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Abstract—The exponential increase in data has significantly
burdened data centers with heightened operational demands
and challenges in managing, storing, and processing information.
Computational Storage Drives (CSDs) mitigate these issues by ac-
celerating processes, reducing energy consumption, and liberating
CPU resources for other data center tasks. In light of the notable
increase in harnessing the pattern recognition capabilities of
Machine Learning (ML) for a variety of data center applications
coupled with the aforementioned advantages of leveraging CSDs
in data center environments, we build upon the state-of-the-
art in CSD development via proposing a unique method for
offloading ML inference to CSDs, such as Samsung’s SmartSSD.
Using various parallelization and optimization techniques, we
demonstrate that the proposed CSD-based ML inference method
surpasses the inference speed of a high-performance GPU by
344.6×. We further showcase the ability of the presented ap-
proach to promptly detect ransomware with high accuracy,
precision, recall, and F1 scores, enabling effective and timely
mitigation directly within the CSD. Indeed, this ML inference
strategy offers the potential to enhance an assortment of other
data center tasks.

Index Terms—ransomware detection, deep learning classifica-
tion, long short-term memory, computational storage, near-data
processing, SmartSSD

I. INTRODUCTION

In the evolving landscape of data center technologies, we

are witnessing a pivotal shift from cloud-based to localized

solutions, driven by increasing demands for data privacy, secu-

rity, and immediate data processing. Localizing data handling

not only enhances privacy and security by retaining sensitive

information closer to its origin, thereby mitigating breach risks

associated with centralized cloud storage, but also significantly

reduces latency critical for real-time processing applications

that depend on swift decision-making. This approach alleviates

bandwidth limitations and connectivity issues by minimizing

the distance data travels, thereby pre-empting the bottlenecks

of transmitting data to distant cloud facilities. The rise of CSDs

and Smart Network Interface Cards (SmartNICs) exemplifies

this transition, marking a broader trend that has expanded

from accelerating network-centric tasks such as load balancing

[1] and security [2–4] to offloading such acceleration to

CSDs and SmartNICs within data centers. This strategic move

streamlines data throughput and enhances network manage-

ment directly at the host level, facilitating a more seamless and

powerful infrastructure capable of sophisticated, multi-faceted

processing tasks that bolster the entire data center ecosystem.

ML algorithms have also been shown to benefit from the

shift towards localized computing in data centers, particularly

when offloading ML data preprocessing tasks to CSDs [5–

7]. Data movement and I/O cost incurred are known to be

substantial bottlenecks for ML applications, and CSDs can

mitigate this issue by moving the data processing tasks near

the storage itself. CSD-based processing tasks also profit from

increased parallelization and an ability to bypass the CPU

entirely, which allows for additional acceleration over tradi-

tional software rooted in the CPU. In addition, the lower-power

processing capability of CSDs, compared to high-performance

CPUs and GPUs, also decreases energy consumption under

heavy workloads. As a result, CSDs not only have the capacity

to reduce operational costs such as hardware procurement

and cooling but also potentially extend the lifespan of more

expensive components.

In light of the advantages that ML algorithms stand to gain

from CSDs, we propose a unique method for offloading the

entirety of a classifier to a CSD. In turn, data centers can

execute the classifier continuously in the background for time-

sensitive applications without exhausting the CPU or con-

suming inordinate amounts of energy. We also utilized novel

parallelization techniques to overcome the parallel processing

constraints of CPUs and the data movement bottlenecks of

GPUs. Moreover, we employed a number of optimization

strategies to further accelerate the inference time of the CSD-

based model.

To verify the efficacy of the proposed approach, we per-

formed a thorough evaluation in the Vitis Software Plat-

form Development Environment [8] demonstrating that the

approach not only realizes additional reductions in inference

time from the aforementioned optimization strategies but that

the resultant inference time is orders of magnitude faster than

that of a high-performance CPU and GPU. As a use case

to substantiate the utilization of the proposed approach in

practice, we also showcase its capacity to promptly detect a

preeminent threat prevalent in today’s cyber attack landscape,

namely, ransomware. To this end, a variety of prominent

ransomware samples were aggregated and executed in a sand-

box environment in order to extract associated Application

Programming Interface (API) calls. The CSD-based classifier

was then trained on these API calls in order to classify API

call sequences associated with ransomware on the system
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housing the CSD. The classification results gave an accuracy,

precision, recall, and F1 score of 0.9833, 0.9789, 0.9890,

and 0.9840, respectively. This use case is intuitive, as the

proposed approach resides next to the data that it is protecting

and therefore can offer real-time mitigation upon detecting

the presence of ransomware. We postulate that the proposed

approach’s appreciable results with ransomware detection can

be extended to a variety of other time-sensitive data center

applications.

