∈ {1, 2, 3} do
15 βj ← [β]j1 + [β]j2;

16 β̂j ← [̂β]j1 + [β]j2;

17 β ← minβj {dist(βj , β̂k) | flagj ∧ fl̂agj ∧ flagk ∧ fl̂agk ∧ j �=
k}j,k∈{1,2,3};

18 sign(x− y)← sign(β);
19 return sign(x− y);

TABLE I: Neural Network Configuration for MNIST Dataset

Input: 28× 28 image

Convolution: (28× 28)→ (14× 14× 5)
kernel size (5× 5), padding size 2, 5 output channels

ReLU: (980)→ (980)
FullyConnected: (980)→ (100)

ReLU: (100)→ (100)
FullyConnected: (100)→ (10)

Softmax: (10)→ (10)

costs via microbenchmarks, focusing on single-image (batch

size 1) training or testing.

We used 64-bit fixed-point integers with 32 precision bits to

convert floating-point values. During the commitment phase,

TrustDDL utilized the SHA-256 hash function to hash shares.

B. Model Accuracy

Fig. 2 depicts the accuracy trained with CML (Centralized

plaintext Model Learning) and TrustDDL. TrustDDL shows

accuracy comparable to CML. This can be attributed to the

utilization of the SecComp-BT protocol for computing the

ReLU activation function, the outsourcing of the computation

of the Softmax activation function to the model owner, and the

utilization of 64-bit fixed-point integers with 20 precision bits

to minimize accuracy loss during conversion between floating-

point and fixed-point values during model training.

C. Runtime and Communication Cost

We compared TrustDDL with SecureNN [32], Falcon [33],

and SafeML [34], all based on the additive secret-sharing

scheme, in terms of runtime and communication costs. Se-

cureNN provides security against honest-but-curious adver-
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Fig. 2: Model Accuracy on the MNIST Dataset

TABLE II: Runtime and Communication Cost

Framework Model Task Time (s) Comm. (MB)
SecureNN Honest-but-Curious Training 0.0824 6.8434

Falcon Honest-but-Curious Training 0.0513 1.7788
Falcon Malicious Training 0.0833 5.0660

SafeML Crash-Fault Training 6.3208 53.1408

TrustDDL Honest-but-Curious Training 5.9397 56.0285
TrustDDL Malicious Training 8.5315 68.4792

SecureNN Honest-but-Curious Inference 0.0498 4.0489

Falcon Honest-but-Curious Inference 0.0168 0.1535
Falcon Malicious Inference 0.0366 1.5624

SafeML Crash-Fault Inference 5.5406 28.0132

TrustDDL Honest-but-Curious Inference 5.1423 28.0132
TrustDDL Malicious Inference 7.6022 34.2384

saries, while Falcon can detect and abort malicious behavior

but cannot continue learning or inference. SafeML offers

protection against crash faults.

In Table II, TrustDDL demonstrates higher runtime and

communication costs compared to other frameworks due to

its advanced capabilities in detecting and recovering from

Byzantine faults. There is a notable increase in both runtime

and communication costs when dealing with malicious and

crash-fault models compared to honest-but-curious adver-

saries. However, TrustDDL shows a relatively lower escalation

in costs from honest-but-curious to malicious adversaries. For

instance, while Falcon exhibits a 0.62× runtime increase,

TrustDDL demonstrates a more modest 0.44× increase.

V. CONCLUSION AND FUTURE WORKS

TrustDDL addresses privacy and Byzantine robustness con-

cerns for model training and inference using a 3-party setting.

Theoretically, it is secure against both honest-but-curious and

malicious adversaries with an honest majority. It stands as a

secret-sharing-based solution capable of detecting Byzantine
failures and continuing protocol execution without interrup-

tion, ensuring reliable output delivery for deep learning tasks.

Experimentally, TrustDDL demonstrates its ability for model

training with satisfactory accuracy.

Future research for TrustDDL includes optimizing commu-

nication by designing protocols that reduce redundancy and

improve efficiency in model training and inference.
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VI. APPENDIX

The security of ASS-based protocols under the honest-
but-curious adversary model is proven using the universal

composability framework [35]. We assume their security, as

established in prior works [30], [31], focusing solely on

demonstrating TrustDDL’s security during model training and

inference. In the honest-but-curious adversary setting, comput-

ing parties in the proxy layer are hosted across diverse cloud

infrastructures, each managed by a different cloud service

provider. While assuming most providers avoid collusion due

to conflicting interests, we consider the possibility of one

computing party acting as the adversary (denoted as A).

