
Poster: Optimizing Tree-based Quorum Certification
for BFT Systems at Planetary-Scale

Christian Berger
University of Passau
Passau, Germany

Hans P. Reiser
Reykjavik University
Reykjavik, Iceland

�������

�����	
�

�

���������� ������ ������

��
��
��
��
��
��

���������	

��
��
��
��
�
	

��� ����
��
����
�� ���

��
��
��
��
�
	

��	���	�

Fig. 1: Tree-based dissemination and aggre-
gation of QCs in Kauri [1] is a load balancing
technique for improved protocol scalability.

Fig. 2: The latency of collect QC depends
on the chosen tree configuration, because the
latencies of communication links vary.

200 400 600

0

2

4

6

8
·104

Latency [ms]

#
C

o
n
fi

g
u
ra

ti
o
n
s σ = 65.63 ms

μ = 412.97 ms

Best Worst

Fig. 3: Distribution of all tree configurations
in respect to their collect QC latency.

Abstract—Recent research work on Byzantine fault-tolerant
(BFT) protocols focuses on the question of how to improve
scalability. A particular scalability-enhancing technique used in
several BFT protocols such as ByzCoin, Motor, and Kauri is load
balancing the communication through a tree-based dissemination
and aggregation of quorum certificates. However, current eval-
uations of these algorithms often overlook how heterogeneous
network latencies impact system performance. In this work, we
first explore the influence of heterogeneous latencies as found
in planetary-scale networks towards tree-based BFT protocol
performance. Subsequently, we propose an optimization method
which searches for an optimal communication tree by adapting
tree configurations to given network conditions, thus minimizing
system latency. Simulation-based experimentation reveals that the
margin of latency improvements is substantial: An optimized con-
figuration is up to 2.16× faster than the mean. We further discuss
required modifications to support reconfigurations in Kauri with
fast configurations, thus assisting automated deployments.

I. INTRODUCTION

While BFT protocols are newcomers in the blockchain

landscape, they mark a significant paradigm shift as blockchain

systems transition from Proof-of-Work [2] schemes to BFT

consensus to benefit from energy-efficiency, higher throughput,

or proven system properties. Despite these promises, an open

challenge to BFT protocol design is how scalability can be

improved to allow for larger system sizes [3]. There are many

new ideas of how this goal can be achieved [4], and a particular

promising idea relies on solving the leader bottleneck problem

by introducing a load balancing technique. Load balancing

means shifting the communication burden from the leader to

a more evenly and thus more efficient utilization of bandwidth,

thus optimizing resource allocation [5]. Recent solutions pro-

pose tree structures to achieve load balancing and examples

include ByzCoin [6], OmniLedger [7] Motor [8] and Kauri [1].

In a tree-based BFT protocol, the leader resides at the root

position of the tree and invokes a method to collect a quorum

certificate (QC) with communication happening only between

adjacent layers of the tree. Information (such as a proposal) is

disseminated “top-down” from root to internals and eventually

to leaf nodes while votes are aggregated “bottom-up”: Crypto-

graphic primitives like multi-signatures [9] allow to iteratively

combine votes into single signatures which ascend the tree

until reaching the root (leader) which, as soon as sufficiently

many votes are received, forms a QC and proceeds to the next

stage of the consensus algorithm (see collect QC in Fig. 1).

The adoption of tree-based communication represents a load

balancing technique and contributes significantly to increasing

scalability in BFT protocols. The number of nodes contacted

by each node is within O(
√
n) and remains manageable even

in large-scale networks with n nodes. For instance, in Kauri

and assuming a system size of 100 nodes, the leader would

only need to communicate with 10 (the internal tree) nodes.

II. OPEN PROBLEM

BFT algorithms that introduced tree-based quorum certifi-

cation have been extensively evaluated in (emulated) homo-

geneous networks, in which the latency between all possible

pairs of nodes is a single, specified value [1], [6]–[8]. We argue

that a realistic deployment scenario for a blockchain use case

should assume a geographic dispersion of nodes which implies

heterogeneous network latencies between them1. In this case,

the latency of a leader collecting a quorum certificate depends

on how the tree is structured, and the overall performance

of the algorithm varies across different tree configurations.