In summary, we highlight the following core contributions

of this work:

• Presenting a unique classification methodology entirely

within CSDs to enable real-time inference for data center

applications. The methodology leverages a sequential

classifier capable of handling long-term decencies over

time and thereby can generalize to any number of data

center tasks.

• Implementing several enhancements to improve resource

efficiency, parallel processing capabilities, and the speed

of inference. Such enhancements were developed and

tested using the Vitis Software Platform Development En-

vironment. Evaluation results reveal that our CSD-centric

inference method significantly outperforms a NVIDIA

A100 GPU, achieving a speed increase of 344.6×.

• Showcasing the proposed approach’s capability of detect-

ing ransomware via evaluating it against a plethora of

prominent ransomware samples. The evaluation demon-

strates that the approach can identify ransomware with

high accuracy, precision, recall, and F1 scores, thereby

demonstrating its reliability in combating ransomware in

practice.

II. CSD PRIMER

CSDs mark a significant evolution in data processing

technologies by incorporating processing capabilities directly

within the storage units, thereby situating computation proxi-

mal to the data source. A prominent example of this technol-

ogy is Samsung’s SmartSSD, which integrates conventional

SSD components such as the SSD controller and NAND array

with advanced elements including a Field Programmable Gate

Array (FPGA) accelerator, FPGA DRAM, and a PCIe switch.

This configuration is illustrated in Fig. 1, which highlights

the architecture of the SmartSSD. The device pairs a 4 TB

PM1733 SSD with a Xilinx KU15P Kintex UltraScale FPGA

via a PCIe Gen3 x4 bus, optimizing the interaction between

the host, storage, and processing elements.

The architecture of the SmartSSD, as portrayed in Fig.

1, enables the CPU to dispatch standard SSD read/write

commands along with specialized FPGA computation and

FPGA DRAM read/write requests. Additionally, a pivotal

feature of the SmartSSD is its support for peer-to-peer (P2P)

communication via the FPGA DRAM and the onboard PCIe

switch, which facilitates direct data exchanges between its

NVMe SSD and FPGA components. This capability drastically

reduces PCIe traffic and CPU overhead, thereby lowering

latency and enhancing overall system efficiency.
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Fig. 1. SmartSSD CSD architecture.

Moreover, the SmartSSD is accompanied by a compre-

hensive development toolkit that includes a runtime library,

an Application Programming Interface (API), a compiler,

and necessary drivers for FPGA programming. This suite of

tools enables developers to easily implement FPGA-based

designs, further augmenting the computational potential of the

SmartSSD. By offering these advanced features, the SmartSSD

represents a scalable solution that overcomes traditional con-

straints related to space, power, and cost, allowing for the

installation of multiple devices within a single node and

significantly advancing near-storage computation capabilities.

The proposed ML classification model is fully integrated

within the FPGA, allowing it to process input data directly

from the SSD without necessitating CPU involvement. This

arrangement optimally utilizes the unique capabilities of the

SmartSSD, freeing the CPU to address other critical tasks

within the data center, thereby streamlining operations and en-

hancing the overall performance and efficiency of the system.

III. PROPOSED APPROACH

In this section, we detail the DL model architecture har-

nessed by the proposed approach, and how it was optimized for

deployment on the FPGAs within CSDs, such as Samsung’s

SmartSSD.

A. CSD-Based DL

Model selection. An LSTM model, a variant of Recurrent

Neural Networks (RNNs) renowned for their capacity to

capture long-term dependencies, is optimally suited for de-

ployment on the FPGA within a CSD for tasks involving

sequence prediction. In contrast to non-sequential models (i.e.,

those that do not process data in a time-dependent sequence)

might only analyze static snapshots of data, LSTMs excel in

handling time-series data, embodying long-term dependencies

and temporal dynamics. Consequently, LSTMs are more adept

at understanding patterns over time in order to provide more

accurate predictions and insights for dynamic data center

environments. To this extent, the proposed approach herein

utilizes an LSTM model.