The security of TrustDDL in this setting is established by
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proving that the ideal experiment, where a simulator (denoted

as S) emulates A’s view according to the functionality F , is

indistinguishable from the real experiment. The functionality

F is defined so that a trusted functionality machine has access

to the correct input information required for all operations

related to learning and inference of a deep learning model. The

ideal experiment aims to present S with computation results,

ensuring that S’s view is indistinguishable from the real-world

view and that sensitive information remains concealed.

Theorem 6.1: TrustDDL is secure in the honest-but-curious
adversary model.

Proof 6.1: During model training and inference, the view

of the adversary can be defined as view = ([s]11, [̂s]
2
1, [s]

3
2,

[s]21, [̂s]
3
1, [s]

1
2, [s]

3
1, [̂s]

1
1, [s]

2
2), where these shares are masked

computation results (e.g., the shares of e and f in the SecMul-
BT protocol or the shares of β in the SecComp-BT protocol)

from its own or received from the other two computing parties

in the proxy layer. While the adversary A can reconstruct the

secret of s using one of the following equations:

s = [s]11 + [s]12, s = [s]21 + [s]22, s = [s]31 + [s]32,

s = [̂s]11 + [s]12, s = [̂s]21 + [s]22, s = [̂s]31 + [s]32

This secret is a masked value (e.g., the values e and f in

the SecMul-BT protocol or the value of β in the SecComp-BT
protocol). Therefore, the value of s is completely random and

simulatable. Consequently, both the view of the adversary A
and the outputs of the ASS-based protocols in TrustDDL are

simulatable by the simulator S, and the views of S and A are

computationally indistinguishable.�
In the malicious adversary setting, we maintain the assump-

tion that the computing parties within TrustDDL’s proxy layer

are hosted across diverse cloud infrastructures, operating under

the premise of honest behavior to safeguard their reputations.

However, we postulate the possibility of one computing party

deviating from honesty. This party, referred to as a Byzantine
party, intentionally provides incorrect computation results and

manipulates data. The security of TrustDDL in this setting

is established by demonstrating that every honest computing

party can still derive masked correct computation results (e.g.,

the values e and f in the SecMul-BT protocol or the value of

β in the SecComp-BT protocol) in the presence of a Byzantine
party. In cases where honest computing parties receive erro-

neous shares, they can effectively detect the Byzantine party

and reconstruct every masked correct computation result from

a set of six reconstructions.

Theorem 6.2: TrustDDL is secure in the malicious adversary

model.

Proof 6.2: Let party P2 be a Byzantine (malicious) party.

Based on the proposed solution in TrustDDL to resilience

against a Byzantine party in the proxy layer, any honest

computing party (i.e., P1 and P3) can reconstruct the masked

value s using one of the following equations:

s = [s]11 + [s]12, s = [s]21 + [s]22, s = [s]31 + [s]32,

s = [̂s]11 + [s]12, s = [̂s]21 + [s]22, s = [̂s]31 + [s]32

Now, there are three cases as follows:

• Case 1: If party P2 violates the commitment phase by

sending hash values of shares but later exchanges them

with different shares, the two parties P1 and P3 can detect

this misbehavior by recalculating the hash values and

verifying if they match the values received during the

commitment phase.

• Case 2: If party P2 only violates the commitment phase

with a specific party (e.g., P3), party P1 assumes both

parties P2 and P3 are honest, while party P3 detects party

P2 as a Byzantine party. Nevertheless, this does not hinder

correct reconstructions, as TrustDDL’s computing parties

independently detect and recover from misbehavior.

• Case 3: If P2 adheres to the commitment phase but

uses incorrect shares for the calculation of the hash

values, and in the share exchange, the two parties P1

and P3 can detect this misbehavior and identify the

correct reconstructions with a very high probability by

determining the minimum distance between any pair of

two reconstructions.�
The security of TrustDDL against Byzantine attacks is

ensured by honest behavior among cloud service providers,

driven by their reputation concerns, the cooperation of most

computing parties, and the commitment phase implementation.
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