Selecting an optimal tree configuration by hand is difficult

in practice and requires automation that is not yet provided

1Kauri evaluated a single heterogeneous network scenario in which 60
nodes were distributed across 6 regions (Sect. 7.9 in [1]). The limited amount
of regions made a manual configuration easy as the leader and all internal tree
nodes could be deployed within the same, well-connected region (Oregon).

154

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)

2833-292X/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN-S60304.2024.00044

1 DisseminationLatency:

2 node.dLat ←
{
0, if node = root

parent.dLat + lat(parent, node) otherwise

3 AggregationLatency:

4 node.aLat ←
{
node.dLat, if child = ∅
max {x.aLat + lat(x, node) | x ∈ child} otherwise

5 Votes:

6 node.votes ←
{
1, if child = ∅
1 + |child| otherwise

7 QC_Latency: // Sort by response arrival time at the leader
8 root.child.sort((c1, c2) → compare(c1.aLat+lat(c1, root), c2.aLat+lat(c2, root)));
9 qc_votes ← 1; // 1 vote initially from leader

10 for (x : root.child)
11 qc_votes += x.votes;

12 if (qc_votes >= �n+f+1
2

�) // quorum size in BFT systems

13 return x.aLat + lat(x, root);

Fig. 4: Compute the latency for quorum certification over a tree.

by existing solutions. To illustrate this problem, consider a

“small” deployment scenario of 13 nodes as shown in Figure 2:

The figure shows the structure of the fastest tree to collect a

QC in just 191 ms while the slowest tree (not pictured) would

require 690 ms, which is 3.6 times slower. Simulation-based

experimentation reveals that picking a tree configuration at

random is not ideal either, considering that most tree configu-

rations display latencies close to the mean of 412 ms as shown

in Figure 3. The problem becomes increasingly complex the

more regions are available for deployment. This leads to our

first research question: Given a set of network characteristics
(or: geographic regions), how can we automatically adjust
the employed tree configuration to optimize the latency of the
system? A second research question emerges when a subset of

nodes might become unavailable due to failures and we still

intend to find a system reconfiguration that performs fast.

III. PROPOSED SOLUTION

We present our solution by extending the Kauri protocol [1]

to equip it with mechanisms that (1) automate finding a fast

tree configuration for a given deployment and (2) support

efficient reconfiguration in the system with fast configurations.

A. Prerequisites for Automated Optimization

1) Latency Matrix: To implement our optimization scheme,

we first require knowledge that can be exploited to search for

fast system configurations. For this purpose we must know

the latency, represented by a function lat(x, y) between all

pairs of nodes (x, y). In practice, this can be implemented

by crafting a self-monitoring mechanism into the protocol

where nodes periodically ping each other, and record and

exchange their measurements. Another (albeit less decentral-

ized) solution would be to rely on an external monitor such as

CloudPing2 which collects statistics for inter-regions latency

of a large cloud infrastructure provider. We assume each node

knows or can look up the regions of any other node through

some fault-tolerant directory service and can read an available

latency matrix through a function lat(x, y).

2) Deterministic Optimization: Once a fast-performing tree

configuration is found, all nodes need to deterministically

switch to it. To achieve this, a mechanism for deterministic

optimizations is implemented into Kauri, which periodically

2See https://www.cloudping.co/grid.

attempts to optimize the system configuration at a logical point

in time, i.e., after a certain interval of protocol rounds passed.

B. Finding a Fast Tree Configuration

1) Assessing Tree Configurations: We first define a fitness

function QC Latency that defines the quality of a tree con-

figuration by computing the time a leader needs to collect a

quorum certificate (see Figure 4).