This selection is also grounded in the LSTM’s robust track

record across a spectrum of deep learning applications and
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its intrinsic compatibility with the reconfigurable architecture

of FPGAs, which excel in managing both sequential and

parallel processing demands efficiently. Unlike GPUs, which

are predominantly oriented towards parallel processing tasks

and may struggle with the sequential processing requirements

of LSTMs, FPGAs provide a versatile platform that excels in

handling the complex computational patterns of LSTMs by

effectively balancing their sequential and parallel processing

needs. This efficiency is further enhanced by the LSTM’s

architectural design, which employs a fixed set of cell param-

eters across all timesteps. This consistency allows for repeated

use of the same computational logic, minimizing resource

allocation on the FPGA and enabling more efficient data

processing. Such a design aligns well with FPGAs, as they

can be programmed to specifically optimize these recurrent

operations, thereby significantly improving the model’s exe-

cution efficiency and reducing the time complexity inherent

in sequential tasks.

LSTM inner workings. An LSTM functions by processing

data in a sequence and updating its state vector at each

timestep, which encapsulates the historical information of all

prior inputs. This aim is achieved through a sophisticated

system of gates: the input gate it, forget gate ft, and output

gate ot. Such gates are mathematically expressed as follows:

it = σ(Wi[ht−1, xt] + bi),

ft = σ(Wf [ht−1, xt] + bf ),

ot = σ(Wo[ht−1, xt] + bo),

with σ denoting the sigmoid function, W the weight matrices,

b the bias terms, ht−1 the previous hidden state, and xt

the current input. An LSTM also includes a process for cell

modulation, represented as C ′
t = tanh(WC′ [ht−1, xt] + bC′),

which generates a vector of new candidate values. These

values are modulated by it and then combined with the old cell

state Ct−1 (modulated by ft) to update the cell state. The cell

state updates as Ct = ft∗Ct− 1+it∗C ′
t) in order to regulate

the memory of the network by deciding which information to

discard and which to retain. After the cell state is updated,

the hidden state for the current timestep ht is obtained by

applying ot via the equation ht = ot ∗ tanh(Ct). This hidden

state ht is then passed to the next timestep and ultimately used

for predictions. This gated control of information flow also

allows LSTMs to bridge long time intervals by mitigating the

vanishing gradient problem inherent in traditional RNNs.

Porting the model to hardware. The LSTM model that will

be deployed on the FPGA is first trained offline. It consumes

a CSV dataset consisting n + 1 columns and N rows for se-

quences of n items plus a label and N samples, respectively. In

general, it is also ideal to incorporate an embedding generation

step for each item in a given sequence before passing it to

the LSTM. Such embeddings enable the model to understand

complex relationships and patterns within the data by rep-

resenting it in a more informative, lower-dimensional space

[9]. Once the embeddings and LSTM have been trained until

convergence, the associated weights and biases are extracted
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Fig. 2. Kernel implementation strategy for LSTM inference on CSDs.

and written to a text file. For example, TensorFlow allows

one to extract parameters via the get_weights() function,

which returns three Numpy arrays consisting of the weights W
for xt, the W for ht−1, and the related b terms, respectively.

For additional insight, we kindly refer interested readers to a

notebook where we have implemented this procedure [10].

Lastly, the host program that is responsible for general

control flow, initiating data transfers, and managing the inter-

action with the FPGA ingests this text file amid initializing

the FPGA. That being said, the structure of the proposed

FPGA-based LSTM implementation described in subsequent

subsections is constructed in such a manner that it remains

fixed regardless of changes in the number of parameters or

embeddings trained in the offline model and the length of

the sequences that the offline model consumes. Consequently,

the FPGA-based model is compiled once and can be updated

at the operator’s discretion. For instance, in the event that

the proposed approach is leveraged for prompt ransomware

detection and mitigation, it is advisable to update the FPGA-

based model with a version that has been retrained on new

ransomware strains once they are uncovered in Cyber Threat

Intelligence (CTI) feeds.

B. Kernel implementations

In an FPGA, kernels are specialized blocks of code designed

to operate on a stream of inputs to produce outputs. These

kernels aim to accelerate computational tasks by efficiently

executing multiple operations in parallel, which can substan-

tially reduce the time required to process large volumes of

data. This approach contrasts with traditional CPUs that, based

on the classic Von Neumann architecture, typically execute

instructions one after another in a sequential manner, often

limiting their speed in data-intensive tasks.

To this end, we segregate the previously discussed LSTM

inner workings into five well-defined kernels. These kernels

and there overall role within the forward pass of the LSTM are

portrayed in Fig. 2. The first kernel, kernel_preprocess,

consumes a fully-formed data sequence (i.e., a sequence that

has reached a pre-established number of items). For each

item in the sequence, kernel_preprocess preprocesses

the item by generating its corresponding embedding based off

the weights from the offline training procedure. To achieve
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this aim, kernel_preprocess is initialized with a 1-

dimensional buffer consisting of the flattened embedding vec-

tor consisting of parameters p ∈ R
M×O, where M is the

magnitude of the set of all items in the N sequences and O is

the embedding size. The embedding for the current item being

processed in the given sequence by kernel_preprocess
is obtained by taking the dot product of the one-hot vector of

the item and the M ×O matrix.

The next kernel is kernel_gates, which is tasked with

generating the input gate it, forget gate ft, and output gate ot.
kernel_gates takes the embeddings (i.e., xt in the LSTM

equations) generated by kernel_preprocess as input

along with the previous iteration’s ht−1 (i.e., the LSTM’s out-

put for the previous item in the sequence). kernel_gates
also receives the weights for both the embeddings and ht−1.

Lastly, kernel_gates applies the sigmoid activation func-

tion to the result of the dot product and sum calculation.

The last kernel is kernel_hidden_state. As observed

in the LSTM inner workings subsection, ht is dependent

upon Ct, and therefore kernel_hidden_state is used

to generate both. Moreover, taking this approach allows us

to maintain Ct entirely within kernel_hidden_state,

in contrast to contending with the additional overhead as-

sociated with passing Ct to another kernel. Ultimately,

kernel_hidden_state receives the inputs of it, ft, ot,
and C ′

t, and outputs ht. Additionally, this kernel also receives

the weights and bias for a fully connected layer in order to map

ht to a classification once all items in the sequence have been

processed. kernel_hidden_state maintains a static
counter in order to determine when the entirety of the sequence

has been processed.

C. Parallelization

Note that the aforementioned kernel implementation was

devised to support a balance between parallelization while

reducing pressure on AXI Master interfaces used for high-

performance, memory-mapped communications between the

kernels and the FPGA’s memory resources. These resources

are not embedded within the FPGA fabric itself but are instead

part of the global memory resources available to the FPGA.

This often includes DDR SDRAM but can also refer to other

types of accessible memory, depending on the architecture of

the FPGA and its surrounding system. The proposed approach

utilizes a conservative two DDR banks of global memory.

For comparison, some Alveo cards (e.g., the u200 and u250)

support four banks.

As shown in Fig. 2, our kernel implementation enforces

parallelization between four kernel_gates Compute Units

(CUs). To ensure that these four CUs truly run in paral-

lel, kernel_preprocess creates four copies of the em-

bedding of the given item in the sequence (i.e., xt), and

kernel_hidden_state performs the same copy operation

with ht−1 such that each CU has its own copies. Note that

streaming can be easily ported to the kernel implementation

for additional acceleration if the FPGA supports it. The High-

Level Synthesis (HLS) pragma #pragma HLS DATAFLOW

was also employed in kernel_gates to promote added par-

allelization between independent operations within the CUs.

Lastly, while an item in the the sequence is being processed by

the kernel_gates CUs and kernel_hidden_state,

kernel_preprocess preemptively processes the next item

in the sequence to generate its embeddings in parallel so the

embeddings can be consumed by the kernel_gates CUs

when available.

D. Optimizations

Activation functions. As previously noted, LSTMs leverage

sigmoid and tanh activations. While the sigmoid activation can

be implemented with relative ease, the tanh function defined as

follows, possesses complexities that can be taxing on FPGAs:

tanh(x) =
ex − e−x

ex + e−x
.

To mitigate this issue, we replace all tanh functions with

softsign activations, as subsequently defined:

softsign(x) =
x

abs(x) + 1
.

This is a sufficient replacement for the tanh function in LSTMs

due to its similar S-shaped curve and asymptotic behavior,

which offers a smooth and continuous gradient flow in order

to mitigate vanishing gradient problems. Simultaneously, it

provides computational efficiency by avoiding the exp() op-

eration, thereby making it a practical choice for maintaining

performance with lower computational costs.