This function can be implemented in three steps: In the

first step, we traverse the tree downwards, calculating the

dissemination times at every node by adding the link latency

between node and parent to the dissemination time of the

parent (Line 2). In the second step, we proceed backward by

computing the aggregation times of multi-signatures bottom-

up at each node when all votes (signatures) from children

could be collected (Line 4). Finally, we calculate the latency

for quorum certification: It is a Byzantine dissemination quo-

rum [10] of the fastest responses that allows the leader to form

a QC and thus determine the overall speed (Lines 6-13).

2) Navigating the Configuration Space: Because the ex-

ploration space of trees quickly grows for larger n, it is not

feasible to evaluate all possible configurations. To solve this

problem, we employ a heuristic method to find a reasonably

fast configuration efficiently. In particular, we currently use

simulated annealing [11] which employs QC Latency as a fit-

ness function to evaluate configurations. Simulated Annealing

is a randomized search strategy that remembers and slightly

modifies good solutions to proactively find improvements. It

may also accept a temporary worsening with a certain accep-

tance probability to avoid getting stuck in a local optimum.

C. Supporting Reconfigurations with Fast Configurations

In the case of faulty nodes, Kauri is the first tree-based BFT

protocol to support quick recovery, a guarantee that a robust
tree3 is found after at most f + 1 reconfigurations assuming

that f < m where m is the tree’s fanout. This is achieved by a

partitioning of all nodes into m+1 disjoint sets of size n
m+1 ,

implying one of these sets must exclusively consist of correct

nodes which can be used to form the top of a robust tree (leader

and internal nodes). To improve this idea and outline it with

our goal of achieving fast latency in heterogeneous networks,

we propose to adopt the partitioning algorithm to account for

network characteristics. For instance, the algorithm can adapt

k-means clustering using geographic proximity (for instance

haversine formula) as a distance metric to put nodes that are

close together into the same cluster. The algorithm partitions

regions into k = m+1 clusters by iteratively assigning regions

to the nearest cluster centroid and then updates the centroids

based on the mean of the regions assigned to each cluster.

This follows the intuition that a leader and its internal nodes

should be well connected by residing in the same cluster. For

every of the k clusters, we use QC Latency to determine a

suitable cluster leader and for the assignment of leaf nodes to

the internal nodes of the cluster, yielding a fast configuration.

3Robust tree: The leader is correct and all correct nodes are connected to
the leader over an existing path that only consists of correct nodes.

155

ACKNOWLEDGEMENTS

This work has been funded by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) grant num-

ber 446811880 (BFT2Chain).

REFERENCES

[1] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable BFT
consensus with pipelined tree-based dissemination and aggregation,” in
Proc. of the 28th ACM SIGOPS Symp. on Operating Systems Principles
(SOSP), 2021, pp. 35–48.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication,” in International Workshop on Open Problems in
Network Security, 2015, pp. 112–125.

[4] C. Berger, S. Schwarz-Rüsch, A. Vogel, K. Bleeke, L. Jehl, H. P. Reiser,
and R. Kapitza, “Sok: Scalability techniques for bft consensus,” in
2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). IEEE, 2023, pp. 1–18.

[5] M. J. Amiri, C. Wu, D. Agrawal, A. E. Abbadi, B. T. Loo, and
M. Sadoghi, “The bedrock of BFT: A unified platform for BFT protocol
design and implementation,” preprint arXiv:2205.04534, 2022.

[6] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th USENIX Security Symposium (USENIX
Security 16), 2016, pp. 279–296.

[7] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy, 2018,
pp. 583–598.

[8] E. Kokoris-Kogias, “Robust and scalable consensus for sharded dis-
tributed ledgers,” Cryptology ePrint Archive, 2019.

[9] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International conference on the theory and application of
cryptology and information security. Springer, 2001, pp. 514–532.

[10] D. Malkhi and M. Reiter, “Byzantine quorum systems,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
1997, pp. 569–578.

[11] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983. [Online]. Available: https://science.sciencemag.org/content/220/
4598/671

156