Initiation Interval. The Initiation Interval (II) quantifies the

number of clock cycles required between consecutive initia-

tions of operations in a pipelined architecture. Consequently,

it determines the throughput of the pipeline by specifying

the minimum temporal separation at which the pipeline can

accept new inputs or begin a new iteration of a loop. For

instance, an II of 1 implies maximal pipeline utilization, where

a new operation or loop iteration commences in every clock

cycle, thereby achieving the highest possible data processing

rate. Ultimately, II depends on various factors including the

nature of the loop operations, data dependencies, and available

hardware resources. As such, a sound technique to minimizing

II is to employ #pragma HLS PIPELINE II=1 prior the

execution of loops in order to prompt the compiler to place

added emphasis on II minimization. Additionally, we unroll

loops to a degree via #pragma HLS UNROLL to help reduce

II, as it can increase parallelism and reduce both data depen-

dencies and loop overhead. In a similar vein, we also partition

kernel buffers using #pragma HLS ARRAY PARTITION
complete to promote the processing of indexed buffer items

in parallel in order to further aid in II reduction.

Fixed-point arithmetic. Fixed-point arithmetic scales

floating-point numbers by a factor, converting them to

integers to perform operations more efficiently than floating-

point calculations. This approach is advantageous for FPGA

Digital Signal Processing (DSP) slices optimized for tasks like

multiplication, accumulation, and filtering, crucial for deep

learning inference involving extensive matrix multiplications.
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Efficient DSP utilization also reduces FPGA Look-Up Table

(LUT) consumption.

Since the vast majority of the floating points numbers used

in the proposed approach are small numbers, we employ

a scaling factor of 106, which places more emphasis on

maintaining the mantissa of the floating point representation.

We multiply the floating-point values of weights, biases, and

embeddings by this factor before the host initialization shown

in Fig. 2, converting them to integers while preserving signifi-

cant digits. To minimize errors from finite precision, we round

the results to closely match the original numbers. Moreover,

after each multiplication, the product scales by 1012, which

requires a correction by dividing by the scaling factor squared

(1012) to maintain accurate final values with minimal errors

for subsequent arithmetic operations in the FPGA.

IV. EVALUATION

In this section, we conduct a comprehensive evaluation of

our proposed methodology to assess both its efficiency and

effectiveness. Specifically, we measure the execution times of

our approach and compare them with that of high-performance

CPUs and GPUs. Moreover, we illustrate the proficiency of

our method in performing accurate CSD-based ransomware

detection.

Testing environment. Our FPGA experiments were carried

out using the Vitis Software Platform Development Environ-

ment [8], which enables complete FPGA hardware emulation

and provides dependable performance metrics. These experi-

ments were performed on a server running Ubuntu 20.04.6,

equipped with an Intel Xeon Silver 4114 processor and 32

GB of RAM. All necessary code for the host and kernels

was developed in C++ and made use of Xilinx Runtime

(XRT) and HLS, respectively. We selected the Alveo u200

[11] as our primary experimental platform, which is part of

the UltraScale family and similar to the SmartSSD’s Kintex

KU15P. Compilation of the host application was executed

using g++, the standard GNU C compiler, while v++ was

utilized to compile the kernel objects into .xo files and to link

these objects with the target platform when generating the

FPGA binary (i.e., the .xclbin file). The experimental setup

involved an LSTM model with an embedding dimension of 8,

a hidden layer size of 32, and bias terms, which collectively

accounted for 7,472 parameters (2,224 for the embeddings and

5,248 for the LSTM). The concluding fully-connected layer

incorporated 32 weights and one bias term.

Execution time. We begin this evaluation by taking the

execution time of the LSTM’s forward pass for an individ-

ual item in a sequence using the Vitis Software Platform

Development Environment’s hardware emulation mode. Such

mode is designed to provide an accurate estimate of how long

the FPGA would take to execute the given program in real

hardware. The execution times are given for a vanilla FPGA-

based LSTM that leverages the parallel kernels and no other

optimizations, and then incrementally adding the optimizations

of II minimization and fixed-point arithmetic to better observe

the acceleration enhancements realized by each.
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The results are portrayed in Fig. 3 in microseconds. As can

be observed, II minimization reduced the execution time of

kernel_hidden_state by a relatively wide margin, and

the leveraging of fixed-point arithmetic dramatically decreased

the execution time of kernel_gates. Notably, the execu-

tion time of kernel_preprocess remained fairly fixed.

Ultimately, with both optimizations, the total execution time of

approximately 7.153 μs was decreased to roughly 2.15133 μs
per forward pass of the FPGA-based LSTM. In addition, recall

that the four CUs of the kernel_gates run in parallel, so

the execution time of the gate operations is equivalent to the

maximum execution time of each of the four CUs, which is

given in Fig. 3.

Ransomware detection use case. To showcase the capability

of the proposed approach to be harnessed in practice, we apply

it to among the most concerning cybersecurity threats today,

namely, ransomware. The advantages of pairing a ransomware

defense mechanism with the storage itself are clear, as such

a defense would allow near-instantaneous mitigation. Further,

such a ransomware defense could be seamlessly paired with

existing network-based detection mechanisms [12, 13]. To

this extent, we feed API call sequences into the proposed

FPGA-based LSTM, as API call sequences have proven to

be a reliable method for identifying compromises. In order

to derive an appreciable API call dataset comprising ran-

somware infections, we aggregated a number of prominent

ransomware samples and utilized Cuckoo Sandbox [14] to

generate associated API call sequences on Windows systems.

We also collected an assortment of benign API call sequences

to incorporate into the dataset as well. The dataset consisted

of 29K sequences, of which 46% resulted from ransomware.
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Fig. 4. Convergence of the LSTM training on ransomware API call sequences.

We make this dataset publicly available to promote future

ransomware defenses and research [10]. Additional details

pertaining to the dataset aggregation are covered in Appendix

A. We then trained an LSTM model comprising a total of

7,472 parameters until convergence, as shown in Fig. 4. As can

be observed, the model reached its peak detection accuracy

of the testing dataset of 0.9833 at around 4K epochs. At

this juncture, the model also gave a precision, recall, and

F1 score of 0.9789, 0.9890, and 0.9840, respectively. Indeed,

these results demonstrate that the proposed LSTM model

can effectively pinpoint ransomware infections, and therefore

could immediately thwart any subsequent encryption by the

malware for extortion purposes.
GPU/CPU comparison. As a final experiment, we performed

a comparison of the execution time of the LSTM’s forward

pass for an individual item in the sequence between an Intel

Xeon CPU with 13 GB of RAM, an NVIDIA A100 GPU with

40 GB of video RAM, and the optimized proposed FPGA-

based approach. The results are given in microseconds (μs)

and shown in Table I, along with the corresponding 95%

Confidence Interval (CI). Note that the CI for the proposed

CSD-based FPGA inference strategy is listed as N/A since

the measurement was taken via the Vitis Software Platform

Development Environment’s hardware emulation mode. As

Execution time 95% CI
FPGA 2.15133 μs N/A

CPU 991.57750 μs 217.46576 μs - 1765.68923 μs
GPU 741.35336 μs 394.45317 μs - 1088.25355 μs

TABLE I
TRADITIONAL DL HARDWARE COMPARISON

can be expected, the GPU outperformed the CPU. However,

the proposed approach surpassed the GPU by 344.6×. Thus,

not only is the proposed CSD-based inference approach more

power-efficient than high-peformance CPUs and GPUs, but it

also has edge over such hardware in terms of speed.

V. RELATED WORK

CSDs, which have proven to offer minimal power consump-

tion in comparison to CPUs and GPUs, have also shown to

offer appreciable acceleration for a variety of tasks including

but not limited to hardware-based virtualization [15], en-

cryption [16], database operations [17–22], big data analytics

[23, 24], and several others [25]. In light of these advances,

recent research endeavors have began leveraging CSDs for ML

purposes. Largely, these approaches utilize the near-storage

processing capabilities of CSDs to perform various data pre-

processing procedures applicable to ML, such as tackling

heavy data movement workloads [26], the management of

graph-structure data [27, 28], data preprocessing to minimize

related overhead associated with deep learning model training

[5–7], and selecting important subsets of large datasets directly

at the storage level [6].

Following the lead of the aforementioned noteworthy en-

deavors, efforts have been made to begin offloading ML in-

ference tasks to CSDs. For instance, Tavakoli, Beygi, and Yao

[29] integrated a dimensionality-reduced, k-Nearest Neighbors

(kNN) classifier into a CSD. Further, An, Aliaj, and Jun [30]

utilized a CSD to accelerate some convolution operations to

facilitate Convolutional Neural Network (CNN) inference. It

is our aim to extend these noble endeavors via offloading

the entirety of the inference procedure of a sequential deep

learning model to a CSD, demonstrating that CSDs have the

capacity to not only assist such models but can also perform

inference in an near-standalone manner comparable with CPUs

and GPUs.

VI. LIMITATIONS AND FUTURE DIRECTIONS

Despite the acceleration that accompanies offloading appli-

cations to FPGAs, along with the reduction of both energy

usage and CPU overhead, the primary limitations in doing so

are the domain-specific knowledge that it takes to program

these devices and their resource constraints. While this work

aims to facilitate addressing the former, future efforts explor-

ing additional innovations for efficiently integrating classifiers

into CSD-based FPGAs would be an interesting direction.

Additionally, while the proposed approach was optimized

using fixed-point arithmetic, mixed precision procedures are

commonly utilized in deep learning models to enhance com-

putational speed and efficiency by performing operations in

lower precision where high precision is not necessary, and in

higher precision where greater accuracy is required. As such,

exploring mixed precision alternatives on CSDs would be a

notable endeavor.

VII. CONCLUSION

In conclusion, this work introduces a novel approach for

leveraging CSDs within data centers to offload deep learning

classification, specifically LSTM models. This approach not

only inherently reduces power consumption but we demon-

strate that it dramatically reduces latency of high-performance

CPUs and even GPUs, thereby addressing the dual challenges

of operational efficiency and security in the face of escalating

data center demands and sophisticated cybersecurity threats.

Indeed, the showcased efficacy of our CSD-based classifi-

cation technique in handling real-time ransomware detection

underscores its potential to transform data center operations,

paving the way for more resilient, efficient, and secure digital

infrastructures.
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APPENDIX

Table II highlights the prominent ransomware samples that

were aggregated to derive the dataset of ransomware API

call sequences used in the proposed approach’s ransomware

detection use case. In total, ten families were collected encom-

passing 78 variants. In order to ensure a plethora of varying

malicious API call sequences, ransomware families that also

exhibit self-propagation behaviors were incorporated into the

dataset. Moreover, all aggregated variants encrypt files (as

opposed to strictly locking behavior, which has largely become

obsolete) and their network traffic.
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Family Instances Encryption Self-propagation
Ryuk 5 variants � �
Lockbit 6 variants � �
Teslacrypt 10 variants � ×

Virlock 11 variants � ×

Cryptowall 8 variants � ×

Cerber 9 variants � ×

Wannacry 7 variants � �
Locky 6 variants � ×

Chimera 9 variants � ×

BadRabbit 5 variants � �

TABLE II
RANSOMWARE DATASET OVERVIEW.

Each of the variants were then executed in a Cuckoo

sandbox environment [14] using Windows 10 and 11 to extract

all API calls that were made, in the order in which they would

be observed on a system housing a CSD equipped with the

proposed approach. An API call sequence for each variant of

length 100 was taken, beginning with the first API call made to

promote early detection. In order to facilitate generalizability

to varying orders of malicious API calls, we also employed

a sliding window of length 100 to extract sub-sequences at

different stages in each variant’s execution. As given by the

appreciable ransomware detection accuracy achieved by the

proposed approach, this sliding window procedure indeed did

not hinder the model’s performance (i.e., which could occur

when such malicious sub-sequences are indistinguishable from

those of benign nature), and therefore can only enhance its

capacity for generalizing to malicious API call sequences not

observed during training. Ultimately, 13,340 ransomware API

call sequences of length 100 are encompassed in the dataset.

Lastly, an assortment of benign API call sequences were

also extracted from Windows 10 and 11 environments. The

benign API call sequences were derived from both manual

interaction with such environments and via executing popular

applications within them. Popular applications were selected

from Top Ten lists on The Portable Freeware Collection [31]

from years 2018 through 2021, as well as from the website’s

Popular Titles. In total, 30 popular applications were collected

and executed. The aforementioned technique based on a slid-

ing window of length 100 was subsequently utilized to extract

benign API call sub-sequences from the popular applications

and manual interaction, resulting in 15,660 sequences. The

final benign and ransomware API call sequences were then

merged and shuffled for binary classification tasks. The final

dataset is publicly available [10].
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